

 B.Tech- Aerospace Engineering

 U20ASCJ06 - AVIONICS

Lab Manual

Vision of the institute
“Bharath Institute of Higher Education & Research (BIHER) envisions and constantly strives to provide

an excellent academic and research ambience for students and members of the faculties to inherit

professional competence along with human dignity and transformation of community to keep pace with

the global challenges so as to achieve holistic development.”

Mission of the institute

➢ To develop as a Premier University for Teaching, Learning, Research and Innovation on par with

leading global universities.

➢ To impart education and training to students for creating a better society with ethics and morals.

➢ To foster an interdisciplinary approach in education, research and innovation by supporting

lifelong professional development, enriching knowledge banks through scientific research,

promoting best practices and innovation, industry driven and institute oriented cooperation,

globalization and international initiatives.

➢ To develop as a multi-dimensional institution contributing immensely to the cause of societal

advancement through spread of literacy, an ambience that provides the best of international

exposures, provide health care, enrich rural development and most importantly impart value

based education.

➢ To establish benchmark standards in professional practice in the fields of innovative and

emerging areas in engineering, management, medicine, dentistry, nursing, physiotherapy and

allied sciences.

➢ To imbibe human dignity and values through personality development and social service

activities.

B.Tech- Aerospace Engineering

Vision of the Department

Department of Aeronautical Engineering will endeavor to accomplish worldwide recognition with a focal

point of Excellence in the field of Aeronautics by providing quality Education through world class

facilities, enabling graduates turning out to be Professional Experts with specific knowledge in

Aeronautical & Aerospace engineering.

Mission of the Department

➢ To be the state of art Teaching and Learning center with excellent infrastructure and empowered

Faculties in Aeronautical & Aerospace Engineering.

➢ To foster a culture of innovation among students in the field of Aeronautics and Aerospace with

updated professional skills to enhance research potential for sponsored research and innovative

projects.

➢ To Nurture young individuals to be knowledgeable, skilful, and ethical professionals in their

pursuit of Aeronautical & Aerospace Engineering.

B.Tech- Aerospace Engineering

Program Educational Objectives Statements (PEO)

PEO 1: Demonstrate a solid grasp of fundamental concepts in Mathematics, Science, and Engineering,

essential for effectively addressing engineering challenges within the Aerospace industry.

PEO 2: Involve in process of designing, simulating, fabricating, testing, and evaluating in the field of

Aerospace.

PEO 3: Obtain advanced skills to actively engage in research and development endeavors within

emerging domains, while also pursuing further education opportunities.

PEO 4: Demonstrate efficient performance both as independent contributors and as valuable team

members in diverse multidisciplinary projects.

PEO 5: Embrace lifelong learning and career advancement while adapting to the evolving social demands

and needs.

B.Tech- Aerospace Engineering

Programme Outcomes (PO’s)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and Engg. Specialization to the solution of complex

engineering problems.

PO2: Problem analysis: Identify, formulate, research literature, and analyze engineering

problems to arrive at substantiated conclusions using first principles of mathematics,

natural, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering

problems and design system components, processes to meet the specifications with

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge

including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge

to assess societal, health, safety, legal, and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

PO9: Individual and teamwork: Function effectively as an individual, and as a member

or leader in teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively with the engineering community and

with society at large. Be able to comprehend and write effective reports documentation.

Make effective presentations and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of

engineering and management principles and apply these to one’s own work, as a member

and leader in a team. Manage projects in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

B.Tech- Aerospace Engineering

 Program Specific Outcomes (PSO) - R2020

PSO1: Design and analyze aerospace components/systems for aerospace industries.

PSO2: Acquire the concepts of spacecraft attitude dynamics for the prediction of

spacecraft motion.

