DATABASE TECHNOLOGY LABORATORY

(V semester of B.Tech)

As per the curriculam and syllabus

Of

Bharath Institute of Higher Education & Research

PREPARED BY Ms.D.Sharmila

NEW EDITION

Department of information technology

ACCREDITED WITH 'A' GRADE BY NAAC

DATABASE TECHNOLOGY

(V semester of B.Tech)

As per the curricullam and syllabus

Of

Bharath Institute of Higher Education & Research

PREPARED BY Ms.D.Sharmila

Department of information technology

ACCREDITED WITH 'A' GRADE BY NAAC

SCHOOL OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

LAB MANUAL

SUBJECT NAME: DATABASE TECHNOLOGY LABORATORY

SUBJECT CODE: U20ITCJ05

Regulation - 2020

VISION AND MISSION OF THE INSTITUTE

VISION

"Bharath Institute of Higher Education & Research (BIHER) envisions and constantly strives to provide an excellent academic and research ambience for students and members of the faculties to inherit professional competence along with human dignity and transformation of community to keep pace with the global challenges so as to achieve holistic development."

MISSION

- To develop as a Premier University for Teaching, Learning, Research and Innovation on par with leading global universities.
- To impart education and training to students for creating a better society with ethics and morals.
- To foster an interdisciplinary approach in education, research and innovation by supporting lifelong professional development, enriching knowledge banks through scientific research, promoting best practices and innovation, industry driven and institute-oriented cooperation, globalization and international initiatives.
- To develop as a multi-dimensional institution contributing immensely to the cause of societal advancement through spread of literacy, an ambience that provides the best of international exposures, provide health care, enrich rural development and most importantly impart value-based education.
- To establish benchmark standards in professional practice in the fields of innovative and emerging areas in engineering, management, medicine, dentistry, nursing, physiotherapy and allied sciences.
- To imbibe human dignity and values through personality development and social service activities.

VISION AND MISSION OF THE DEPARTMENT

VISION

To be an excellence in education and research in Information Technology producing global scholars for improvement of the society

MISSION

- To provide sound fundamentals, and advances in Information Technology, Software Engineering, data Communications and Computer Applications by offering world class curriculum.
- To create ethically strong leaders and expert for next generation IT.
- To nurture the desire among faculty and students from across the globe to perform outstanding and impactful research for the benefit of humanity and, to achieve meritorious and significant growth.

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

The Program Educational Objectives (PEOs) of Information technology are listed below: The graduate after 3-5 years of programme completion will

PEO1: PREPARATION

To provide students with sound fundamental in Mathematical, Scientific and Engineering fundamentals necessary to formulate, analyse, and comprehend the fundamental concepts essential to articulate, solve and assess engineering problems and to prepare them for research & development and higher learning.

PEO2: CORE COMPETENCE

To apply critical reasoning, quantitative, qualitative, designing and programming skills, to identify, solve problems and to analyze the experimental evaluations, and finally making appropriate decisions along with knowledge of

computing principles and applications and be able to integrate this knowledge in a variety of industry and interdisciplinary setting.

PEO3: PROFESSIONALISM

To broaden knowledge to establish themselves as creative practicing professionals, locally and globally, in fields such as design, development, problem solving to production support in software industries and R&D sectors.

PEO4: SKILL

To provide better opportunity to become a future researchers / scientist with good communication skills so that they may be both good team-members and leaders with innovative ideas for a sustainable development.

PEO5: ETHICS

To be ethically and socially responsible solution providers and entrepreneurs in Computer Science and other engineering discipline.

PROGRAMME OUTCOMES

	gineering Knowledge: Apply the knowledge of mathematics, science, engineering
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	oblem Analysis: Identify, formulate, review research literature, and analyse complex
PO2	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences and engineering sciences.
	sign/Development of Solutions: Design solutions for complex engineering problems and
DO 3	design system components or processes that meet the specified needs with appropriate
103	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
	nduct Investigations of Complex Problems: Use research-based knowledge and research
PO 4	methods including design of experiments, analysis and interpretation of data, and synthesis
	of the information to provide valid conclusions for complex problems.
	pdern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern
PO 5	engineering and IT tools including prediction and modelling to complex engineering
	activities with an understanding of the limitations.
	e Engineer and Society: Apply reasoning informed by the contextual knowledge to assess
PO 6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
	to the professional engineering practice.
	vironment and Sustainability: Understand the impact of the professional engineering
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
PO 8	hics: Apply ethical principles and commit to professional ethics and responsibilities and
100	norms of the engineering practice.
PO 9	dividual and Team Work: Function effectively as an individual, and as a member or leader
107	in diverse teams, and in multidisciplinary settings.
	mmunication: Communicate effectively on complex engineering activities with the
PO 10	engineering community and with society at large, such as, being able to comprehend and
1010	write effective reports and design documentation, make effective presentations, and give
	and receive clear instructions.
	oject Management and Finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a member
	and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	fe-long Learning: Recognize the need for, and have the preparation and ability to engage in
1012	independent and lifelong learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOME

