
1 

 

 

 

  

             NETWORK AND 

COMMUNICATION LABORATORY 

 
(V semester of B.Tech) 

 

As per the curriculam and syllabus  

 

Of 

 

 Bharath Institute of Higher Education & Research  
 

 

 

 

 

 

 

 

PREPARED BY  

DR.YOGESH RAJ KUMAR  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    Department of information technology 

 

 
 

 

 

 

 

 

NEW EDITION 



2 

 

 

                 NETWORK AND COMMUNICATION 

 
(V semester of B.Tech) 

 

As per the curricullam and syllabus  

 

Of 

 

 Bharath Institute of Higher Education & Research  
 

 

 

 

 

 

 

 

PREPARED BY 

 DR.YOGESH RAJ KUMAR  

                                       

 

 

 

 

 

 

 

 

 

 

 

 
                                          Department of information technology 

 

 

 
 

 

 



3 

 

SCHOOL OF COMPUTING 

 

DEPARTMENT OF INFORMATION TECHNOLOGY 

 

 

 

 

 

 

LAB MANUAL 

 

 
SUBJECT NAME:             NETWORK AND COMMUNICATION LABORATORY 

 

 

SUBJECT CODE: U20ITCJO3 

 

 

 

 

 

 

 

 

 

 

 

 

                         Regulation - 2020 

                              
 

 

 

 

 

 

 

 



4 

 

 

 

U20ITCJ03                  NETWORK AND       
COMMUNICATION LABORATORY 

L T P C 

Total Contact Hours - 75 3 0 2 4 

Prerequisite :network and communication 

Lab Manual Designed by – Dept. of information technology 

OBJECTIVES: This laboratory course is intended to make the students know about 
Networking Concepts and Protocols. 

 

 

 

 

 

COURSE OUTCOMES (COs)  

CO1 Summarize the models in computer networks  

CO2  

CO3 
 

CO4 
 

 

 
MAPPING BETWEEN COURSE OUTCOMES & PROGRAM OUTCOMES 

(3/2/1 INDICATES STRENGTH OF CORRELATION) 3- High, 2- Medium, 1-Low 
 COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 
 CO1                

 CO2                

 CO3                

 CO4                

 CO5                

 CO6                

                          (Tick mark or level of correlation: 3-High, 2-Medium, 1-Low) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

VISION AND MISSION OF THE INSTITUTE 

 

 

VISION 

 

“Bharath Institute of Higher Education & Research (BIHER) envisions and constantly strives to provide an 

excellent academic and research ambience for students and members of the faculties to inherit professional 

competence along with human dignity and transformation of community to keep pace with the global challenges 

so as to achieve holistic development.” 

 

MISSION 

 

▪ To develop as a Premier University for Teaching, Learning, Research and Innovation on par with leading 

global universities. 

▪ To impart education and training to students for creating a better society with ethics and morals. 

▪ To foster an interdisciplinary approach in education, research and innovation by supporting lifelong 

professional development, enriching knowledge banks through scientific research, promoting best 

practices and innovation, industry driven and institute-oriented cooperation, globalization and 

international initiatives. 

▪ To develop as a multi-dimensional institution contributing immensely to the cause of societal 

advancement through spread of literacy, an ambience that provides the best of international exposures, 

provide health care, enrich rural development and most importantly impart value-based education. 

▪ To establish benchmark standards in professional practice in the fields of innovative and emerging areas 

in engineering, management, medicine, dentistry, nursing, physiotherapy and allied sciences. 

▪ To imbibe human dignity and values through personality development and social service activities. 

 

VISION AND MISSION OF THE DEPARTMENT 

 

VISION 

 To be an excellence in education and research in Information Technology  

producing global scholars for improvement of the society 

 

MISSION 

• To provide sound fundamentals, and advances in Information Technology, Software Engineering, 

data Communications and Computer Applications by offering world class curriculum. 

• To create ethically strong leaders and expert for next generation IT. 

• To nurture the desire among faculty and students from across the globe to perform outstanding and 

impactful research for the benefit of humanity and, to achieve meritorious and significant growth. 

 

 

 

PROGRAM EDUCATIONAL OBJECTIVES (PEO) 

 

The Program Educational Objectives (PEOs) of Information technology are listed below: The graduate after 3-

5 years of programme completion will 

 

PEO1: PREPARATION 

To provide students with sound fundamental in Mathematical, Scientific and Engineering fundamentals 

necessary to formulate, analyse, and comprehend the fundamental concepts essential to articulate, solve and 

assess engineering problems and to prepare them for research & development and higher learning. 

 



6 

 

PEO2: CORE COMPETENCE 

To apply critical reasoning, quantitative, qualitative, designing and programming skills, to identify, solve 

problems and to analyze the experimental evaluations, and finally making appropriate decisions along with 

knowledge of computing principles and applications and be able to integrate this knowledge in a variety of 

industry and inter-disciplinary setting. 

 

PEO3: PROFESSIONALISM 

To broaden knowledge to establish themselves as creative practicing professionals, locally and globally, in fields 

such as design, development, problem solving to production support in software industries and R&D sectors. 

 

PEO4: SKILL 

To provide better opportunity to become a future researchers / scientist with good communication skills so that 

they may be both good team-members and leaders with innovative ideas for a sustainable development. 

 

PEO5: ETHICS 

To be ethically and socially responsible solution providers and entrepreneurs in Computer Science and other 

engineering discipline. 

 

 

PROGRAMME OUTCOMES 

 

PO 1 

Engineering Knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering 

problems. 

PO2 

Problem Analysis: Identify, formulate, review research literature, and analyse complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences and engineering sciences. 

PO 3 

Design/Development of Solutions: Design solutions for complex engineering problems 

and design system components or processes that meet the specified needs with appropriate 

consideration for the public health and safety, and the cultural, societal, and environmental 

considerations. 

PO 4 

Conduct Investigations of Complex Problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, and 

synthesis of the information to provide valid conclusions for complex problems. 

PO 5 

Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modelling to complex 

engineering activities with an understanding of the limitations. 

PO 6 

The Engineer and Society: Apply reasoning informed by the contextual knowledge to 

assess societal, health, safety, legal and cultural issues and the consequent responsibilities 

relevant to the professional engineering practice. 

PO 7 

Environment and Sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and 

need for sustainable development. 

PO 8 
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 

norms of the engineering practice. 

PO 9 
Individual and Team Work: Function effectively as an individual, and as a member or 

leader in diverse teams, and in multidisciplinary settings. 

PO 10 

Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and 

write effective reports and design documentation, make effective presentations, and give 

and receive clear instructions. 

PO 11 Project Management and Finance: Demonstrate knowledge and understanding of the 



7 

 

engineering and management principles and apply these to one’s own work, as a member 

and leader in a team, to manage projects and in multidisciplinary environments. 

PO 12 

Life-long Learning: Recognize the need for, and have the preparation and ability to 

engage in independent and lifelong learning in the broadest context of technological 

change. 