Course Outcomes (COs)

CO1
Discuss the working principles of various avionic sub-systems and automated flight control

systems. (Understand)

CO2 Compare various display technologies used in civil and military cockpits. (Understand)

CO3 Discuss Avionics system architecture and various data-buses. (Understand)

CO4 Discuss the operational principle of Aircraft Navigation Systems. (Understand)

CO5 Explain Air data Instruments used in modern aircrafts. (Understand)

CO6 Observe and explain the functionality and importance of each system. (Imitation)

CO7 Carry out the demonstration and response of the avionics system. (Manipulation)

CO8
Observe the output of the digital circuits and verify the stability characteristics of the avionics

system. (Imitation)

Mapping/Alignment of COs with PO & PSO

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

CO1
H H H

CO2
H H H

CO3
H H H

CO4
H H H H

CO5
H H H H

CO6
H M H H H H H H

CO7
H M M H H H H H

CO8
H M H H H H H H

 (Tick mark or level of correlation: H-High, M-Medium, L-Low)

U20ASCJ06 AVIONICS

OBJECTIVE :

 To learn about basic digital electronics circuits, programming with microprocessors, Stability

analysis using MATLAB.

LIST OF EXPERIMENTS:

1. Addition/Subtraction of binary numbers.

2. Multiplexer/Demultiplexer Circuits.

3. Encoder/Decoder Circuits.

4. Addition and Subtraction of 8-bit and 16-bit numbers.

5. Sorting of Data in Ascending & Descending order.

6. Root Locus Analysis for Pitch Displacement Autopilot Stability.

7. Bode Plot Analysis for Pitch Displacement Autopilot Stability

8. Design of P, PI, and PID controller for aircraft dynamics.

 1.ADDITION / SUBTRACTION OF BINARY NUMBERS

I. HALF ADDER AND FULL ADDER

AIM

To design half adder and full adder using basic logic gates and to verify the truth table

APPARATUS REQUIRED

Digital IC trainer kit - 1

IC7408 (AND Gate) - 1

IC7486 (XOR Gate) - 1

IC7432 (OR Gate) - 1

Connecting Wires - as required

THEORY

 An adder is a digital circuit that performs addition of numbers. In many computers and other kinds of

processors adders are used in the arithmetic logic units or ALU. They are also utilized in other parts of the

processor, where they are used to calculate addresses, table indices, increment and decrement operators, and

similar operations.

 The half adder adds two single binary digits A and B. It has two outputs, sum (S) and carry (C). The carry

signal represents an overflow into the next digit of a multi-digit addition.

 A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit full adder

adds three one-bit numbers, often written as A, B, and Cin; A and B are the operands, and Cin is a bit carried in

from the previous less-significant stage. The full adder is usually a component in a cascade of adders, which add

8, 16, 32, etc. bit binary numbers.

PROCEDURE

1. Make the connections as per the circuit diagram using the digital IC trainer kit and connecting wires

2. Switch ON the power supply

3. Note down the output values of sum and carry for various input combinations

4. Verify the truth table

5. Similarly, repeat the procedure for full adder

CIRCUIT DIAGRAM

HALF ADDER

FULL ADDER

TRUTH TABLE

HALF ADDER

A B SUM, S CARRY, C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

FULL ADDER

A B Cin SUM, S CARRY, C

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

RESULT

 Thus, the half adder and full adder were designed using basic logic gates and the output was verified.

II. HALF SUBTRACTOR AND FULL SUBTRACTOR

AIM

To design half subtractor and full subtractor using basic logic gates and to verify the truth table

APPARATUS REQUIRED

Digital IC trainer kit - 1

IC7408 (AND Gate) - 1

IC7486 (XOR Gate) - 1

IC7432 (OR Gate) - 1

IC7404 (NOT Gate) - 1

Connecting Wires - as required

THEORY

 A subtractor is a digital circuit that performs subtraction of numbers. In many computers and other kinds

of processors subtractors are used in the arithmetic logic units or ALU. They are also utilized in other parts of the

processor, where they are used to calculate addresses, table indices, increment and decrement operators, and

similar operations.

 The half Subtractor subtracts two single binary digits A and B. It has two outputs, difference (D) and

borrow (B0). The borrow signal represents an overflow into the next digit of a multi-digit subtraction.

 A full Subtractor subtracts binary numbers and accounts for values borrowed in as well as out. A one-bit

full Subtractor subtracts three one-bit numbers, often written as A, B, and Cin; A and B are the operands, and Cin

is a bit carried in from the previous less-significant stage. The full subtractor is usually a component in a cascade

of subtractors, which subtract 8, 16, 32, etc. bit binary numbers.

