

DIGITAL IMAGE PROCESSING

LABORATORY

(V semester of B.Tech)

As per the curriculam and syllabus

Of

 Bharath Institute of Higher Education & Research

PREPARED BY

DR.A.KUMARAVEL

 Department of information technology

NEW EDITION

DIGITAL IMAGE PROCESSING

(V semester of B.Tech)

As per the curricullam and syllabus

Of

 Bharath Institute of Higher Education & Research

PREPARED BY

DR.A.KUMARAVEL

 Department of information technology

SCHOOL OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

LAB MANUAL

SUBJECT NAME: DIGITAL IMAGE PROCESSING LABORATORY

SUBJECT CODE: U20ITCJ06

 Regulation - 2020

VISION AND MISSION OF THE INSTITUTE

VISION

“Bharath Institute of Higher Education & Research (BIHER) envisions and constantly strives to

provide an excellent academic and research ambience for students and members of the faculties to

inherit professional competence along with human dignity and transformation of community to keep

pace with the global challenges so as to achieve holistic development.”

MISSION

▪ To develop as a Premier University for Teaching, Learning, Research and Innovation on par

with leading global universities.

▪ To impart education and training to students for creating a better society with ethics and

morals.

▪ To foster an interdisciplinary approach in education, research and innovation by supporting

lifelong professional development, enriching knowledge banks through scientific research,

promoting best practices and innovation, industry driven and institute-oriented cooperation,

globalization and international initiatives.

▪ To develop as a multi-dimensional institution contributing immensely to the cause of societal

advancement through spread of literacy, an ambience that provides the best of international

exposures, provide health care, enrich rural development and most importantly impart value-

based education.

▪ To establish benchmark standards in professional practice in the fields of innovative and

emerging areas in engineering, management, medicine, dentistry, nursing, physiotherapy and

allied sciences.

▪ To imbibe human dignity and values through personality development and social service

activities.

VISION AND MISSION OF THE DEPARTMENT

VISION

 To be an excellence in education and research in Information Technology

producing global scholars for improvement of the society

MISSION

• To provide sound fundamentals, and advances in Information Technology, Software

Engineering, data Communications and Computer Applications by offering world class

curriculum.

• To create ethically strong leaders and expert for next generation IT.

• To nurture the desire among faculty and students from across the globe to perform

outstanding and impactful research for the benefit of humanity and, to achieve

meritorious and significant growth.

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

The Program Educational Objectives (PEOs) of Information technology are listed below: The

graduate after 3-5 years of programme completion will

PEO1: PREPARATION

To provide students with sound fundamental in Mathematical, Scientific and Engineering

fundamentals necessary to formulate, analyse, and comprehend the fundamental concepts essential

to articulate, solve and assess engineering problems and to prepare them for research & development

and higher learning.

PEO2: CORE COMPETENCE

To apply critical reasoning, quantitative, qualitative, designing and programming skills, to identify,

solve problems and to analyze the experimental evaluations, and finally making appropriate

decisions along with knowledge of computing principles and applications and be able to integrate

this knowledge in a variety of industry and inter-disciplinary setting.

PEO3: PROFESSIONALISM

To broaden knowledge to establish themselves as creative practicing professionals, locally and

globally, in fields such as design, development, problem solving to production support in software

industries and R&D sectors.

PEO4: SKILL

To provide better opportunity to become a future researchers / scientist with good communication

skills so that they may be both good team-members and leaders with innovative ideas for a

sustainable development.

PEO5: ETHICS

To be ethically and socially responsible solution providers and entrepreneurs in Computer Science

and other engineering discipline.

PROGRAMME OUTCOMES

PO 1

Engineering Knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution of

complex engineering problems.

PO2

Problem Analysis: Identify, formulate, review research literature, and analyse

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences and engineering sciences.

PO 3

Design/Development of Solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified

needs with appropriate consideration for the public health and safety, and the

cultural, societal, and environmental considerations.