 

 

PROGRAMME SPECIFIC OUTCOME 

 

PSO 1 

Programming Design : Design and develop algorithm for real life problems using latest 

technologies and solve it by using computer programming languages and database 

technologies . 

PSO 2 

IT Business Scalable Design :  Analyze and recommend computing infrastructures and 

operations requirements and Simulate and implement information networks using 

configurations, algorithms, suitable protocol and security for valid and optimal connectivity. 

PSO 3 
Intelligent Agents Design : Design and execute projects for the development of data 

modeling, data analytics and knowledge representation in various domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

PART - B CONTENT OF THE COURSE 

 

COURSE CONTENTS 

 

UNIT – I : INTRODUCTION TO DATA COMMUNICATION. 

Data Communications – Networks - Network Types - Internet History - Standards and Administration. 

Networks Models: Protocol Layering - TCP/IP Protocol suite - The OSI model.  

Introduction to Physical Layer - 1 : Data and Signals - Digital Signals - Transmission Impairment - Data Rate 

limits - Performance. 

 

UNIT – II : DIGITAL TRANSMISSION. 

Digital Transmission: Digital to digital conversion (Only Line coding: Polar, Bipolar and Manchester coding). 

Physical Layer-2: Analog to digital conversion (only PCM), Transmission Modes)  Analog Transmission: 

Digital to Analog conversion. 

 

UNIT – III : BANDWIDTH UTILIZATION. 

Bandwidth Utilization: Multiplexing and Spread Spectrum – Switching : Introduction - Circuit Switched 

Networks - Packet switching - Error Detection and Correction: Introduction - Block coding - Cyclic codes, 

Checksum. 

 

UNIT – IV : DATA LINK CONTROL. 

Data link control:  DLC services - Data link layer protocols - Point to Point protocol (Framing, Transition 

phases). Media Access control: Random Access - Controlled Access - Channelization.  Introduction to Data-

Link Layer: Introduction - Link-Layer Addressing - ARP. IPv4 Addressing and subnetting: Classful  – DHCP 

– NAT. 

 

UNIT – V : WIRED LANS ETHERNET. 

Wired LANs Ethernet: Ethernet Protocol - Standard Ethernet - Fast Ethernet - Gigabit Ethernet and 10 Gigabit 

Ethernet. Wireless LANs: Introduction, IEEE 802.11 Project and Bluetooth. 

Other wireless Networks: Cellular Telephony. 

  

 

 

LIST OF EXPERIMENTS: 

 

 

1. Create a socket (TCP) between two computers and enable file transfer between them. 

2. Write a program to develop a simple Chat TCP application. 

3. Write a program to develop a simple Chat UDP application. 

4. Write a socket Program for Echo/Ping/Talk commands. 

5. Implementation of Stop and Wait Protocol and Sliding Window Protocol. 
6. Implementation of DNS, SNMP and File Transfer application using TCP and UDP Sockets. 

7. Create a socket for HTTP for web page upload and download. 

8. Write a program to display the client’s address at the server end. 

9. Study of Network simulator (NS).and Simulation of Congestion Control Algorithms using NS 

10. Perform a case study about the different routing algorithms to select the network path with its optimum 

and economical during data transfer. 

i. Link State routing 

ii. Flooding 

iii. Distance vector 

 

 

 



9 

 

CONTENT 

 

S.NO NAME OF THE EXPERIMENT  PAGE NO 

1. Create a socket (TCP) between two computers and enable file 

transfer between them. 

6 

2. Write a program to develop a simple Chat TCP application. 9 

3. Write a program to develop a simple Chat UDP application. 12 

4. Write a socket Program for Echo/Ping/Talk commands. 15 

5. Implementation of Stop and Wait Protocol and Sliding Window 

Protocol. 

18 

6. Implementation of DNS, SNMP and File Transfer application using 

TCP and UDP Sockets. 

24 

7. Create a socket for HTTP for web page upload and download. 30 

8. Write a program to display the client’s address at the server end. 

 

33 

9. Study of Network simulator (NS).and Simulation of Congestion 

Control Algorithms using NS 

36 

10. Perform a case study about the different routing algorithms to select 

the network path with its optimum and economical during data 

transfer. 

i. Link State routing 

ii. Flooding 

iii. Distance vector 

39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

1. Create a socket (TCP) between two computers and enable file transfer between 

them. 

 
AIM 

To Perform File Transfer in Client & Server Using TCP/IP.  

 

ALGORITHM  

 

CLIENT SIDE  

1. Start.  

2. Establish a connection between the Client and Server.  

3. Socket ss=new Socket(InetAddress.getLocalHost(),1100);  

4. Implement a client that can send two requests. i) To get a file from the server.  

ii) To put or send a file to the server.  

5. After getting approval from the server ,the client either get file from the server or send  

6. file to the server.  

 

SERVER SIDE  

1. Start.  

2. Implement a server socket that listens to a particular port number.  

3. Server reads the filename and sends the data stored in the file for the‘get’ request.  

4. It reads the data from the input stream and writes it to a file in theserver for the ‘put’  

instruction.  

5. Exit upon client’s request.  

6. Stop.  

 

PROGRAM  

CLIENT SIDE  

import java.net.*;  

import java.io.*;  

public class FileClient{  

public static void main (String [] args ) throws IOException {  

int filesize=6022386; // filesize temporary hardcoded  

long start = System.currentTimeMillis();  

int bytesRead;  

int current = 0;  

// localhost for testing  

Socket sock = new Socket("127.0.0.1",13267);  

System.out.println("Connecting...");  

// receive file  

byte [] mybytearray = new byte [filesize];  

InputStream is = sock.getInputStream();  

FileOutputStream fos = new FileOutputStream("source-copy.pdf");  

BufferedOutputStream bos = new BufferedOutputStream(fos);  

bytesRead = is.read(mybytearray,0,mybytearray.length); 

current = bytesRead;  

// thanks to A. Cádiz for the bug fix  

do {  

bytesRead =  

is.read(mybytearray, current, (mybytearray.length-current));  

if(bytesRead >= 0) current += bytesRead;  

} while(bytesRead > -1);  



11 

 

bos.write(mybytearray, 0 , current);  

bos.flush();  

long end = System.currentTimeMillis();  

System.out.println(end-start);  

bos.close();  

sock.close();  

}}  

 

 

SERVER SIDE  

import java.net.*;  

import java.io.*;  

public class FileServer  

{ 

public static void main (String [] args ) throws IOException {  

ServerSocket servsock = new ServerSocket(13267);  

while (true) {  

System.out.println("Waiting...");  

Socket sock = servsock.accept();  

System.out.println("Accepted connection : " + sock);  

File myFile = new File ("source.pdf");  

byte [] mybytearray = new byte [(int)myFile.length()];  

FileInputStream fis = new FileInputStream(myFile);  

BufferedInputStream bis = new BufferedInputStream(fis);  

bis.read(mybytearray,0,mybytearray.length);  

OutputStream os = sock.getOutputStream();  

System.out.println("Sending...");  

os.write(mybytearray,0,mybytearray.length);  

os.flush();  

sock.close();  

}}} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 

 

 
  
OUTPUT  

SERVEROUTPUT  

C:\Program Files\Java\jdk1.6.0\bin>javac FServer.java  

C:\Program Files\Java\jdk1.6.0\bin>java FServer  

Waiting for clients...  