PROCEDURE

1. Make the connections as per the circuit diagram using the digital IC trainer kit and connecting wires

2. Switch ON the power supply

3. Note down the output values of sum and carry for various input combinations

4. Verify the truth table

5. Similarly, repeat the procedure for full subtractor

CIRCUIT DIAGRAM

HALF SUBTRACTOR

FULL SUBTRACTOR

TRUTH TABLE

HALF SUBTRACTOR

A B DIFFERENCE, D BORROW, B0

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

FULL SUBTRACTOR

A B Cin DIFFERENCE, D BORROW, B0

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

RESULT

 Thus, the half subtractor and full subtractor were designed using basic logic gates and the output was

verified.

2. MULTIPLEXER AND DEMULTIPLEXER

AIM

To design and implement multiplexer and demultiplexer and to verify the truth table

APPARATUS REQUIRED

Digital IC trainer kit - 1

IC74151 (MUX) - 1

IC74138 (DEMUX) - 1

Mono Pulse Generator - 1

Address Generator - 1

Connecting Wires - as required

THEORY

The multiplexer, shortened to “MUX” or “MPX”, is a combinational logic circuit designed to switch one

of several input lines through to a single common output line by the application of a control signal. Multiplexers

operate like very fast acting multiple position rotary switches connecting or controlling multiple input lines called

“channels” one at a time to the output.

Multiplexers, or MUX’s, can be either digital circuits made from high speed logic gates used to switch

digital or binary data or they can be analogue types using transistors, MOSFET’s or relays to switch one of the

voltage or current inputs through to a single output.

In digital electronics, multiplexers are also known as data selectors because they can “select” each input

line, are constructed from individual Analogue Switches encased in a single IC package as opposed to the

“mechanical” type selectors such as normal conventional switches and relays.

They are used as one method of reducing the number of logic gates required in a circuit design or when a

single data line or data bus is required to carry two or more different digital signals.

The demultiplexer takes one single input data line and then switches it to any one of a number of individual

output lines one at a time. The demultiplexer converts a serial data signal at the input to a parallel data at its output

lines.

PROCEDURE

1. Make the connections as per the circuit diagram using the digital IC trainer kit and connecting wires

2. Switch ON the power supply

3. Note down the output values for various input combinations

4. Verify the truth table

CIRCUIT DIAGRAM

MULTIPLEXER

DEMULTIPLEXER

TRUTH TABLE

MULTIPLEXER

S2 S1 S0 OUTPUT Y

0 0 0 D0

0 0 1 D1

0 1 0 D2

0 1 1 D3

1 0 0 D4

1 0 1 D5

1 1 0 D6

1 1 1 D7

DEMULTIPLEXER

RESULT

 Thus, MUX and DEMUX were designed and implemented and their output was verified.

3. ENCODER AND DECODER

AIM

To study the encoder and decoder and their operation

APPARATUS REQUIRED

Encoder & Decoder trainer kit - 1

Connecting Wires - as required

THEORY

ENCODER

An encoder is a digital circuit that performs inverse operation of a decoder. An encoder has 2ninput lines

and n output lines. In encoder the output lines generates the binary codecorresponding to the input value. In octal

to binary encoder it has eight inputs, one for each octaldigit and three output that generate the corresponding binary

code. In encoder it is assumed thatonly one input has a value of one at any given time otherwise the circuit is

meaningless. Here, when all inputs are zero the outputs are zero. The zero outputs can also begenerated when D0

= 1.

DECODER

A decoder is a multiple input multiple output logic circuit which converts coded input into coded output

where input and output codes are different. The input code generally has fewer bits than the output code. Each

input code word produces a different output code word i.e there is one to one mapping can be expressed in truth

table. In the block diagram of decoder circuit the encoded information is present as n input producing 2npossible

outputs. 2noutput values are from 0through output 2n-1

PROCEDURE

1. Make the connections as per the circuit diagram using the Universal Shift Registers trainer kit and connecting

wires

2. Switch ON the power supply

3. Note down the output values for various input combinations

4. Verify the output

CIRCUIT DIAGRAM

ENCODER

DECODER

TRUTH TABLE

ENCODER

INPUT OUTPUT

D7 D6 D5 D4 D3 D2 D1 D0 Q2 Q1 Q0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 X 0 0 1

0 0 0 0 0 1 X X 0 1 0

0 0 0 0 1 X X X 0 1 1

0 0 0 1 X X X X 1 0 0

0 0 1 X X X X X 1 0 1

0 1 X X X X X X 1 1 0

1 X X X X X X X 1 1 1

DECODER

INPUT OUTPUT

Q2 Q1 Q0 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

RESULT

 Thus, the encoder and decoder were studied and the output was verified.