PO 4

Conduct Investigations of Complex Problems: Use research-based knowledge

and research methods including design of experiments, analysis and

interpretation of data, and synthesis of the information to provide valid

conclusions for complex problems.

PO 5

Modern Tool Usage: Create, select, and apply appropriate techniques, resources,

and modern engineering and IT tools including prediction and modelling to

complex engineering activities with an understanding of the limitations.

PO 6

The Engineer and Society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

PO 7

Environment and Sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate

the knowledge of, and need for sustainable development.

PO 8
Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

PO 9
Individual and Team Work: Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

PO 10

Communication: Communicate effectively on complex engineering activities with

the engineering community and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make

effective presentations, and give and receive clear instructions.

PO 11

Project Management and Finance: Demonstrate knowledge and understanding of

the engineering and management principles and apply these to one’s own work,

as a member and leader in a team, to manage projects and in multidisciplinary

environments.

PO 12

Life-long Learning: Recognize the need for, and have the preparation and ability

to engage in independent and lifelong learning in the broadest context of

technological change.

PROGRAMME SPECIFIC OUTCOME

PSO 1

Programming Design : Design and develop algorithm for real life problems using

latest technologies and solve it by using computer programming languages and

database technologies .

PSO 2

IT Business Scalable Design : Analyze and recommend computing infrastructures

and operations requirements and Simulate and implement information networks

using configurations, algorithms, suitable protocol and security for valid and

optimal connectivity.

PSO 3
Intelligent Agents Design : Design and execute projects for the development of

data modeling, data analytics and knowledge representation in various domain.

U20ITCJ06- DIGITAL IMAGE PROCESSING

PART A- INTRODUCTION OF THE COURSE

Course Code U20ITCJ06
L T P C

3 0 2 4

Course Title Digital Image Processing

Course Category Professional Core (C) Contact Hrs 75

Pre-requisite
Co-

Requisite
Nil

Name of the Course Coordinator DR.A.KUMARAVEL

Course offering Dept./School IT / SoC

Course Objective and Summary

•

Course Outcomes (COs)

CO1
CO2
CO3
CO4
CO5

Mapping / Alignment of COs with PO & PSO

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

P
S

O
1

P
S

O
2

P
S

O
3

CO1 2 1 - - 2 2 3 2 2 2 2 2 2 3 2

CO2 2 1 - - 2 2 3 2 2 2 2 2 2 3 2

CO3 3 2 1 1 3 3 3 3 3 3 3 3 3 3 3

CO4 3 2 1 1 3 3 3 3 3 3 3 3 3 3 3

CO5 3 2 1 1 3 3 3 3 3 3 3 3 3 3 3

(Tick mark or level of correlation: 3-High, 2-Medium, 1-Low)