Connection Established  

Client wants file:network.txt  

 

CLIENTOUTPUT  

C:\Program Files\Java\jdk1.6.0\bin>javac FClient.java  

C:\Program Files\Java\jdk1.6.0\bin>java FClient  

Connection request.....Connected  

Enter the filename: network.txt  

Computer networks: A computer network, often simply referred to as a network, is a collection of computers and 

devices connected by communications channels that facilitates communications among users and allows users to 

share resources with other user . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT  

Thus the File transfer Operation is done & executed successfully. 
  

 

 

 



13 

 

 

2. Write a program to develop a simple Chat TCP application. 

AIM 

To write a client-server application for chat using TCP . 

 

ALGORITHM  

 

CLIENT  

1. Start the program  

2. Include necessary package in java  

3. To create a socket in client to server.  

4. The client establishes a connection to the server.  

5. The client accept the connection and to send the data from client to server.  

6. The client communicates the server to send the end of the message  

7. Stop the program.  

 

SERVER  

1. Start the program  

2. Include necessary package in java  

3. To create a socket in server to client  

4. The server establishes a connection to the client.  

5. The server accept the connection and to send the data from server to client and  

6. vice versa  

7. The server communicate the client to send the end of the message.  

8. Stop the program.  

 

PROGRAM  

TCPserver1.java  

import java.net.*;  

import java.io.*;  

public class TCPserver1  

{ 

public static void main(String arg[])  

{ 

ServerSocket s=null;  

String line;  

DataInputStream is=null,is1=null;  

PrintStream os=null;  

Socket c=null;  

try  

{ 

s=new ServerSocket(9999);  

} 

catch(IOException e)  

{ 

System.out.println(e);  

}  

try  

{ 

c=s.accept();  

is=new DataInputStream(c.getInputStream());  



14 

 

is1=new DataInputStream(System.in);  

os=new PrintStream(c.getOutputStream());  

do  

{ 

 

line=is.readLine();  

System.out.println("Client:"+line);  

System.out.println("Server:");  

line=is1.readLine();  

         os.println(line);  

} 

while(line.equalsIgnoreCase("quit")==false);  

is.close();  

os.close();  

} 

catch(IOException e)  

{ 

System.out.println(e);  

} 

} 

} 

TCPclient1.java  

import java.net.*;  

import java.io.*;  

public class TCPclient1  

{ 

public static void main(String arg[])  

{ 

Socket c=null;  

String line;  

DataInputStream is,is1;  

PrintStream os;  

try  

{ 

c=new Socket("10.0.200.36",9999);  

}  
catch(IOException e)  

{ 

System.out.println(e);  

} 

try  

{ 

os=new PrintStream(c.getOutputStream());  

is=new DataInputStream(System.in);  

is1=new DataInputStream(c.getInputStream());  

do  

{ 

System.out.println("Client:");  

line=is.readLine();  

os.println(line);  

System.out.println("Server:" + is1.readLine());  

} 

while(line.equalsIgnoreCase("quit")==false);  

is1.close();  

os.close();  



15 

 

} 

catch(IOException e)  

{ 

System.out.println("Socket Closed!Message Passing is over");  

}}  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT:  

SERVER  

C:\Program Files\Java\jdk1.5.0\bin>javac TCPserver1.java  

Note: TCPserver1.java uses or overrides a deprecated API.  

Note: Recompile with -deprecation for details.  

C:\Program Files\Java\jdk1.5.0\bin>java TCPserver1  

Client: Hai Server  

Server:Hai Client  

Client: How are you  

Server:Fine  

Client: quit  

Server:quit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
RESULT 

Thus the above program a client-server application for chat using TCP / IP was and successfully executed. 

 

 



16 

 

 

3. Write a program to develop a simple Chat UDP application 

 

AIM 

To write a program to implement simple client-server application using UDP.  

 

 

ALGORITHM  

CLIENT SIDE  

1. Create a datagram socket with server’s IP address.  

2. Create datagram packets with data, data length and the port address.  

3. Send the datagram packets to server through datagram sockets  

4. Receive the datagram packets from server through datagram sockets  

5. Close the socket.  

 

SERVER SIDE  

1. Create a datagram socket with port address.  

2. Create datagram packets with data, data length and the port address.  

3. Send the datagram packets to client through datagram sockets  

4. Receive the datagram packets from client through datagram sockets  

5. Close the socket.  

 

UDPserver.java  

import java.io.*;  

import java.net.*;  

class UDPserver  

{ 

public static DatagramSocket ds;  

public static byte buffer[]=new byte[1024];  

public static int clientport=789,serverport=790;  

public static void main(String args[])throws Exception  

{ 

ds=new DatagramSocket(clientport);  

System.out.println("press ctrl+c to quit the program");  

BufferedReader dis=new BufferedReader(new InputStreamReader(System.in));  

InetAddress ia=InetAddress.getByName("localhost");  

while(true)  

{ 

DatagramPacket p=new DatagramPacket(buffer,buffer.length);  

ds.receive(p);  

String psx=new String(p.getData(),0,p.getLength());  

System.out.println("Client:" + psx);  

System.out.println("Server:");String str=dis.readLine();  

if(str.equals("end"))  

break; 

buffer=str.getBytes();  

ds.send(new DatagramPacket(buffer,str.length(),ia,serverport));  

} 

} 

} 

 

 



17 

 

 

 

 

 

 

UDP CLIENT.JAVA  

import java .io.*;  

import java.net.*;  

class UDPclient  

{ 

public static DatagramSocket ds;  

public static int clientport=789,serverport=790;  

public static void main(String args[])throws Exception  

{ 

byte buffer[]=new byte[1024];  

ds=new DatagramSocket(serverport);  

BufferedReader dis=new BufferedReader(new InputStreamReader(System.in));  

System.out.println("server waiting");InetAddress ia=InetAddress.getByName("10.0.200.36");  

while(true)  

{ 

System.out.println("Client:");  

String str=dis.readLine();  

if(str.equals("end")) break;  

buffer=str.getBytes();  

ds.send(new DatagramPacket(buffer,str.length(),ia,clientport));  

DatagramPacket p=new DatagramPacket(buffer,buffer.length);  

ds.receive(p);String psx=new String(p.getData(),0,p.getLength());  

System.out.println("Server:" + psx);  

} 

} 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

 

 

 

 

 

 

 

 

 

 

OUTPUT  

Server  

C:\Program Files\Java\jdk1.5.0\bin>javac UDPserver.java  

C:\Program Files\Java\jdk1.5.0\bin>java UDPserver  

press ctrl+c to quit the program  

Client:Hai Server  

Server:Hello Client  

Client:How are You  

Server:I am Fine what about you 

 
 
CLIENT  

C:\Program Files\Java\jdk1.5.0\bin>javac UDPclient.java  

C:\Program Files\Java\jdk1.5.0\bin>java UDPclientserver  

Waiting  

Client:Hai Server  

Server:Hello Clie  

Client:How are YouServer:I am Fine  

Client:end  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT  

Thus the above program a client-server application for chat using UDP was executed and successfully 
 



19 

 

 

4. Write a socket Program for Echo/Ping/Talk commands. 

AIM 

To write a socket program for  between two computers and enable file transfer between them. 