	Programming Design : Design and develop algorithm for real life problems using latest
P501	technologies and solve it by using computer programming languages and database technologies .
	IT Business Scalable Design : Analyze and recommend computing infrastructures and
PSO 2	operations requirements and Simulate and implement information networks using
	configurations, algorithms, suitable protocol and security for valid and optimal connectivity.
DSO 3	Intelligent Agents Design : Design and execute projects for the development of data modeling,
1505	data analytics and knowledge representation in various domain.

U20ITCJ05- DATABASE TECHNOLOGY

PART-A INTRODUCTION OF THE COURSE

Databases form the backbone of all major applications today – tightly or loosely coupled, intranet or internet based, financial, social, administrative, and so on. Structured Database Management Systems (DBMS) based on relational and other models have long formed the basis for such databases. Consequently, Oracle, Microsoft SQL Server, Sybase etc. have emerged as leading commercial systems while MySQL, PostgreSQL etc. lead in open source and free domain.

Course Code	Course Category	Course Title		Т 0	P 2	C 4		
U20ITC105	C	DATABASE TECHNOLOGY		DATABASE TECHNOLOGY Pre- requisite: U20CSF				CSEJ01
020110305	Ŭ			or Diploma				
Name Of the Course		Ma D Shammila		Contract Have 75				
Coordinator:		MIS.D.Shariinia	Contact Hrs: 75					
Course Offering		Demontration of IT						
Department/School:		Department of 11	1 Otal Warks : 100					

Course Objective and Summary

- To understand the concept of DBMS and ER Modeling.
- To explain the normalization, Query optimization and relational algebra.
- To apply the concurrency control, recovery, security and indexing for the real time data.

Course Outcomes (COs)

	Course Outcomes (COs)	BT Level
CO1	Explain the basic concept and role of DBMS in an organization.	2
CO2	Illustrate the design principles for database design, ER model and normalization.	2
CO3	Demonstrate the basics of query evaluation and heuristic query optimization techniques.	2
CO4	Apply Concurrency control and recovery mechanisms for the desirable database problem.	3
CO5	Compare the basic database storage structure and access techniques	4
CO6	Implement the database system with the fundamental concepts of DBMS.	В

Mapping /	Alignment	of COs	with PO	& PSO	

	PO1	P02	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	3												3		
CO2	3	2											3		
CO3	3	2		2									3		
CO4		2	3										3		
CO5		3	2	2									3		
CO6		2	3		2								3		
	(Tick mark or level of correlation: 3-High, 2-Medium, 1-Low)														

PART-B CONTENT OF THE COURSE

1.COURSE CONTENT

UNIT I Data Models

History and motivation for database systems - characteristics of database approach - Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Control statements - Workers behind the scene Advantages of using DBMS approach - Database Querying – Simple queries, Nested queries, Sub queries and Joins - Data Models, Schemas, and Instances - Three-Schema Architecture and Data Independence - Views, Sequences, Synonyms.

UNIT II Relational Database Design And Query Languages

The Database System Environment - Centralized and Client/Server Architectures for DBMSs - Centralized and Client/Server Architectures for DBMSs - Database Programming: Implicit and Explicit Cursors - Classification of database management systems - Entity Relationship Model: Types of Attributes, Relationship, Structural Constraints - Relational Model, Relational model Constraints - Mapping ER model to a relational schema - Database Triggers.

UNIT III Query Processing And Optimization

Integrity constraints - Guidelines for Relational Schema - Exception Handling - Functional dependency; Normalization - Boyce Code Normal Form - Multi-valued dependency and Fourth Normal form - Join dependency and Fifth Normal form - Database Connectivity with Front End Tools.