PART B

 CONTENT OF THE COURSE

S.No Summary of Course Content Hr(s)
Alignment

to COs

1 Steps in Digital Image Processing 1 CO1

2 Components – Elements of Visual Perception 1 CO1

3 Image Sensing and Acquisition 1 CO1

4 Image Sampling and Quantization 1 CO1

5 Relationships between pixels 1 CO1

6 Color image fundamentals - RGB 1 CO1

7 HSI models 1 CO1

8 Two-dimensional mathematical preliminaries 1 CO1

9 2D transforms - DFT, DCT 1 CO1

10 Spatial Domain: Gray level transformations 1 CO2

11 Histogram processing 1 CO2

12 Basics of Spatial Filtering 1 CO2

13 Smoothing and Sharpening Spatial Filtering, 1 CO2

14 Frequency Domain: Introduction to Fourier Transform 1 CO2

15 Smoothing and Sharpening frequency domain filters 1 CO2

16 Ideal, Butterworth and Gaussian filters 1 CO3

17 Homomorphic filtering 1 CO3

18 Color image enhancement 1 CO3

19 Image Restoration 1 CO3

20 degradation model, Properties, Noise models 1 CO3

21 Mean Filters – Order Statistics 1 CO3

22 Adaptive filters 1 CO3

23 Band reject Filters 1 CO3

24 Band pass Filters 1 CO3

25 Notch Filters 1 CO3

26 Optimum Notch Filtering 1 CO3

27 Inverse Filtering – Wiener filtering 1 CO4

28
Edge detection, Edge linking via Hough transform –

Thresholding

1 CO4

29 Region based segmentation 1 CO4

30 Region growing 1 CO4

31 Region splitting and merging 1 CO4

32 Morphological processing 1 CO4

33 erosion and dilation, 1 CO4

34 Segmentation by morphological watersheds 1 CO4

35 basic concepts of watersheds 1 CO4

36 Dam construction Watershed segmentation algorithm. 1 CO5

37
Need for data compression, Huffman, Run Length Encoding,

Shift codes, Arithmetic coding,

1 CO5

38 JPEG standard, MPEG. 1 CO5

39 Boundary representation, Boundary description, 1 CO5

40 Fourier Descriptor 1 CO5

41 Regional Descriptors 1 CO5

42 Topological feature 1 CO5

43 Texture 1 CO5

44 Patterns and Pattern classes 1 CO5

45 Recognition based on matching 1 CO5

UNIT I DIGITAL IMAGE FUNDAMENTALS

Steps in Digital Image Processing – Components – Elements of Visual Perception – Image Sensing

and Acquisition – Image Sampling and Quantization – Relationships between pixels - Color image

fundamentals - RGB, HSI models, Two-dimensional mathematical preliminaries, 2D transforms -

DFT, DCT.

UNIT II IMAGE ENHANCEMENT

Spatial Domain: Gray level transformations – Histogram processing – Basics of Spatial Filtering–

Smoothing and Sharpening Spatial Filtering, Frequency Domain: Introduction to Fourier

Transform– Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian

filters, Homomorphic filtering, Color image enhancement.

UNIT III IMAGE RESTORATION

Image Restoration - degradation model, Properties, Noise models – Mean Filters – Order Statistics

– Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters – Optimum Notch Filtering

– Inverse Filtering – Wiener filtering

UNIT IV IMAGE SEGMENTATION

Edge detection, Edge linking via Hough transform – Thresholding - Region based segmentation –

Region growing – Region splitting and merging – Morphological processing- erosion and dilation,

Segmentation by morphological watersheds – basic concepts – Dam construction – Watershed

segmentation algorithm.

UNIT V IMAGE COMPRESSION AND RECOGNITION

Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, JPEG

standard, MPEG. Boundary representation, Boundary description, Fourier Descriptor, Regional

Descriptors – Topological feature, Texture - Patterns and Pattern classes - Recognition based on

matching.

INDEX

S. No. Date Name of the Experiment Page No. Signature

1

Basic Image Operations using

OpenCV

1 - 2

2

 Image Enhancement Techniques such

as Histogram Equalization and

Contrast Stretching

3 - 5

3

Image Filtering and Convolution

6 - 7

4

Frequency Domain Analysis and

Filtering using the Fourier Transform

8 - 9

5

 Image Compression Techniques using

Run-Length Encoding (RLE) and

Discrete Cosine Transform (DCT)

10 - 11

6

Morphological Image Processing

Techniques

12 - 13

7

Image Segmentation Techniques

using OpenCV

14 - 15

8

Finding Contours and Calculating

Region-Based Properties

16 - 17

9

Colour Balance Correction using

White Balance Algorithms

18 - 19

10

Edge Detection using the Canny Edge

Detector

20 - 21

1

Exp - 1
Basic Image Operations using OpenCV

Date -

AIM: To write a program for which covers basic image operations using OpenCV in Python.

ALGORITHM:

1. Import Libraries.

2. Load the Image.

3. Use OpenCV's cv2.imread() function to load the image from the specified file path

4. Display the Original Image Using OpenCV.

5. Use cv2.imshow() to display the original image.

6. Convert the Image to Grayscale.

7. Use cv2.cvtColor() to convert the loaded color image to grayscale (BGR to grayscale).

8. Display the Grayscale Image Using OpenCV.

9. Use cv2.imshow() to display the grayscale image.

10. Save the Grayscale Image.

11. Display Both Images Using Matplotlib.

12. Use plt.imshow() to display the original image (converted from BGR to RGB for proper

visualization).
13. Use plt.imshow() to display the grayscale image using a grayscale colormap.