 

ALGORITHM  

 

CLIENT SIDE  

1. Start the program.  

2. Create a socket which binds the Ip address of server and the port address to acquire service.  

3. After establishing connection send a data to server.  

4. Receive and print the same data from server.  

5. Close the socket.  

6. End the program.  

 

SERVER SIDE  

1. Start the program.  

2. Create a server socket to activate the port address.  

3. Create a socket for the server socket which accepts the connection.  

4. After establishing connection receive the data from client.  

5. Print and send the same data to client.  

6. Close the socket.  

7. End the program.  

 

 

 

 

 

PROGRAM  

ECHO CLIENT  

import java.io.*;  

import java.net.*;  

public class eclient  

{ 

public static void main(String args[])  

{ 

Socket c=null;  

String line;  

DataInputStream is,is1;  

PrintStream os;  

try  

{ 

c=new Socket("localhost",8080);  

} 

catch(IOException e)  

{ 



20 

 

System.out.println(e);  

} 

 

try  

{ 
  

os=new PrintStream(c.getOutputStream());  

is=new DataInputStream(System.in);  

is1=new DataInputStream(c.getInputStream());  

do  

{ 

System.out.println("client");  

line=is.readLine();  

os.println(line);  

if(!line.equals("exit"))  

System.out.println("server:"+is1.readLine());  

}while(!line.equals("exit"));  

} 

catch(IOException e)  

{ 

System.out.println("socket closed");  

}}}  

 

 

Echo Server:  

import java.io.*;  

import java.net.*;  

import java.lang.*;  

public class eserver  

{ 

public static void main(String args[])throws IOException  

{ 

ServerSocket s=null;  

String line;  

DataInputStream is;  

PrintStream ps;  

Socket c=null;  

try  

{ 

s=new ServerSocket(8080);  

} 

catch(IOException e)  

{ 

System.out.println(e);  

} 

try  

{ 

c=s.accept();  

is=new DataInputStream(c.getInputStream());  



21 

 

ps=new PrintStream(c.getOutputStream());  

while(true)  

{ 

line=is.readLine();  

System.out.println("msg received and sent back to client");  

ps.println(line);  

} 
  
 
 
 
} 

catch(IOException e)  

{ 

System.out.println(e);  

} 

} 

} 

 

 

 

 

 

 

 

 

 

 

OUTPUT  

CLIEN 

Enter the IP address 127.0.0.1  

CONNECTION ESTABLISHED  

Enter the data BIHER  

Client received BIHER 

 

 

SERVER  

CONNECTION ACCEPTED  

Server received BIHER 

 

 

 

 

 

 

 

 

 

 

RESULT  

 

Thus the program for simulation of echo server was written & executed. 

 

 



22 

 

 

 

5. Implementation of Stop and Wait Protocol and Sliding Window Protocol 

 

Aim: 
 

To provide a reliable data transfer between two nodes over an unreliable network using the Stop 
and Wait Protocol. 

 

Problem Statement: 
 

1. Write a C program to implement Go-Back N ARQ using Stop and Wait protocol. 

2. Write a C program to implement Selective Repeat ARQ using Stop and Wait protocol. 

3. Write a C program to implement Go-Back N ARQ using Sliding Window protocol. 

4. Write a C program to implement Selective Repeat ARQ using Sliding Window protocol. 

5. Write a C program to implement A One-Bit Sliding Window Protocol. 

 
Algorithm: 

 

1. Start the program. 

2. Get the frame size from the user 

3. To create the frame based on the user request. 

4. To send frames to server from the client side. 

5. If your frames reach the server it will send ACK signal to client otherwise it will send NACK signal 

to client. 

6. Stop the program 



23 

 

Program: 
 

#include<stdio.h> 

#include<conio.h> 

char str[20][20]; int 

i,n; 

void sender() 

{ 

printf("\n\t********* SENDER ***********\n"); 

printf("\n\t\t%s",str[i]); 

printf("\n\t\tdata %d sent",i); 

printf("\n\t\tWaiting for ACK %d\n",i); 

} 

void receiver() 

{ 

printf("\n\t********* RECEIVER ***********\n"); 

printf("\n\t\tdata %d received",i); 

printf("\n\t\tPress any key to send ACK\n"); 

getch(); 

printf("\n\t\tACK %d sent\n",i); 

} 

void main() 

{ 

clrscr(); 

printf("\nStop and wait starts\nEnter the no. of data to send"); 

scanf("%d",&n); 

printf("\nEnter the data\n"); 

for(i=1;i<=n;i++) 

scanf("%s",str[i]); printf("\nStart 

sending data"); for(i=1;i<=n;i++) 

{ 

sender(); 

receiver(); 

} 

printf("\nAll data sent"); 

getch(); 



24 

 

 

Output: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observation: 
 

Stop and Wait ARQ mainly implements Sliding Window Protocol concept with Window Size 1 Used in 

Connection-oriented communication. It offers error and flow control and It is used in Data Link and Transport 

Layers. 

Result: 

 
 Thus the program  was written & executed. 



25 

 

5A. SLIDING WINDOW PROTOCOL 
 

Aim: 

To write a C program to implement sliding window protocol. 
 

 

Algorithm: 

Sender: 

1. Establish socket connection to the receiver. 

2. After successful connection with the receiver, acknowledgement will be received 

3. Get the number of frames need to be sent by the sender. 

4. Each frame will have unique sequence number and sent in order 

5. The sender will wait for the acknowledgement for every successful transmission of each 

frame from receiver side. 

6. In case of unsuccessful transmission, the sender will not receive any acknowledgement and 

again the particular frame will be re-transmitted. 

Receiver: 

1. Establish the sender’s socket connection. 

2. After successful connection, send acknowledgement to the sender 

3. With each frame received with their unique sequence number, acknowledgement message 

will be sent. 

4. In case of faulty frame structure, the receiver will not send any response and it waits for 

the sender to retransmit the message again. 