 4. ADDITION/SUBTRACTION OF BINARY NUMBERS.

i. SUM OF 8-BIT AND 16-BIT NUMBERS USING 8085

AIM

To write a program to perform sum of 8-bit and 16-bit numbers using 8085 microprocessor.

APPARATUS REQUIRED

8085 Microprocessor kit,

 Power supply.

SUM OF 8-BIT

ALGORITHM

Step 1: Start

Step 2: Get the first number and initialize carry

Step 3: Get the second number

Step 4: Add two numbers

Step 5: Store the result

Step 6: Stop

FLOW CHART

PROGRAM

ADDRESS LABEL MNEMONICS
HEX

CODE
COMMENTS

4000 MVI C, 00H 0E MOVE 00H TO REGISTER C

4001 00

4002 LDA 4400H 3A
LOAD THE ACCUMULATOR WITH

CONTENT OF 4400

4003 00

4004 44

4005 MOV B,A 47
MOVE THE CONTENT OF

ACCUMULATOR TO B REGISTER

4006 LDA 4401H 3A
LOAD THE ACCUMULATOR WITH

CONTENT OF 4401H

4007 01

4008 44

4009 ADD B 80
ADD CONTENT OF B REGISTER WITH

THE CONTENT OF ACCUMULATOR

400A JNC SUM D2 JUMP ON NO CARRY TO LABEL ‘SUM’

400B 0E

400C 40

400D INR C 0C INCREMENT C REGISTER BY 1

400E SUM STA 4402H 32
STORE THE CONTENT OF

ACCUMULATOR TO 4402

400F 02

4010 44

4011 MOV A,C 79
MOVE THE CONTENT OF C REGISTER

TO THE ACCUMULATOR

4012 STA 4403H 32
STORE THE CONTENT OF

ACCUMULATOR TO 4403

4013 03

4014 44

4015 HLT 76 END OF PROGRAM

TABULATION

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

MANUAL CALCULATION

SUM OF 16-BIT

 ALGORITHM

Step 1: Initialize the carry in Reg. C

Step 2: Load the first 16 bit data in HL and exchange it with DE

Step 3: Load the second 16 bit data in HL register

Step 4: Add the second data with the first data

Step 5: If the carry =0 go to step 7 otherwise go to the next step

Step 6: Increment the carry.

Step 7: Stop

FLOW CHART

PROGRAM

ADDRESS LABEL MNEMONICS
HEX

CODE
COMMENTS

4000 MVI C, 00H 0E MOVE 00H TO REGISTER C

4001 00

4002 LHLD 4600H 2A
LOAD THE HL PAIR WITH THE FIRST 16

BIT DATA

4003 00

4004 46

4005 XCHG EB
EXCHANGE THE DATA BETWEEN HL

AND DE REGISTER PAIRS

4006 LHLD 4602H 2A
LOAD THE HL PAIR WITH THE SECOND

16 BIT DATA

4007 02

4008 46

4009 DAD D 19

ADD CONTENT OF DE PAIR WITH THE

CONTENT OF HL(ACCUMULATOR)

PAIR

400A JNC SUM D2 JUMP ON NO CARRY TO LABEL ‘SUM’

400B 0E

400C 40

400D INR C 0C INCREMENT C REGISTER BY 1

400E SUM SHLD 4604H 32
STORE THE CONTENT OF

ACCUMULATOR TO 4604

400F 04

4010 46

4011 MOV A,C 79
MOVE THE CONTENT OF C REGISTER

TO THE ACCUMULATOR

4012 STA 4606H 32
STORE THE CONTENT OF

ACCUMULATOR TO 4606

4013 06

4014 46

4015 HLT 76 END OF PROGRAM

TABULATION

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

MANUAL CALCULATION

RESULT

 Thus the addition of 8-bit and 16 - bit numbers was performed and the outputs were verified.