UNIT IV Transaction Processing

Translating SQL Queries into Relational Algebra - heuristic query optimization - Introduction to Transaction Processing - Transaction and System concepts - Desirable properties of Transactions - Characterizing schedules based on recoverability and serializability - Two-Phase Locking Techniques for Concurrency Control - Concurrency Control based on timestamp.

UNIT V Database Security

Recovery Concepts - Recovery based on deferred update - Recovery techniques based on immediate update -Shadow Paging - Indexing: Single level indexing - multi-level indexing - dynamic multilevel Indexing - Need of NoSOL. 45 HOURS

2.LIST OF EXPERIMENTS

- 1. Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Control statements.
- 2. Database Querying Simple queries, Nested queries, Sub queries and Joins.
- 3. Views, Sequences, Synonyms.
- 4. Database Programming: Implicit and Explicit Cursors.
- 5. Procedures and Functions.
- 6. Database Triggers.
- 7. Exception Handling.
- 8. Database Design using ER modeling, normalization and Implementation for any application.
- 9. Database Connectivity with Front End Tools.
- 10. Case Study using real life database applications.

30 Hours

(9)

(9)

(9)

(9)

(9)

STUDY ON RELATIONAL DATABASE MANAGEMENT SYSTEM (RDBMS)

INTRODUCTION TO SQL:

SQL (structured query language) is a database computer language designed for the retrieval and management of data in relational database systems (RDBMS), database scheme creation and modification, and database object access control management.

FEATURES OF SQL

SQL is both an easy –to-understand language and a comprehensive tool for managing data.

- ➢ High-level. English-like structure
- Interactive, ad hoc queries
- Programmatic database access
- ➢ Multiple views of data
- Complete database language
- Dynamic data definition
- Client/server architecture

TYPES OF SQL COMMANDS

SQL is used to control all of the functions that a DBMS provides for its users, including:

Data definition, SQL lets a user define the structure and organization of the stored data and relationship among the stored data items.

Data retrieval, SQL allows a user or an application program to retrieve stored data from the database and use it.

Data manipulation, SQL allows a user or an application program to update the database by adding new data, removing old data, and modifying previously stored data.

Access control, SQL can be used to restrict a user's ability to retrieve, add, and modify data, protecting stored data against unauthorized access.

Data sharing, SQL is used to coordinate data sharing by concurrent users, ensuring that they do not interface with one another.

Data integrity, SQL defines integrity constraints in the database, protecting it from corruption due to inconsistent updates or system failures.

EX.NO:1.A

DATE:

DATA DEFINITION LANGUAGES (DDL) COMMANDS IN RDBMS

A Data Definition Language (DDL) statement are used to define the database structure or schema.

Aim:

To study and execute the DDL commands in RDBMS.

DDL commands:

- ★ CREATE
- * ALTER
- ★ DROP
- ★ RENAME
- **★** TRUNCATE

SYNTAX'S OF COMMANDS

CREATE TABLE:

To make a new database, table, index, or stored query. A create statement in SQL creates an object inside of a relational database management system (RDBMS).

```
CREATE TABLE <table_name>
```

(

Column_name1 data_type ([size]),

Column_name2 data_type ([size]),

```
.
.
Column_name-n data_type ([size])
);
```

ALTER A TABLE:

To modify an existing database object. Alter the structure of the database.

To add a column in a table

ALTER TABLE table_name ADD column_name datatype;

To delete a column in a table

ALTER TABLE table_name DROP column column_name;

DROP TABLE:

Delete Objects from the Database

DROP TABLE table_name;

TRUNCATE TABLE:

Remove all records from a table, including all spaces allocated for the records are removed.

TRUNCATE TABLE table_name;

EXERCISE:

Create Table

SQL> create table employee

2 (

3 empid varchar(10) primary key,

4 empname varchar2(20) not null,

5 gender varchar2(7) not null,

6 age number(3) not null,

7 dept varchar2(15) not null,

8 dob date not null,

9 doj date not null

10);

Table created.

SQL> create table salary

2 (

3 empid varchar(10) references employee(empid),

4 salary number(10) not null,

- 5 dept varchar(15) not null,
- 6 branch varchar2(20) not null
- 7);

Table created.

SQL> create table branchtable

2 (

3 branch varchar2(20) not null,

4 city varchar2(20) not null

5);

Table created.