 

Program: 
 

#include<stdio.h> 

#include<conio.h> 

#include<stdlib.h> 

void main() 
{ 

int temp1,temp2,temp3,temp4; 

int winsize=8; 

int noframes,moreframes,i; 

int receiver(int); 

int simulate(int); 

temp1=0; temp2=0; 

temp3=0; temp4=0; 

clrscr(); 

for(i=0;i<200;i++) 

rand(); noframes=5; 

printf("\nNo. of frames is %d",noframes); 

getch(); 



26 

 

moreframes=noframes; 

while(moreframes>0) 

{ 

temp1=simulate(winsize); 

winsize=temp1; temp4+=temp1; 

if(temp4>noframes) 

temp4=noframes; 

for(i=temp3+1;i<=temp4;i++) 

printf("\nSending frame %d",i); 

getch(); temp2=receiver(temp1); 

temp3+=temp2; 

if(temp3>noframes) 

temp3=noframes; 

printf("\nAcknowledgement for the frames upto %d",temp3); 
getch(); 

moreframes-=temp2; 

temp4=temp3; 

if(winsize<=0) 

winsize=8; 

} 

printf("\nEnd of SLIDING WINDOW PROTOCOL"); 

getch(); 

} 

int receiver(int temp1) 

{ 

int i; 

for(i=0;i<100;i++) 

rand(); 

i=rand()%temp1; 

return 1; 

} 

int simulate(int winsize) 

{ 

int temp1,i; 

for(i=0;i<50;i++) 

temp1=rand(); if(temp1==0) 

temp1=simulate(winsize); 

i=temp1%winsize; if(i==0) 

return winsize; 

else 

return temp1%winsize; 

} 



27 

 

Output: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observation: 
 

 

A sliding window protocol is a feature of packet-based data transmission protocols. 

Sliding window protocols are used where reliable in-order delivery of packets is required, such 

as in the Data Link Layer (OSI model) as well as in the Transmission Control Protocol (TCP). 

 

 

 

 

 

 
 

Result: 
        Thus the program  was written & executed. 

 

 

 

https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Protocol_(computing)
https://en.wikipedia.org/wiki/Data_Link_Layer
https://en.wikipedia.org/wiki/Data_Link_Layer
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Transmission_Control_Protocol


28 

 

6. Implementation of DNS, SNMP and File Transfer application using TCP and 

UDP Sockets. 

 
a. DNS 

Aim 

To write a java program for Dns application program 

Algorithm 

 

1. Start the program. 

2. Get the frame size from the user 

3. To create the frame based on the user request. 

4.To send frames to server from the client side. 

5. If your frames reach the server it will send ACK signal to client otherwise it will 

send NACK signal to client. 

6. Stop the program 

 

 

Program 

 
/ UDP DNS Server 

Udpdnsserver 

.java import java.io.*; 

import java.net.*; 

public class udpdnsserver 

{ 

private static int indexOf(String[] array, String str) 

{ 

str = str.trim(); 

for (int i=0; i < array.length; i++) 

{ 

if (array[i].equals(str)) return i; 

} 

return -1; 

} 

public static void main(String arg[])throws IOException 

{ 

String[] hosts = {"yahoo.com", "gmail.com","cricinfo.com", "facebook.com"}; 

String[] ip = {"68.180.206.184", "209.85.148.19","80.168.92.140", "69.63.189.16"}; 

System.out.println("Press Ctrl + C to Quit"); 

while (true) 

 



29 

 

{ 

DatagramSocket serversocket=new DatagramSocket(1362); 

byte[] senddata = new byte[1021]; 

byte[] receivedata = new byte[1021]; 

DatagramPacket recvpack = new DatagramPacket 

(receivedata, receivedata.length); 

serversocket.receive(recvpack); 

String sen = new String(recvpack.getData()); 

InetAddress ipaddress = recvpack.getAddress(); 

int port = recvpack.getPort(); 

String capsent; 

System.out.println("Request for host " + sen); 

 
if(indexOf (hosts, sen) != -1) 

capsent = ip[indexOf (hosts, sen)]; 

else capsent = "Host Not Found"; 

senddata = capsent.getBytes(); 

DatagramPacket pack = new DatagramPacket 

(senddata, senddata.length,ipaddress,port); 

serversocket.send(pack); 

serversocket.close(); 

} 

} 

} 

//UDP DNS Client – 

Udpdnsclient 

.java import java.io.*; 

import java.net.*; 

public class udpdnsclient 

{ 

public static void main(String args[])throws IOException 

{ 

 
BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); 

DatagramSocket clientsocket = new DatagramSocket(); 

InetAddress ipaddress; 

if (args.length == 0) 

ipaddress = InetAddress.getLocalHost(); 

else 

ipaddress = InetAddress.getByName(args[0]); 

byte[] senddata = new byte[1024]; 



30 

 

 

byte[] receivedata = new byte[1024]; 

int portaddr = 1362; 

System.out.print("Enter the hostname : "); 

String sentence = br.readLine(); 

Senddata = sentence.getBytes(); 

DatagramPacket pack = new DatagramPacket(senddata,senddata.length, ipaddress,portaddr); 

clientsocket.send(pack); 

DatagramPacket recvpack =new DatagramPacket(receivedata,receivedata.length); 

clientsocket.receive(recvpack); 

String modified = new String(recvpack.getData()); 

System.out.println("IP Address: " + modified); 

clientsocket.close(); 

} 

} 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT 

Server 

$ javac udpdnsserver.java $ java udpdnsserver Press Ctrl + C to Quit Request for host 

yahoo.com Request for host cricinfo.com Request for host youtube.com 

 
Client 

$ javac udpdnsclient.java $ java udpdnsclient Enter the hostname : yahoo.com IP Address: 

68.180.206.184 $ java udpdnsclient Enter the hostname : cricinfo.com IP Address: 

80.168.92.140 $ java udpdnsclient Enter the hostname : youtube.com IP Address: Host Not 

Found 

 

Result: 
        Thus the program  was written & executed. 

 

 

 

 



31 

 

 

 

 

 
b. File Transfer 

AIM 

To write a java program for applaction using TCP and UDP Sockets Liks 

Program 

 
File Client 

import java.io.*; 

import java.net.*; 

import java.util.*; 

class Clientfile 

{ public static void main(String args[]) 

{ 

Try 

{ 

BufferedReader in=new BufferedReader(new InputStreamReader(System.in)); 

Socket clsct=new Socket("127.0.0.1",139); 

DataInputStream din=new DataInputStream(clsct.getInputStream()); 

DataOutputStream dout=new DataOutputStream(clsct.getOutputStream()); 

System.out.println("Enter the file name:"); 

 
String str=in.readLine(); 

dout.writeBytes(str+'\n'); 

System.out.println("Enter the new file name:"); 

String str2=in.readLine(); 

String str1,ss; 

FileWriter f=new FileWriter(str2); 

char buffer[]; 

while(true) 

{ str1=din.readLine(); 

if(str1.equals("-1")) break; 

System.out.println(str1); 

buffer=new char[str1.length()]; 

str1.getChars(0,str1.length(),buffer,0); 

f.write(buffer); 

 



32 

 

} 

f.close(); 

clsct.close(); 

} 

catch (Exception e) 

{ 

System.out.println(e); 