ii. SUBTRACTION OF 8-BIT AND 16-BIT NUMBERS USING 8085

AIM

 To write a program to execute subtraction of 8-bit and 16-bit numbers using 8085 microprocessor

APPARATUS REQUIRED

8085 Microprocessor kit,

 Power supply

SUBTRACTION OF 8-BIT

ALGORITM

Step 1: Start

Step 2: Get the first number

Step 3: Get the second number

Step 4: Subtract second number from first number

Step 5: Store the result

Step 6: Stop

FLOW CHART

PROGRAM

ADDRESS LABEL MNEMONICS
HEX

CODE
COMMENTS

4000 MVI C, 00H 0E MOVE 00H TO REGISTER C

4001 00

4002 LDA 4400H 3A
LOAD THE ACCUMULATOR WITH

CONTENT OF 4400

4003 00

4004 44

4005 MOV B,A 47
MOVE THE CONTENT OF

ACCUMULATOR TO B REGISTER

4006 LDA 4401H 3A
LOAD THE ACCUMULATOR WITH

CONTENT OF 4401H

4007 01

4008 44

4009 SUB B 80

SUBTRACT CONTENT OF B REGISTER

WITH THE CONTENT OF

ACCUMULATOR

400A JNC DIFF D2 JUMP ON NO CARRY TO LABEL ‘DIFF’

400B 0E

400C 40

400D INR C 0C INCREMENT C REGISTER BY 1

400E DIFF STA 4402H 32
STORE THE CONTENT OF

ACCUMULATOR TO 4402

400F 02

4010 44

4011 MOV A,C 79
MOVE THE CONTENT OF C REGISTER

TO THE ACCUMULATOR

4012 STA 4403H 32
STORE THE CONTENT OF

ACCUMULATOR TO 4403

4013 03

4014 44

4015

HLT 76 END OF PROGRAM

TABULATION

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

MANUAL CALCULATION

SUBTRACTION OF 16-BIT

ALGORITM

Step 1: Initialize the program

Step 2: Load the first data

Step 3: Load the second data

Step 4: Exchange 16 bit data between two registers

Step 5: Subtract second data from first data

Step 6: If carry = 0 go to step 8

Step 7: Increment the value of carry

Step 8: End the program

FLOW CHART

PROGRAM

ADDRESS LABEL MNEMONICS
HEX

CODE
COMMENTS

4000 MVI C, 00H 0E MOVE 00H TO REGISTER C

4001 00

4002 LHLD 4600H 2A
LOAD THE HL PAIR WITH THE FIRST 16

BIT DATA

4003 00

4004 46

4005 XCHG EB
EXCHANGE THE DATA BETWEEN HL

AND DE REGISTER PAIRS

4006 LHLD 4602H 2A
LOAD THE HL PAIR WITH THE SECOND

16 BIT DATA

4007 02

4008 46

4009 MOV A,E 7B MOVE CONTENT OF E TO A

400A SUB L 95 SUBTRACT L REGISTER

400B MOV L,A 6F MOVE CONTENT OF A TO L

400C MOV A,D 7A MOVE CONTENT OF D TO A

400D SBB H 9C SUBTRACT CONTENT OF H FROM A

400E MOV H,A 67 MOVE CONTENT OF A TO H

400F JNC BORROW D2
JUMP ON NO CARRY TO LABEL

‘BORROW’

4010 13

4011 40

4012 INR C 0C INCREMENT C REGISTER BY 1

4013 BORROW SHLD 4604H 32
STORE THE CONTENT OF

ACCUMULATOR TO 4604

4014 04

4015 46

4016 MOV A,C 79
MOVE THE CONTENT OF C REGISTER

TO THE ACCUMULATOR

4017 STA 4606H 32
STORE THE CONTENT OF

ACCUMULATOR TO 4606

4018 06

4019 46

401A HLT 76 END OF PROGRAM

TABULATION

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

MANUAL CALCULATION

RESULT

 Thus, the subtraction of 8-bit and 16 - bit numbers was performed and the outputs were verified.