DESCRIBE TABLE

SQL> desc employee;

Name	Null?	Туре
EMPID	NOT NULL	VARCHAR2(10)
EMPNAME	NOT NULL	VARCHAR2(20)
GENDER	NOT NULL	VARCHAR2(7)
AGE	NOT NULL	NUMBER(3)
DEPT	NOT NULL	VARCHAR2(15)
DOB	NOT NULL	DATE
DOJ	NOT NULL	DATE

SQL> desc salary;

Name	Null?	Туре
EMPID		VARCHAR2 (10)
SALARY	NOT NULL	NUMBER (10)
DEPT	NOT NULL	VARCHAR2 (15)
BRANCH	NOT NULL	VARCHAR2 (20)
SQL> desc branchtable;		
Name	Null?	Туре
BRANCH	NOT NULL	VARCHAR2 (20)
CITY	NOT NULL	VARCHAR2 (20)

ALTER TABLE

I. <u>ADD</u>:

SQL> alter table employee add(designation varchar2(15)); Table altered.

SQL> alter table salary add(constraint nithi unique(empid));

Table altered.

II.<u>MODIFY</u>

SQL> alter table employee modify (designation varchar2(20)); Table altered.

RENAME TABLE

SQL> create table emp

2 (

- 3 empid varchar2(10),
- 4 empname varchar2(20),
- 5 age number(3),
- 6 sex char
- 7);

Table created.

SQL> rename emp to empl;

Table renamed.

SQL> desc empl;

Name	Null? Type
EMPID	VARCHAR2(10)
EMPNAME	VARCHAR2(20)
AGE	NUMBER(3)
SEX	CHAR(1)

SQL> desc emp;

ERROR:

ORA-04043: object emp does not exist

Table altered.

TRUNCATE TABLE DATA

SQL> insert into emp values(&no,'&name','&dept',&age,'&sex');

Enter value for no: 1

Enter value for name: arun

Enter value for dept: it Enter value for age: 22 Enter value for sex: m old 1: insert into emp values(&no,'&name','&dept',&age,'&sex') new 1: insert into emp values(1,'arun','it',22,'m') 1 row created.

SQL> insert into emp values(&no,'&name','&dept',&age,'&sex'); Enter value for no: 2 Enter value for name: bala Enter value for dept: service Enter value for age: 26 Enter value for sex: m old 1: insert into emp values(&no,'&name','&dept',&age,'&sex') new 1: insert into emp values(2, 'bala', 'service', 26, 'm') 1 row created. SQL> insert into emp values(&no,'&name','&dept',&age,'&sex'); Enter value for no: 3 Enter value for name: chitra Enter value for dept: sales Enter value for age: 25 Enter value for sex: f old 1: insert into emp values(&no,'&name','&dept',&age,'&sex') new 1: insert into emp values(3,'chitra','sales',25,'f') 1 row created. SQL> select * from emp; EMPID EMPNAME AGE SEX DEPT _____ 1 22 it arun m

2	bala	service	26	m
3	chitra	sales	25	f

SQL> commit;

Commit complete.

SQL> truncate table emp;

Table truncated.

SQL> select * from emp;

no rows selected

SQL> commit;

Commit complete.

DROP TABLE

SQL> drop table empl;

Table dropped.

SQL> desc empl;

ERROR:

ORA-04043: object empl does not exist

CRITERIA	MAX.MARKS	MARKSOBTAINED
AIM& ALGORITHM	5	
EXECUTION&OUTPUT	10	
VIVA	5	
TOTAL	20	

RESULT:

EX.NO:1.B

DATE:

DATA MANIPULATION LANGUAGE (DML) IN RDBMS

Data manipulation language allows the users to query and manipulate data in existing schema in object. It allows following data to insert, delete, update and recovery data in schema object.

Aim:

To study DML commands in RDBMS.

DML COMMANDS:

- ✤ INSERT
- ✤ UPDATE
- ♦ DELETE
- ✤ SELECT

OUERY:

Query is a statement in the DML that request the retrieval of data from database.