14. Use plt.tight_layout() to adjust the spacing between subplots.

15. Use plt.show() to display the Matplotlib plot containing both images.

PROGRAM:

import cv2

import matplotlib.pyplot as plt

image_path = "1.png"

image = cv2.imread(image_path)

cv2.imshow("Original Image", image)

cv2.waitKey(0)

cv2.destroyAllWindows()

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

cv2.imshow("Grayscale Image", gray_image)

cv2.waitKey(0)

cv2.destroyAllWindows()

output_path = "grayscale_image.jpg"

cv2.imwrite(output_path, gray_image)

plt.subplot(1, 2, 1)

plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

plt.title("Original Image")

plt.subplot(1, 2, 2)

plt.imshow(gray_image, cmap="gray")

plt.title("Grayscale Image")

plt.tight_layout()

plt.show()

2

OUTPUT:

RESULT: Hence, the program that covers basic image operations using OpenCV in Python is

executed successfully.

3

Exp - 2 Image Enhancement Techniques such as Histogram

Equalization and Contrast Stretching Date -

AIM: To implement a program for which covers image enhancement techniques such as histogram

equalization and contrast stretching using OpenCV in Python.

ALGORITHM:

1. Import Libraries.
2. Load the Image.

3. Use OpenCV's cv2.imread() function to load the image in grayscale mode

(cv2.IMREAD_GRAYSCALE).
4. Perform Histogram Equalization.

5. Use cv2.equalizeHist() to perform histogram equalization on the loaded grayscale image.

6. Perform Contrast Stretching.

7. Display Original Image and Histogram.

8. Use plt.imshow() to display the original image in the first subplot.

9. Display Equalized Image and Histogram.

10. Use plt.imshow() to display the equalized image in the first subplot.

11. Display Stretched Image and Histogram.

12. Use plt.imshow() to display the stretched image in the first subplot.

13. Show Plots: plt.tight_layout(), plt.show().

PROGRAM:

import cv2

import numpy as np

import matplotlib.pyplot as plt

image_path = "2.png"

image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

equalized_image = cv2.equalizeHist(image)

min_intensity = np.min(image)

max_intensity = np.max(image)

a = 0

b = 255

stretched_image = np.clip((image - min_intensity) * (b - a) /

(max_intensity - min_intensity) + a, 0, 255).astype(np.uint8)

plt.figure(figsize=(10, 8))

plt.subplot(2, 2, 1)

plt.imshow(image, cmap='gray')

plt.title("Original Image")

plt.subplot(2, 2, 2)

plt.hist(image.ravel(), 256, [0, 256])

plt.ylabel('% of Pixels')

plt.xlabel('Bins')

plt.title("Original Histogram")

plt.subplot(2, 2, 3)

plt.imshow(equalized_image, cmap='gray')

plt.title("Equalized Image")

4

plt.subplot(2, 2, 4)

plt.hist(equalized_image.ravel(), 256, [0, 256])

plt.ylabel('% of Pixels')

plt.xlabel('Bins')

plt.title("Equalized Histogram")

plt.tight_layout()

plt.show()

plt.figure(figsize=(10, 8))

plt.subplot(2, 2, 1)

plt.imshow(stretched_image, cmap='gray')

plt.title("Stretched Image")

plt.subplot(2, 2, 2)

plt.hist(stretched_image.ravel(), 256, [0, 256])

plt.title("Stretched Histogram")

plt.ylabel('% of Pixels')

plt.xlabel('Bins')

plt.tight_layout()

plt.show()

OUTPUT:

5

RESULT: The program for which covers image enhancement techniques such as histogram

equalization and contrast stretching using OpenCV in Python is implemented successfully.