 5.SORTING OF DATA IN ASCENDING & DESCENDING ORDER

I. SORTING IN ASCENDING ORDER USING 8085

AIM

To write a program to sort the given series in ascending and descending order using 8085 microprocessor.

APPARATUS REQUIRED

8085 Microprocessor kit,

Power Supply.

SORTING IN ASCENDING ORDER

ALGORITHM

Step 1: Initialize outer count; set Reg. B = 03

Step 2: Load the first data into the memory

Step 3: Initialize count; set Reg. C = 03

Step 4: Move the content of memory to accumulator

Step 5: Load the next data into the memory

Step 6: Compare the data of memory with the data in the accumulator

Step 7: If Carry = 1, then go to step 9, else go to next step

Step 8: Interchange data between the two loaded memories

Step 9: Decrement C Reg. and if C is not equal to zero, go to step 4; else go to next step

Step 10: Decrement B Reg. and if B is not equal to zero, go to step 2; else go to next step

Step 11: End the program

FLOW CHART

PROGRAM

ADDRESS LABEL MNEMONICS
HEX

CODE
COMMENTS

4000 MVI B,03H 06
MOVE 03H IMMEDIATELY TO B

REGISTER

4001 04

4002 LOOP 3 LXI H, 4600H 21
LOAD THE ACCUMULATOR WITH THE

CONTENT OF 4600H

4003 00

4004 46

4005 MVI C,03H 0E
MOVE 03H IMMEDIATELY TO C

REGISTER (COUNT)

4006 04

4007 LOOP 2 MOV A,M 7E
MOVE THE VALUE FROM MEMORY TO

THE ACCUMULATOR

4008 INX H 23
INCREMENT H VALUE (NEXT

ADDRESS)

4009 CMP M BE
COMPARE THE CONTENT OF MEMORY

WITH ACCUMULATOR

400A JC LOOP 1 DA JUMP ON CARRY TO LABEL ‘LOOP 1’

400B 12

400C 40

400D MOV D,M 56
MOVE THE CONTENT OF MEMORY TO

D REGISTER

400E MOV M,A 77
MOVE THE CONTENT OF

ACCUMULATOR TO MEMORY

400F DCX H 2B DECREMENT H VALUE

4010 MOV M,D 72
MOVE CONTENT OF D REGISTER TO

MEMORY

4011 INX H 23 INCREMENT H VALUE

4012 LOOP 1 DCR C 0D DECREMENT C REGISTER

4013 JNZ LOOP 2 C2 JUMP ON NO ZERO TO LABEL ‘LOOP 2’

4014 07

4015 40

4016 DCR B 05 DECREMENT B REGISTER

4017 JNZ LOOP 3 C2 JUMP ON NO ZERO TO LABEL ‘LOOP 3’

4018 02

4019 40

401A HLT 76 END OF PROGRAM

TABULATION

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

MANUAL CALCULATION

SORTING IN DESCENDING ORDER

ALGORITHM

Step 1: Initialize outer count; set Reg. B = 03

Step 2: Load the first data into the memory

Step 3: Initialize count; set Reg. C = 03

Step 4: Move the content of memory to accumulator

Step 5: Load the next data into the memory

Step 6: Compare the data of memory with the data in the accumulator

Step 7: If Carry = 0, then go to step 9, else go to next step

Step 8: Interchange data between the two loaded memories

Step 9: Decrement C Reg. and if C is not equal to zero, go to step 4; else go to next step

Step 10: Decrement B Reg. and if B is not equal to zero, go to step 2; else go to next step

Step 11: End the program

FLOW CHART

PROGRAM

ADDRESS LABEL MNEMONICS
HEX

CODE
COMMENTS

4000 MVI B,03H 06
MOVE 03H IMMEDIATELY TO B

REGISTER

4001 04

4002 LOOP 3 LXI H, 4600H 21
LOAD THE ACCUMULATOR WITH THE

CONTENT OF 4600H

4003 00

4004 46

4005 MVI C,03H 0E
MOVE 03H IMMEDIATELY TO C

REGISTER (COUNT)