The portion of the DML used in a Query is called Query language. The SELECT statement is used to query a database

SYNTAX OF COMMANDS

INSERT:

Values can be inserted into table using insert commands. There are two types of insert commands. They are multiple value insert commands (using '&' symbol) single value insert command(without using '&' symbol)

Syntax:

INSERT INTO table_name VALUES (value1, value2, value3,....);

(OR)

INSERT INTO table_name (column1, column2, column3,....) VALUES (value1,value2,value3,.....);

UPDATE:

This allows the user to update the particular column value using the where clause condition.

Syntax:

UPDATE <table_name> SET <col1=value> WHERE <column=value>;

DELETE:

This allows you to delete the particular column values using where clause condition.

Syntax:

DELETE FROM <table_name> WHERE <condition>;

SELECT:

The select statement is used to query a database .This statement is used to retrieve the information from the database. The SELECT statement can be used in many ways. They are:

1. Selecting some columns :

To select specified number of columns from the table the

Following command is used.

Syntax:

SELECT column_name FROM table_name;

2. Query All Columns:

To select all columns from the table * is used instead of column names.

Syntax:

SELECT * FROM table_name;

3. Select using DISTINCT:

The DISTINCT keyword is used to return only different values (i.e.) this command does not select the duplicate values from the table.

Syntax:

SELECT DISTINCT column name(s) FROM table_name;

4. Select using IN:

If you want to get the rows which contain certain values, the best way to do it is to use the IN conditional expression.

Syntax:

SELECT column name(s) FROM table_name WHERE Column name IN (value1, value2,.....,value-n);

5. Select using BETWEEN:

BETWEEN can be used to get those items that fall within a range.

Syntax:

SELECT column name FROM table_name WHERE

Column name BETWEEN value1 AND value2;

6. Renaming:

The select statement can be used to rename either a column or the entire table.

Syntax:

Renaming a column:

SELECT column name AS new name FROM table_name;

Renaming a table:

SELECT column name FROM table_name AS newname;

7. Sorting:

The select statement with the order by Clause is used to sort the contents

Table either in ascending or descending order.

Syntax:

SELECT column name FROM table_name WHERE

Condition ORDER BY column name ASC/DESC;

8. To Select by matching some patterns:

The select statement along with **like clause** I is used to match strings. The **like** condition is used to specify a search pattern in a column.

Syntax:

SELECT column name FROM table_name WHERE Column name LIKE "% or-";

%: Matches any sub string.

- : Matches a single character.

9. SELECT INTO statement:

The SELECT INTO statement is most often used to create backup copies of tables or for archiving records.

Syntax:

SELECT Column_name(s) INTO variable_name(s) FROM table_name

WHERE condition.

10. To Select NULL values:

We can use the SELECT statement to select the 'null' values also.

For retrieving roes where some of the columns have been defined as NULLs there is a special comparison operator of the form IS [NOT]NULL.

Syntax:

SELECT column name FROM table_name WHERE Column name IS NULL;

11. Select using AND, OR, NOT:

We can combine one or more conditions in a SELECT statement using the logical operators AND, OR, NOT.

Syntax:

SELECT column name FROM table_name WHERE Condition1 LOGICAL OPERATOR condition2;

EXERCISE:

INSERT COMMAND

SQL> insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig');

Enter value for empid: it9001

Enter value for empname: arunkumar

Enter value for gender: male

Enter value for age: 22

Enter value for dept: it

Enter value for dob: 12-jan-1988

Enter value for doj: 23-oct-2006

Enter value for desig: manager

old 1: insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi

new 1: insert into employee values('it9001','arunkumar','male',22,'it','12-jan-1988','23-oct-2006'

1 row created.

SQL> insert into employee values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig'); Enter value for empid: it9001 Enter value for empname: arunkumar Enter value for gender: male Enter value for age: 22 Enter value for dept: it Enter value for dob: 12-jan-1988 Enter value for doj: 23-oct-2006 Enter value for desig: manager old 1: insert into employee values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi new 1: insert into employee values('it9001','arunkumar','male',22,'it','12-jan-1988','23-oct-2006' 1 row created.

SQL> insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig');

Enter value for empid: it9002

Enter value for empname: balakrishnan

Enter value for gender: male

Enter value for age: 27

Enter value for dept: it

Enter value for dob: 27-mar-1983

Enter value for doj: 02-dec-2008

Enter value for desig: coordinator

old 1: insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi

new 1: insert into employee values('it9002', 'balakrishnan', 'male', 27, 'it', '27-mar-1983', '02-

dec-20

1 row created.