6

Exp - 3
Image Filtering and Convolution

Date -

AIM: To write a program and execute for which covers image filtering and convolution using

OpenCV in Python.

ALGORITHM:

1. Import Libraries.
2. Load the Image.

3. Use OpenCV's cv2.imread() function to load the image in grayscale mode

(cv2.IMREAD_GRAYSCALE).
4. Gaussian Blur for Noise Reduction.

5. Use OpenCV's cv2.imread() function to load the image in grayscale mode

(cv2.IMREAD_GRAYSCALE).
6. Laplacian Filter for Edge Enhancement.
7. Apply cv2.Laplacian() to the original image for edge enhancement.

8. Sobel Filter for Edge Detection.

9. Apply cv2.Sobel() separately in the X and Y directions for edge detection

10. Display Original and Filtered Images.

PROGRAM:

import cv2

import numpy as np

import matplotlib.pyplot as plt

image_path = "1.png"

image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

kernel_size = (7,7)

sigma = 1.0

gaussian_filtered = cv2.GaussianBlur(image, kernel_size, sigma)

laplacian_filtered = cv2.Laplacian(image, cv2.CV_64F)

laplacian_filtered = np.uint8(np.abs(laplacian_filtered))

sobel_filtered_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)

sobel_filtered_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)

sobel_filtered = cv2.magnitude(sobel_filtered_x, sobel_filtered_y)

sobel_filtered = np.uint8(sobel_filtered)

plt.figure(figsize=(12, 8))

plt.subplot(2, 3, 1)

plt.imshow(image, cmap='gray')

plt.title("Original Image")

plt.subplot(2, 3, 2)

plt.imshow(gaussian_filtered, cmap='gray')

plt.title("Gaussian Filtered (Noise Reduction)")

plt.subplot(2, 3, 3)

plt.imshow(laplacian_filtered, cmap='gray')

plt.title("Laplacian Filtered (Edge Enhancement)")

plt.subplot(2, 3, 4)

plt.imshow(sobel_filtered_x, cmap='gray')

plt.title("Sobel X Filtered (Edge Detection)")

plt.subplot(2, 3, 5)

7

plt.imshow(sobel_filtered_y, cmap='gray')

plt.title("Sobel Y Filtered (Edge Detection)")

plt.subplot(2, 3, 6)

plt.imshow(sobel_filtered, cmap='gray')

plt.title("Sobel Edge Detection (Gradient Magnitude)")

plt.tight_layout()

plt.show()

a = cv2.getGaussianKernel(7,sigma)

print("Gaussian kernel:\n", a)

OUTPUT:

RESULT: The program for which covers image filtering and convolution using OpenCV in Python is

executed successfully.

8

Exp - 4 Frequency Domain Analysis and Filtering using the

Fourier Transform Date -

AIM: To write a program for which covers frequency domain analysis and filtering using the Fourier

Transform in Python with OpenCV.

ALGORITHM:

1. Import Libraries and load the Image.

2. Use OpenCV's cv2.imread() function to load the image in grayscale mode

(cv2.IMREAD_GRAYSCALE).
3. Perform 2D Discrete Fourier Transform (DFT).

4. Use cv2.dft() to perform the 2D DFT on the loaded grayscale image.

5. Define Low-Pass Filter in Frequency Domain.

6. Create a 2D array for the low-pass filter (lp_filter) and set its values to 1 in the desired

region.
7. Apply Low-Pass Filter to the Shifted DFT Image.

8. Store the filtered DFT image in a variable (dft_filtered).

9. Perform Inverse DFT to Get Filtered Image.

10. Use cv2.idft() to perform the inverse DFT on the filtered DFT image.

11. Display Original, DFT Magnitude, Filtered DFT Magnitude, Low-Pass Filter, and

Filtered Image.
12. Use plt.imshow() to display the images in the respective subplots.