4006 04

4007 LOOP 2 MOV A,M 7E
MOVE THE VALUE FROM MEMORY TO

THE ACCUMULATOR

4008 INX H 23
INCREMENT H VALUE (NEXT

ADDRESS)

4009 CMP M BE
COMPARE THE CONTENT OF MEMORY

WITH ACCUMULATOR

400A JNC LOOP 1 DA
JUMP ON NO CARRY TO LABEL ‘LOOP

1’

400B 12

400C 40

400D MOV D,M 56
MOVE THE CONTENT OF MEMORY TO

D REGISTER

400E MOV M,A 77
MOVE THE CONTENT OF

ACCUMULATOR TO MEMORY

400F DCX H 2B DECREMENT H VALUE

4010 MOV M,D 72
MOVE CONTENT OF D REGISTER TO

MEMORY

4011 INX H 23 INCREMENT H VALUE

4012 LOOP 1 DCR C 0D DECREMENT C REGISTER

4013 JNZ LOOP 2 C2 JUMP ON NO ZERO TO LABEL ‘LOOP 2’

4014 07

4015 40

4016 DCR B 05 DECREMENT B REGISTER

4017 JNZ LOOP 3 C2 JUMP ON NO ZERO TO LABEL ‘LOOP 3’

4018 02

4019 40

401A HLT 76 END OF PROGRAM

TABULATION

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

MANUAL CALCULATION

RESULT

Thus, a program was executed to sort the given series in both ascending and descending order using 8085

microprocessor and the output was verified.

 6. ROOT LOCUS ANALYSIS FOR PITCH DISPLACEMENT AUTOPILOT STABILITY

 Perform stability analysis of Displacement Autopilot as shown in fig.

AIM

To perform of stability analysis of Displacement Autopilot using root locus techniques.

THEORY

A pitch displacement autopilot is a control system that stabilizes the pitch motion of an aircraft.

Stability analysis involves examining the behavior of the system as parameters such as gains or

coefficients change. The root locus is a graphical representation of the locations of the system's poles as

a parameter varies. In a stable system, all poles should have negative real parts.

System stability can be determined by finding the intersection of the root locus in the imaginary axis.

The effect of function adding poles and zeros to the transfer function on the system stability can be

studied.

PROGRAM:

%DISPLACEMENT AUTOPLOT STABILITY ANALYSTE USING ROOTLOCUS

%TRANSFER FUNCTION OF ELEVATOR SERVO

elevator=tf([-1], [1 12.5])

%TRANSFER FUNCTION OF AIRCRAFT

anum=-1*[1 3.1]

aden=conv ([1 0], [1 2.8 3.24])

aircraft=tf (anum, aden)

%FORWARD TRANSFER FUNCTION

forward=elevator*aircraft

figure (1)

rlocus(forward)

figure (1)

axis ([-15 2 -6 6])

title('STABILITY ANALYSIS USING ROOT LOCUS FOR DISPLACEMENT AUTOPLOT')

RESULT

Thus the stability analysis were performed using root locus for the given transfer function. The

maximum value of the gain for the stable system is less than …………

 7. BODE PLOT ANALYSIS FOR PITCH DISPLACEMENT AUTOPILOT STABILITY

Aim

To analyze the stability and robustness of a pitch displacement autopilot system using Bode plot

analysis.

Theory

Bode Plot Analysis:

a. Gain Margin (GM): The gain margin is the amount by which the gain of the system can be increased

before the system becomes unstable. In a Bode plot, it corresponds to the gain at the phase crossover

frequency where the phase is -180 degrees. A positive gain margin indicates stability.

b. Phase Margin (PM): The phase margin is the amount by which the phase of the system can be increased

before the system becomes unstable. It is the phase difference between the actual phase and -180 degrees

at the gain crossover frequency where the gain is 0 dB.

.

c. Delay Margin: The delay margin quantifies the additional time delay that a system can tolerate before

instability. It is derived from the phase margin and provides insights into the system's robustness in the

presence of time delays.