SQL> insert into employee values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig'); Enter value for empid: acc9001 Enter value for empname: kannan Enter value for gender: male Enter value for age: 35 Enter value for dept: accounts Enter value for dob: 28-dec-1975 Enter value for doj: 01-jan-1995 Enter value for desig: manager old 1: insert into employee values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi new 1: insert into employee values('acc9001', 'kannan', 'male', 35, 'accounts', '28-dec-1975', '01jan-1 1 row created. SQL> insert into employee values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig'); Enter value for empid: acc9002 Enter value for empname: magudeshwaran Enter value for gender: male Enter value for age: 27 Enter value for dept: accounts Enter value for dob: 25-aug-1983 Enter value for doj: 12-apr-2000 Enter value for desig: asst manager old 1: insert into employee values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi new 1: insert into employee values('acc9002','magudeshwaran','male',27,'accounts','25-aug-1983','1 1 row created.

SQL> insert into employee values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig'); Enter value for empid: ser9001 Enter value for empname: jagadheesh Enter value for gender: male Enter value for age: 33 Enter value for dept: service Enter value for dob: 31-mar-1877 Enter value for doj: 3-jun-1999 Enter value for desig: manager old 1: insert into employee values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi new 1: insert into employee values('ser9001','jagadheesh','male',33,'service','31-mar-1877','3-jun 1 row created. SQL> insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig'); Enter value for empid: ser9006 Enter value for empname: muruganandam Enter value for gender: male Enter value for age: 35 Enter value for dept: service Enter value for dob: 09-aug-1975 Enter value for doj: 02-mar-2000 Enter value for desig: painter old 1: insert into employee values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi new 1: insert into employee values('ser9006','muruganandam','male',35,'service','09-aug-1975','02-1 row created.

SQL> insert into employee values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig'); SQL>/ Enter value for empid: sal9001 Enter value for empname: suresh Enter value for gender: male Enter value for age: 40 Enter value for dept: sales Enter value for dob: 12-jul-1970 Enter value for doj: 01-apr-1996 Enter value for desig: manager old 1: insert into employee values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi new 1: insert into employee values('sal9001','suresh','male',40,'sales','12-jul-1970','01-apr-1996

1 row created.

SQL> insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desig');

Enter value for empid: sal9006

Enter value for empname: sharmila

Enter value for gender: female

Enter value for age: 27

Enter value for dept: sales

Enter value for dob: 12-jan-1983

Enter value for doj: 09-aug-2007

Enter value for desig: executive

old 1: insert into employee

values('&empid','&empname','&gender',&age,'&dept','&dob','&doj','&desi

new 1: insert into employee values ('sal9006', 'sharmila', 'female', 27, 'sales', '12-jan-1983', '09-

aug-

1 row created.

SQL> insert into salary values('&empid',&salary,'&dept','&branch'); Enter value for empid: it9002 Enter value for salary: 18000 Enter value for dept: it Enter value for branch: abt maruthi old 1: insert into salary values('&empid',&salary,'&dept','&branch') new 1: insert into salary values('it9002',18000,'it','abt maruthi') 1 row created.

SQL> insert into salary values('&empid',&salary,'&dept','&branch'); Enter value for empid: acc9001 Enter value for salary: 35000 Enter value for dept: accounts Enter value for branch: cars india old 1: insert into salary values('&empid',&salary,'&dept','&branch') new 1: insert into salary values('acc9001',35000,'accounts','cars india') 1 row created.

SQL> insert into salary values('&empid',&salary,'&dept','&branch'); Enter value for empid: acc9002 Enter value for salary: 26000 Enter value for dept: accounts Enter value for branch: cars india old 1: insert into salary values('&empid',&salary,'&dept','&branch') new 1: insert into salary values('acc9002',26000,'accounts','cars india') 1 row created.

SQL> insert into salary values('&empid',&salary,'&dept','&branch'); Enter value for empid: ser9001 Enter value for salary: 35000 Enter value for dept: service Enter value for branch: chennai cars old 1: insert into salary values('&empid',&salary,'&dept','&branch') new 1: insert into salary values('ser9001',35000,'service','chennai cars') 1 row created.