13. Add titles to subplots for clarity.

14. Use plt.tight_layout() to adjust the spacing between subplots.

PROGRAM:

import cv2

import numpy as np

from matplotlib import pyplot as plt

image = "surprising.png"

gray = cv2.imread(image, cv2.IMREAD_GRAYSCALE)

fourier = cv2.dft(np.float32(gray), flags=cv2.DFT_COMPLEX_OUTPUT)

fourier_shift = np.fft.fftshift(fourier)

magnitude =

20*np.log(cv2.magnitude(fourier_shift[:,:,0],fourier_shift[:,:,1]))

magnitude = cv2.normalize(magnitude, None, 0, 255, cv2.NORM_MINMAX,

cv2.CV_8UC1)

cv2.imshow('Fourier Transform', magnitude)

cv2.waitKey(0)

cv2.destroyAllWindows()

ima = cv2.imread(image, 0)

DFT = cv2.dft(np.float32(ima), flags=cv2.DFT_COMPLEX_OUTPUT)

shift = np.fft.fftshift(DFT)

row, col = ima.shape

center_row, center_col = row // 2, col // 2

mask = np.zeros((row, col, 2), np.uint8)

mask[center_row - 30:center_row + 30, center_col - 30:center_col +

30] = 1

fft_shift = shift * mask

fft_ifft_shift = np.fft.ifftshift(fft_shift)

9

imageThen = cv2.idft(fft_ifft_shift)

imageThen = cv2.magnitude(imageThen[:,:,0], imageThen[:,:,1])

plt.figure(figsize=(10,10))

plt.subplot(121), plt.imshow(ima, cmap='gray')

plt.title('Input Image'), plt.xticks([]), plt.yticks([])

plt.subplot(122), plt.imshow(imageThen, cmap='gray')

plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])

plt.show()

OUTPUT:

RESULT: The program for which covers frequency domain analysis and filtering using the Fourier

Transform in Python with OpenCV is executed successfully.

10

Exp - 5 Image Compression Techniques using Run-Length

Encoding (RLE) and Discrete Cosine Transform (DCT) Date -

AIM: To write a program and execute for which covers image compression techniques such as Run-

Length Encoding (RLE) and Discrete Cosine Transform (DCT) using Python.

ALGORITHM:

1. Load Image.
2. Run-Length Encoding (RLE) Compression.

3. Define a function run_length_encode(data) to perform RLE compression.

4. Discrete Cosine Transform (DCT) Compression.

5. Initialize an array (dct_compressed) with zeros, having the same shape as the original image.

6. Display Images.

7. Input: Original image (image), RLE compressed data (rle_compressed), DCT compressed

data (dct_compressed).
8. Wait for User Input and Close Windows.

9. Input: User input from keyboard (cv2.waitKey(0)).

PROGRAM:

import cv2

import numpy as np

image_path = "2.png"

image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

def rle_encode_image(image):

data = image.flatten()

encoded = []

count = 1

for i in range(1, len(data)):

if data[i] == data[i - 1]:

count += 1

else:

encoded.append((data[i - 1], count))

count = 1

encoded.append((data[-1], count))

return encoded

def rle_decode_image(encoded, image_shape):

decoded_data = np.zeros(image_shape, dtype=np.uint8)

current_pixel = 0

for color, count in encoded:

decoded_data[current_pixel:current_pixel + count] = color

current_pixel += count

return decoded_data

encoded_data = rle_encode_image(image)

rle_image = rle_decode_image(encoded_data, image.shape)

Perform Discrete Cosine Transform (DCT) compression

dct_size = 8

dct_compressed = np.zeros_like(image)

for i in range(0, image.shape[0], dct_size):

for j in range(0, image.shape[1], dct_size):

11

dct_block = cv2.dct(np.float32(image[i:i+dct_size,

j:j+dct_size])/255.0)

dct_compressed[i:i+dct_size, j:j+dct_size] = dct_block

cv2.imshow("Original Image", image)

cv2.imshow('RLE Compressed Image', rle_image)

cv2.imshow("DCT Compressed Image",

cv2.idct(np.float32(dct_compressed)))

cv2.waitKey(0)

cv2.destroyAllWindows()

OUTPUT:

RESULT: The program for which covers image compression techniques such as Run-Length

Encoding (RLE) and Discrete Cosine Transform (DCT) using Python is executed successfully.