} 

} 

} 

Server 

import java.io.*; 

import java.net.*; 

import java.util.*; 

class Serverfile 

{ public static void main(String args[]) 

{ 

Try 

{ 

ServerSocket obj=new ServerSocket(139); 

while(true) 

{ 

Socket obj1=obj.accept(); 

DataInputStream din=new DataInputStream(obj1.getInputStream()); 

DataOutputStream dout=new DataOutputStream(obj1.getOutputStream()); 

String str=din.readLine(); 

FileReader f=new FileReader(str); 

BufferedReader b=new BufferedReader(f); 

String s; 

while((s=b.readLine())!=null) 

{ System.out.println(s); 

dout.writeBytes(s+'\n'); 

} 

f.close(); 

dout.writeBytes("-1\n"); 

} } 

catch(Exception e) 

{ System.out.println(e);} 

} 

} 
 



33 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUT PUT 

Hardware: x86 Family 6 Model 23 Stepping 10 AT/AT COMPATIBLE – Software: Windows 

2000 Version  5.1 (Build 2600 Multiprocessor Free) 

 
RESULT 

Thus the SNMP program was displayed. 



34 

 

 

 

 

7. Create a socket for HTTP for web page upload and download



35 

 

 

Algorithm 

 

1. Start the program. 

2. Get the frame size from the user 

3.To create the frame based on the user 

request. 4.To send frames to server from the 

client side. 

5. If your frames reach the server it will send ACK signal to client otherwise it 

will send NACK signal to client. 

6. Stop the program 

 

 

 
Program : 

 

 

import javax.swing.*; 

import java.net.*; 

import 

java.awt.image.*; 

import 

javax.imageio.*; 

import java.io.*; 

import 

java.awt.image.BufferedImage; 

import 

java.io.ByteArrayOutputStream; 

import java.io.File; 

import java.io.IOException; 

import 

javax.imageio.ImageIO; 

 

public class Client{ 

public static void main(String args[]) throws 

Exception{ Socket soc; 

BufferedImage img = null; 

soc=new 

Socket("localhost",4000); 

System.out.println("Client is running. 

"); try { 

System.out.println("Reading image from disk. "); 

img = ImageIO.read(new 

File("digital_image_processing.jpg")); 

ByteArrayOutputStream baos = new 

ByteArrayOutputStream(); 
 



36 

 

ImageIO.write(img, "jpg", baos); 

baos.flush(); 

byte[] bytes = 

baos.toByteArray(); 

baos.close(); 
 

 

System.out.println("Sending image to server. "); 

 

OutputStream out = 

soc.getOutputStream(); DataOutputStream dos = new 

DataOutputStream(out); dos.writeInt(bytes.length); 

dos.write(bytes, 0, bytes.length); 

System.out.println("Image sent to server. 

"); 

 

dos.close(); 

out.close(); 

}catch (Exception e) { 

System.out.println("Exception: " + 

e.getMessage()); soc.close(); 

} 

soc.close(); 

} 

} 
 

 

import 

java.net.*; 

import 

java.io.*; 

import 

java.awt.image.*; 

import 

javax.imageio.*; 

import javax.swing.*; 

 

class Server { 

public static void main(String args[]) throws Exception{ 

ServerSocket server=null; 

Socket socket; 

server=new ServerSocket(4000); 

System.out.println("Server Waiting for 

image"); 

 

socket=server.accept(); 

System.out.println("Client connected."); 



37 

 

InputStream in = socket.getInputStream(); 

DataInputStream dis = new 

DataInputStream(in); 

 

int len = dis.readInt(); 

System.out.println("Image Size: " + len/1024 + 

"KB"); byte[] data = new byte[len]; 

dis.readFully(dat

a); dis.close(); 

in.close(); 

 

InputStream ian = new 

ByteArrayInputStream(data); BufferedImage 

bImage = ImageIO.read(ian); 

 

JFrame f = new JFrame("Server"); 

ImageIcon icon = new 

ImageIcon(bImage); JLabel l = new 

JLabel(); 
 

 

l.setIcon(ico
n); f.add(l); 

f.pack(); 

f.setVisible(tru

e); 

} 

} 
 

 

 

 

 

 

Output 

 

When you run the client code, following output screen would appear on client side. 
 

 

 



38 

 

 

RESULT 

Thus the program was implementing to socket for HTTP for web page upload 

and download. 

 

8. Write a program to display the client’s address at the server end 

 

Aim: 

To implement a java program for simulating ping command. 
 

Algorithm: 
 

1. Start the program. 

2. Get the frame size from the user 

3. To create the frame based on the user request. 
4. To send frames to server from the client side. 

5. If your frames reach the server it will send ACK signal to client otherwise it will 
send NACK signal to client. 

 

Program 

//pingclient.j

ava import 

java.io.*; 

import 

java.net.*; 

import 
java.util.Cal
endar; class 
pingclient 

{ 

public static void main(String args[])throws Exception 

{ 

String str; int c=0; longt1,t2; 

Socket s=new Socket("127.0.0.1",5555); 

DataInputStream dis=new 
DataInputStream(s.getInputStream()); PrintStream 
out=new PrintStream(s.getOutputStream()); 
while(c<4) 

{ 



39 

 

t1=System.currentTimeMillis(); 

str="Welcome to network 

programming world"; 

out.println(str); 

System.out.println(dis.readLine()); 

t2=System.currentTimeMillis(); 

System.out.println(";TTL="+(t2-

t1)+"ms"); c++; 

} 

 

 

s.close(); 

} 

} 

 

//pingserver.java import 

java.io.*; 

import java.net.*; 

import java.util.*; 

import java.text.*; class 

pingserver 

{ 

public static void main(String args[])throws Exception 

{ 

ServerSocket ss=new 
ServerSocket(5555); Socket 
s=ss.accept(); 

int c=0; while(c<4) 

{ 

DataInputStream dis=new 
DataInputStream(s.getInputStream()); PrintStream 
out=new PrintStream(s.getOutputStream()); 

String str=dis.readLine(); 

out.println("Reply from"+InetAddress.getLocalHost()+";Length"+str.length()); c++; 

} 

s.close(); 

} 

} 

 



40 

 

 

 

 

 

 

 

 

Output: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observation: 

Ping is a computer network administration software utility used to test the 
reachability of a host on an Internet Protocol (IP) network. It measures the round-trip time 
for messages sent from the originating host to a destination computer that are echoed back 
to the source. The name comes from active sonar terminology that sends a pulse of sound 
and listens for the echo to detect objects under water, although it is sometimes interpreted as 
a bacronym to packet Internet groper. 