PROGRAM:

% Transfer function of elevator servo

num_elevator = -1;

den_elevator = [1, 12.5];

H_elevator = tf(num_elevator, den_elevator);

% Transfer function of aircraft

num_aircraft = [-1, -3.1];

den_aircraft = [1, 2.8, 3.24, 0];

H_aircraft = tf(num_aircraft, den_aircraft);

% Overall transfer function

G = H_elevator * H_aircraft;

% Bode plot

figure;

bode(G);

title('Bode Plot-pitch displacement autopilot');

% Calculate gain and phase margins

[GM, PM, ~, ~] = margin(G);

fprintf('Gain Margin (GM): %.2f dB\n', 20*log10(GM));

fprintf('Phase Margin (PM): %.2f degrees\n', PM);

RESULT

System Stability

The positive gain margin (GM) of 37.45 dB indicates a significant safety margin against gain increases,

contributing to the overall stability of the system.

Phase Margin (PM):

The phase margin of 87.27 degrees is well above the stability threshold, ensuring stability and providing a

comfortable buffer against phase lead.

Delay Margin

The delay margin of 19.9 seconds underscores the system's robustness in handling time delays. A larger delay

margin indicates a higher tolerance to delays, enhancing the system's performance in real-world scenarios.

System Robustness:

The substantial gain and phase margins, along with the notable delay margin, collectively highlight the system's

robustness. The system exhibits resilience to uncertainties, disturbances, and time delays.

In summary, the pitch displacement autopilot system, as characterized by the Bode plot analysis, not only

demonstrates stability but also exhibits robustness, both in terms of gain and phase margins and the ability to

handle significant time delays.

 8. PID CONTROLLER DESIGN FOR AIRCRAFT DYNAMICS

AIM

To design the PID Controller for aircraft dynamics.

THEORY

The selection of the gains for the PID controller can be determined by a method developed by Ziegler

and Nichols.

To apply this technique the root locus plot for the control system with the integral and derivative gains

set to 0 must become marginally stable. That is, as the proportional gain is increased the locus must

intersect the imaginary axis. The proportional gain, kp for which this occurs is called the ultimate gain,

kpu. The purely imaginary roots, λ = iω, determine the value of Tu = 2π/ωn.

One additional restriction must be met: All other roots of the system must have negative real parts; that

is, they must be in the left-hand portion of the complex s plane. If these restrictions are satisfied the P,

PI, or PID gains easily can be determined.

PROGRAM

% Aircraft Dynamics Transfer Function

num = [3];

den = conv([1 10], [1 2 5]);

G = tf(num, den);

H = [1];

% Open-loop system

M = feedback(G, H);

% Closed-loop systems with P, PI, and PID controllers

Kp_P = 44.35; % Placeholder values for P controller

Gc_P = pid(Kp_P, 0, 0);

Mc_P = feedback(Gc_P * G, H);

Kp_PI = 39.92; % Placeholder values for PI controller

Ki_PI = 39.42;

Gc_PI = pid(Kp_PI, Ki_PI, 0);

Mc_PI = feedback(Gc_PI * G, H);

Kp_PID = 53.22; % Placeholder values for PID controller

Ki_PID = 87.24;

Kd_PID = 8.12;

Gc_PID = pid(Kp_PID, Ki_PID, Kd_PID);

Mc_PID = feedback(Gc_PID * G, H);

% Plot step responses

figure;

step(M, 'b-', Mc_P, 'r--', Mc_PI, 'g-.', Mc_PID, 'k:');

legend('Open-Loop System', 'P Controller', 'PI Controller', 'PID Controller');

title('Step Response Comparison');

xlabel('Time');

ylabel('Amplitude');

grid on;

RESULT

 The P controller alone might not be sufficient to eliminate steady-state error in your system. Steady-state

error can often be addressed by incorporating integral action, as seen in both the PI and PID controllers.

Both the PI and PID controllers have similar final values, but the PID controller might offer improved transient

response due to the inclusion of derivative action. This can result in faster settling time and reduced overshoot.

The choice between PI and PID controllers depends on the specific requirements of your system. If a faster

transient response is desirable and overshoot needs to be minimized, the PID controller might be preferred.

In summary, the PID controller appears to offer a good balance between steady-state performance and transient

response.