SQL> insert into salary values('&empid',&salary,'&dept','&branch'); Enter value for empid: ser9006 Enter value for salary: 12000 Enter value for dept: service Enter value for branch: greenland cars old 1: insert into salary values('&empid',&salary,'&dept','&branch') new 1: insert into salary values('ser9006',12000,'service','greenland cars') 1 row created.

SQL> insert into salary values('&empid',&salary,'&dept','&branch'); Enter value for empid: sal9001 Enter value for salary: 40000 Enter value for dept: sales Enter value for branch: abt maruthi old 1: insert into salary values('&empid',&salary,'&dept','&branch') new 1: insert into salary values('sal9001',40000,'sales','abt maruthi')1 row created.

SQL> insert into salary values('&empid',&salary,'&dept','&branch'); Enter value for empid: sal9006 Enter value for salary: 17000 Enter value for dept: sales Enter value for branch: abt maruthi old 1: insert into salary values('&empid',&salary,'&dept','&branch') new 1: insert into salary values('sal9006',17000,'sales ','abt maruthi') 1 row created.

SQL> select * from salary	L> select * from sala	ıry;
---------------------------	-----------------------	------

EMPID	SALARY	DEPT	BRANCH
it9001	35000	it	abt maruthi
it9002	18000	it	abt maruthi
acc9001	35000	accounts	cars india
acc9002	26000	accounts	cars india
ser9001	35000	service	chennai cars
ser9006	12000	service	greenland cars
sal9001	40000	sales	abt maruthi
sal9006	17000	sales	abt maruthi
8 rows sele	cted.		

SQL> select * from employee;

EMPID	EMPNAME	GENE	DER AG	E DEPT	DOB
DOJ	DESIGNATION				
it9001	arunkumar	male	22 it	12-JAN-88	
23-OCT	-06 manager				
it9002	balakrishnan	male	27 it	27-MAR-83	
02-DEC-08 coordinator					
acc9001	kannan	male	35 accounts	28-DEC-7	5
01-JAN-95 manager					

EMPID	EMPNAME	GEND	ER AG	E DEPT	DOB
DOJ	DESIGNATION				
acc9002	magudeshwara	n male	27 acco	ounts 25	-AUG-83
12-APR	-00 asst manager				
ser9001	jagadheesh	male	33 service	31-MA	R-77
03-JUN	-99 manager				
ser9006	muruganandam	male	35 servi	ce 09-1	AUG-75
02-MAH	R-00 painter				
EMPID	EMPNAME	GEND	ER AG	E DEPT	DOB
DOJ	DESIGNATION				
sal9001	suresh	male 4) sales	12-JUL-7()
01-APR	-96 manager				
sal9006	sharmila	female	27 sales	12-JAN-	83
09-AUC	6-07 executive				
8 rows s	elected.				
SQL> ir	nsert into branchta	ble values('&b	oranch','&cit	y');	
Enter va	llue for branch: ab	ot maruthi			
Enter va	llue for city: cheni	nai			
old 1: in	nsert into branchta	ble values('&l	oranch','&cit	ty')	
new 1:	insert into brancht	able values('al	ot maruthi','o	chennai')	
1 row cr	reated.				

SQL> select * from salary;

EMPID	SALARY	DEPT	BRANCH
it9001	35000	it	abt maruthi
it9002	18000	it	abt maruthi
acc9001	35000	accounts	cars india
acc9002	26000	accounts	cars india
ser9001	35000	service	chennai cars
ser9006	12000	service	greenland cars
sal9001	40000	sales	abt maruthi
sal9006	17000	sales	abt maruthi
8 rows sel	lected.		

SQL> insert into branchtable values('&branch','&city'); Enter value for branch: cars india Enter value for city: vellore old 1: insert into branchtable values('&branch','&city') new 1: insert into branchtable values('cars india','vellore')

1 row created.

SQL> insert into branchtable values('&branch','&city');
Enter value for branch: chennai cars
Enter value for city: thambaram
old 1: insert into branchtable values('&branch','&city')
new 1: insert into branchtable values('chennai cars','thambaram')
1 row created.

SQL> insert into branchtable values('&branch','&city'); Enter value for branch: greenland cars Enter value for city: kanchipuram

old 1: insert into branchtable values('&branch','&city')

new 1: insert into branchtable values('greenland cars', 'kanchipuram')

1 row created.

SQL> select * from branchtable;

BRANCHCITYabt maruthichennaicars indiavellorechennai carsthambaramgreenland carskanchipuram

UPDATE COMMAND

SQL> update employee set empname = 'arunprasanth' where empid='it9001';

1 row updated.