 
Result: 

   Thus the program  was written & executed. 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Utility_software
https://en.wikipedia.org/wiki/Host_(network)
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Round-trip_time
https://en.wikipedia.org/wiki/Round-trip_time
https://en.wikipedia.org/wiki/Active_sonar
https://en.wikipedia.org/wiki/Pulse_(signal_processing)
https://en.wikipedia.org/wiki/Backronym


41 

 

 

 

 

9. Study of Network simulator (NS).and Simulation of Congestion 

Control Algorithms using NS 

 

Aim: 

 
To Study of Network simulator (NS).and Simulation of Congestion Control Algorithms 

using NS 

 
NET WORK SIMULATOR (NS2) 

Ns overview 

 

➢ Ns programming: A Quick start 

➢ Case study I: A simple Wireless network 

➢ Case study II: Create a new agent in Ns 

Ns overview 

➢ Ns Status 

➢ Periodical release (ns-2.26, Feb 2003) 

➢ Platform support 

➢ FreeBSD, Linux, Solaris, Windows and Mac 

 
Ns unctionalities 

Routing, Transportation, Traffic sources,Queuing 

disciplines, QoS 

 

Wireless 

 

Ad hoc routing, mobile IP, sensor-MAC 

Tracing, visualization and various utilitie 

NS(Network Simulators) 

 

Most of the commercial simulators are GUI driven, while some network simulators are CLI 

driven. The network model / configuration describes the state of the network (nodes,routers, 

switches, links) and the events (data transmissions, packet error etc.). An important output of 

simulations are the trace files. Trace files log every packet, every event that occurred in the 

simulation and are used for analysis. Network simulators can also provide other tools to facilitate 

visual analysis of trends and potential trouble spots. 

 



42 

 

Most network simulators use discrete event simulation, in which a list of pending "events" is 

stored, and those events are processed in order, with some events triggering future events—such 

as the event of the arrival of a packet at one node triggering the event of the arrival of that packet 

at a downstream node. 

 

 

Simulation of networks is a very complex task. For example, if congestion is high, then estimation 

of the average occupancy is challenging because of high variance. To estimate the likelihood of 

a buffer overflow in a network, the time required for an accurate answer can be extremely large. 

Specialized techniques such as "control variates" and "importance sampling" have been 

developed to speed simulation. 
 

 

 

Examples of network simulators 

There are many both free/open-source and proprietary network simulators. Examples of 

notable network simulation software are, ordered after how often they are mentioned in 

research papers: 

 

1. ns (open source) 

2. OPNET (proprietary software) 

3. NetSim (proprietary software) 

 

Uses of network simulators 

 

Network simulators serve a variety of needs. Compared to the cost and time involved in setting 

up an entire test bed containing multiple networked computers, routers and data links, network 

simulators are relatively fast and inexpensive. They allow engineers, researchers to test scenarios 

that might be particularly difficult or expensive to emulate using real hardware - for instance, 

simulating a scenario with several nodes or experimenting with a new protocol in the network. 

Network simulators are particularly useful in allowing researchers to test new networking 

protocols or changes to existing protocols in a controlled and reproducible environment. A 

typical network simulator encompasses a wide range of networking technologies and can help 

the users to build complex networks from basic building blocks such as a variety of nodes and 

links. With the help of simulators, one can design hierarchical networks using various types of 

nodes like computers, hubs, bridges, routers, switches, links, mobile units etc. 

 

Various types of Wide Area Network (WAN) technologies like TCP, ATM, IP etc. and Local 

Area Network (LAN) technologies like Ethernet, token rings etc., can all be simulated with a 

typical simulator and the user can test, analyze various standard results apart from devising some 

novel protocol or strategy for routing etc. Network simulators are also widely used to simulate 

battlefield networks in Network-centric warfare 

 

There are a wide variety of network simulators, ranging from the very simple to the very complex. 

Minimally, a network simulator must enable a user to represent a network topology, specifying 

the nodes on the network, the links between those nodes and the traffic between the nodes. More 

complicated systems may allow the user to specify everything about the protocols used to handle 



43 

 

traffic in a network. Graphical applications allow users to easily visualize the workings of their 

simulated environment. Text-based applications may provide a less intuitive interface, but may 

permit more advanced forms of customization. 

 
 

Packet loss 

occurs when one or morepacketsof data travelling across a computer networkfail to reachtheir 

destination. Packet loss is distinguished as one of the three main error types encountered in 

digital communications; the other two being bit errorand spurious packets caused due to noise. 

Packets can be lost in a network because they may be dropped when a queue in the network node 

overflows. The amount of packet loss during the steady state is another important property of a 

congestion control scheme. The larger the value of packet loss, the more difficult it is for 

transportlayer protocols to maintain high bandwidths, the sensitivity to loss of individual packets, 

as well as to frequency and patterns of loss among longer packet sequences is strongly dependent 

on the application itself. 

 

Throughput 

 

This is the main performance measure characteristic, and most widely

 used. 

Incommunicationnetworks, such asEthernetorpacket radio, throughputor network 

throughputis the average rate of successfulmessage delivery over a communication channel. 

The throughput is usually measured inbitsper second (bit/s orbps), andsometimes indata 

packetsper second or data packets pertime slotThis measure how soon the receiver is able to 

get a certain amount of data send by the sender. It is determined as the ratio of the total data 

received to the end to end delay. Throughput is an important factor which directly impacts the 

network performance 

 

Delay 

Delay is the time elapsed while a packet travels from one point e.g., source premise or network 

ingress to destination premise or network degrees. The larger the valueof delay, the more difficult 

it is for transport layer protocols to maintain highbandwidths. We will calculate end to end delay 

 
Queue Length 

A queuing system in networks can be described as packets arriving for service, waiting for service 

if it is not immediate, and if having waited for service, leaving thesystem after being served. Thus 

queue length is very important characteristic to determine that how well the active queue 

management of the congestion control 

algorithm has been working. 

 

 

 

 

 



44 

 

 

RESULT 

Thus the study of Network simulator (NS2)was studied 

10. Perform a case study about the different routing 

algorithms to select the network path with its optimum 

and economical during data transfer. 
 

i. Link State 

routing Aim: 

To study the link state routing 

 

Link State routing 

Routing is the process of selecting best paths in a network. In the past, the term routing was also 

used to mean forwarding network traffic among networks. However this latter function is much 

better described as simply forwarding. Routing is performed for many kinds of networks, 

including the telephone network (circuit switching), electronic data networks (such as the 

Internet), and transportation networks. This article is concerned primarily with routing in 

electronic data networks using packet switching technology. 

 

In packet switching networks, routing directs packet forwarding (the transit of logically 

addressed network packets from their source toward their ultimate destination) through 

intermediate nodes. Intermediate nodes are typically network hardware devices such as routers, 

bridges, gateways, firewalls, or switches. General-purpose computers can also forward packets 

and perform routing, though they are not specialized hardware and may suffer from limited 

performance. The routing process usually directs forwarding on the basis of routing tables which 

maintain a record of the routes to various network destinations. Thus, constructing routing tables, 

which are held in the router's memory, is very important for efficient routing. Most routing 

algorithms use only one network path at a time. Multipath routing techniques enable the use of 

multiple alternative paths. 

 

In case of overlapping/equal routes, the following elements are considered in order to decide 

which routes get installed into the routing table (sorted by priority): 

 

1. Prefix-Length: where longer subnet masks are preferred (independent of whether it 

is within a routing protocol or over different routing protocol) 

2. Metric: where a lower metric/cost is preferred (only valid within one and the same 

routing protocol) 

3. Administrative distance: where a lower distance is preferred (only valid between 

different routing protocols) 

 

Routing, in a more narrow sense of the term, is often contrasted with bridging in its assumption 

that network addresses are structured and that similar addresses imply proximity within the 



45 

 

network. Structured addresses allow a single routing table entry to represent the route to a group 

of devices. In large networks, structured addressing (routing, in the narrow sense) outperforms 

unstructured addressing (bridging). Routing has become the dominant form of addressing on the 

Internet. Bridging is still widely used within localized environments. 

 

 

 

 

 

 

ii. Flooding 
 

Flooding s a simple routing algorithm in which every incoming packet is sent through every 

outgoing link except the one it arrived on.Flooding is used in bridging and in systems such as 

Usenet and peer-to-peer file sharing and as part of some routing protocols, including OSPF, 

DVMRP, and those used in ad-hoc wireless networks.There are generally two types of flooding 

available, Uncontrolled Flooding and Controlled Flooding.Uncontrolled Flooding is the fatal law 

of flooding. All nodes have neighbours and route packets indefinitely. More than two neighbours 

creates a broadcast storm. 

 

Controlled Flooding has its own two algorithms to make it reliable, SNCF (Sequence Number 

Controlled Flooding) and RPF (Reverse Path Flooding). In SNCF, the node attaches its own 

address and sequence number to the packet, since every node has a memory of addresses and 

sequence numbers. If it receives a packet in memory, it drops it immediately while in RPF, the 

node will only send the packet forward. If it is received from the next node, it sends it back to the 

sender. 

 

Algorithm 

 
There are several variants of flooding algorithm. Most work roughly as follows: 

 
1. Each node acts as both a transmitter and a receiver. 

2. Each node tries to forward every message to every one of its neighbours except 

the source node. 

 

This results in every message eventually being delivered to all reachable parts of the network. 

 
Algorithms may need to be more complex than this, since, in some case, precautions have to be 

taken to avoid wasted duplicate deliveries and infinite loops, and to allow messages to eventually 

expire from the system. A variant of flooding called selective flooding partially addresses these 

issues by only sending packets to routers in the same direction. In selective flooding the routers 

don't send every incoming packet on every line but only on those lines which are going 

approximately in the right direction. 



46 

 

 

 
 

Advantages 

 
➢ f a packet can be delivered, it will (probably multiple times). 

➢ Since flooding naturally utilizes every path through the network, it will also use 

the shortest path. 

➢ This algorithm is very simple to implement. 
 

 

 

 

 

Disadvantages 

 
➢ Flooding can be costly in terms of wasted bandwidth. While a message may only have 

one destination it has to be sent to every host. In the case of a ping flood or a denial of 

service attack, it can be harmful to the reliability of a computer network. 

➢ Messages can become duplicated in the network further increasing the load on the 

networks bandwidth as well as requiring an increase in processing complexity to 

disregard duplicate messages. 

➢ Duplicate packets may circulate forever, unless certain precautions are taken: 

➢ Use a hop count or a time to live count and include it with each packet. This value should 

take into account the number of nodes that a packet may have to pass through on the way 

to its destination. 

➢ Have each node keep track of every packet seen and only forward each packet once 

➢ Enforce a network topology without loops 

 
iii . Distance vector 
 

In computer communication theory relating to packet-switched networks, a distance- vector 

routing protocol is one of the two major classes of routing protocols, the other major class being 

the link-state protocol. Distance-vector routing protocols use the Bellman–Ford algorithm, Ford–

Fulkerson algorithm, or DUAL FSM (in the case of Cisco Systems's protocols) to calculate paths. 

 

A distance-vector routing protocol requires that a router informs its neighbors of topology changes 

periodically. Compared to link-state protocols, which require a router to inform all the nodes in 

a network of topology changes, distance-vector routing protocols have less computational 

complexity and message overhead. 

 

The term distance vector refers to the fact that the protocol manipulates vectors (arrays) of 



47 

 

distances to other nodes in the network. The vector distance algorithm was the original 

ARPANET routing algorithm and was also used in the internet under the name of RIP (Routing 

Information Protocol). 

 

Examples of distance-vector routing protocols include RIPv1 and RIPv2 and IGRP. 

 
Method 

 

Routers using distance-vector protocol do not have knowledge of the entire path to a destination. 

Instead they use two methods: 

 

1. Direction in which router or exit interface a packet should be forwarded. 

2. Distance from its destination 

 
Distance-vector protocols are based on calculating the direction and distance to any link in a 

network. "Direction" usually means the next hop address and the exit interface. "Distance" is 

a measure of the cost to reach a certain node. The least cost route between any two nodes is the 

route with minimum distance. Each node maintains a vector (table) of minimum distance to 

every node. The cost of reaching a destination is calculated using various route metrics. RIP uses 

the hop count of the destination whereas IGRP takes into account other information such as node 

delay and available bandwidth. 

 

Updates are performed periodically in a distance-vector protocol where all or part of a router's 

routing table is sent to all its neighbors that are configured to use the same distance-vector 

routing protocol. RIP supports cross-platform distance vector routing whereas IGRP is a Cisco 

Systems proprietary distance vector routing protocol. Once a router has this information it is able 

to amend its own routing table to reflect the changes and then inform its neighbors of the changes. 

This process has been described as ‗routing by rumor‘ because routers are relying on the 

information they receive from other routers and cannot determine if the information is actually 

valid and true. There are a number of features which can be used to help with instability and 

inaccurate routing information. 

 

EGP and BGP are not pure distance-vector routing protocols because a distance-vector protocol 

calculates routes based only on link costs whereas in BGP, for example, the local route 

preference value takes priority over the link cost. 

 

Count-to-infinity problem 

 

The Bellman–Ford algorithm does not prevent routing loops from happening and suffers from 

the count-to-infinity problem. The core of the count-to-infinity problem is that if A tells B that 

it has a path somewhere, there is no way for B to know if the path has B as a part of it. To see the 

problem clearly, imagine a subnet connected like A–B–C–D–E–F, and let the metric between the 



48 

 

routers be "number of jumps". Now suppose that A is taken offline. In the vector-update-process 

B notices that the route to A, which was distance 1, is down – B does not receive the vector update 

from A. The problem is, B also gets an update from C, and C is still not aware of the fact that A 

is down – so it tells B that A is only two jumps from C (C to B to A), which is false. This slowly 

propagates through the network until it reaches infinity (in which case the algorithm corrects 

itself, due to the relaxation property of Bellman–Ford). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT 

 

 
Thus The Perform a case study about the different routing algorithms to select the 

network path with its optimum and economical during data transfer was completed . 
 

 

 