SQL> update employee set designation='&designation' where empname='&empname';

Enter value for designation: supervisor

Enter value for empname: muruganandam

old 1: update employee set designation='&designation' where empname='&empname'

new 1: update employee set designation='supervisor' where empname='muruganandam'

1 row updated.

SQL> select empname, designation from employee;

EMPNAMEDESIGNATIONarunprasanthmanagerbalakrishnancoordinatorkannanmanagermagudeshwaranasst manager

jagadheesh	manager
muruganandam	supervisor
suresh	manager
sharmila	executive

8 rows selected.

SELECT COMMAND

To retrieve particular column

SQL> select empname from emp;

EMPNAME

arun

bala

bakyaraj

chitra

To retrieve all columns

SQL> select * from emp;

EMPID	EMPNAME	DEPT	AGE	S
1	arun	it	22	m
2	bala	accounts	26	m
3	bakyaraj	stores	30	m
4	chitra	sales	24	f

DELETE COMMAND

To delete particular record

SQL> delete emp where empid=1;

1 row deleted.

SQL> select * from emp;

EMPID	EMPNAME	DEPT	AGE	S
2	bala	accounts	26	m
3	bakyaraj	stores	30	m
4	chitra	sales	24	f

To delete all records

SQL> delete from emp;

3 rows deleted.

SQL> create table student (idno number, name varchar(10),branch varchar(4));

Table created.

SQL> desc student;

NAME	NULL?	TYPE
IDNO		NUMBER
NAME		VARCHAR2(10)
BRANCH		VARCHAR2(4)
SQL> alter table stude	ent add	degree varchar(10);
Table altered.		
SQL> desc student;		
NAME	NULL?	TYPE
IDNO		NUMBER
NAME		VARCHAR2 (10)
BRANCH		VARCHAR2(4)
DEGREE		VARCHAR2 (10)
SQL> alter table student r	nodify de	gree varchar(6);

Table altered.

SQL> desc student;

NULL? TYPE NAME _____ IDNO NUMBER NAME VARCHAR2(10) BRANCH VARCHAR2(4) DEGREE VARCHAR2(6) SQL> insert into student (name, degree, branch, idno) values('ASHOK','BE','CSE',01); 1 row created. SQL> insert into student values(02, 'BHAVANA', 'CSE', 'BE'); 1 row created. SQL> insert into student values(&idno, &name, &branch, °ree); Enter value for idno: 03 Enter value for name: 'CAVIN' Enter value for branch: 'CSE' Enter value for degree: 'BE' old 1: insert into student values(&idno,&name,&branch,°ree) new 1: insert into student values(03,'CAVIN','CSE','BE') 1 row created. SQL>/Enter value for idno: 04 Enter value for name: 'DANNY' Enter value for branch: 'IT' Enter value for degree: 'BE' old 1: insert into student values(&idno,&name,&branch,°ree) new 1: insert into student values(04,'DANNY','IT','BE') 1 row created. SQL>/Enter value for idno: 05

Enter		
value		
for		
name:		
'HARR		
Y'Enter		
value		
for		
branch:		
'IT'		
Enter		
value		
for		
degree:		
'BE'		
old 1: insert into student		
values(&idno,&name,&bran	ch,°ree)ne	W
1: insert into student		
values(05,'HARRY','IT','BE')	
1 row created.		
SQL> select * from student;		
IDNO NAME	BRAN	DEGREE
1 ASHOK	CSE	BE
2 BHAVANA	CSE	BE

3 CAVIN	CSE	BE
4 DANNY	IT	BE
5 HARRY	IT	BE

SQL> update student set

degree='B.TECH' where branch='IT';2

rows updated.

SQL> select * from student;

IDNO NAM	E BRAN	٧	DEGREE
1	ASHOK	CSE	BE
2	BHAVANA	CSE	BE
3	CAVIN	CSE	BE
4	DANNY	IT	B.TECH
5	HARRY	IT	B.TECH
	IDNO NAM 1 2 3 4 5	IDNO NAME BRAN	IDNO NAMEBRAN1ASHOKCSE2BHAVANACSE3CAVINCSE4DANNYIT5HARRYIT

SQL> delete

from student

where idno=5;1

row deleted.