12

Exp - 6
Morphological Image Processing Techniques

Date -

AIM: To write and execute a program for which covers morphological image processing techniques

using Python and OpenCV.

ALGORITHM:

1. Load Image.
2. Define a Kernel for Dilation and Erosion.

3. a square kernel of size 5x5 using NumPy (np.ones((5, 5), np.uint8)).

4. Perform Dilation Operation.

5. Input: Original image (image), Kernel (kernel), Number of iterations (iterations = 1).

6. Perform Erosion Operation.

7. Input: Original image (image), Kernel (kernel), Number of iterations (iterations = 1).

8. Perform Opening Operation.

9. Input: Original image (image), Kernel (kernel).

10. Perform Closing Operation.

11. Input: Original image (image), Kernel (kernel).

12. Display Original and Processed Images.

13. Input: Original image (image), Dilated image (dilated_image), Eroded image

(eroded_image), Opened image (opening_image), Closed image (closing_image).

PROGRAM:

import cv2

import numpy as np

import matplotlib.pyplot as plt

image_path = "surprising.png"

image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

kernel = np.ones((5, 5), np.uint8)

dilated_image = cv2.dilate(image, kernel, iterations=1)

eroded_image = cv2.erode(image, kernel, iterations=1)

opening_image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)

closing_image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)

plt.figure(figsize=(12, 8))

plt.subplot(2, 3, 1)

plt.imshow(image, cmap='gray')

plt.title("Original Image")

plt.subplot(2, 3, 2)

plt.imshow(dilated_image, cmap='gray')

plt.title("Dilated Image")

plt.subplot(2, 3, 3)

plt.imshow(eroded_image, cmap='gray')

plt.title("Eroded Image")

plt.subplot(2, 3, 4)

plt.imshow(opening_image, cmap='gray')

plt.title("Opening Image")

plt.subplot(2, 3, 5)

plt.imshow(closing_image, cmap='gray')

plt.title("Closing Image")

13

plt.tight_layout()

plt.show()

OUTPUT:

RESULT: The program for which covers morphological image processing techniques using Python

and OpenCV is implemented and executed successfully.

14

Exp - 7
Image Segmentation Techniques using OpenCV

Date -

AIM: To write a program which covers image segmentation techniques using Python and OpenCV.

ALGORITHM:

1. Import necessary libraries: `cv2`, `numpy`, and `matplotlib.pyplot`.

2. Specify the path to the input image.

3. Read the image in grayscale using `cv2.imread`.

4. Apply a thresholding technique using `cv2.threshold`.

5. Perform connected component labeling using `cv2.connectedComponents`.

6. Apply the Canny edge detector using `cv2.Canny`.

7. Create a 2x3 subplot for visualization using `matplotlib.pyplot`.

8. Display the original image, thresholded image, connected components, and Canny edge

detection results using `plt.imshow`.
9. Set titles for each subplot.

10. Adjust layout for better visualization using `plt.tight_layout`.

11. Show the plot using `plt.show`.

PROGRAM:

import cv2

import matplotlib.pyplot as plt

image_path = "surprising.png"

image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

_, thresholded_image = cv2.threshold(image, 127, 255,

cv2.THRESH_BINARY)

_, labels = cv2.connectedComponents(thresholded_image)

canny_image = cv2.Canny(image, threshold1=100, threshold2=200)

plt.figure(figsize=(12, 8))

plt.subplot(2, 3, 1)

plt.imshow(image, cmap='gray')

plt.title("Original Image")

plt.subplot(2, 3, 2)

plt.imshow(thresholded_image, cmap='gray')

plt.title("Thresholded Image")

plt.subplot(2, 3, 3)

plt.imshow(labels, cmap='jet')

plt.title("Connected Components")

plt.subplot(2, 3, 4)

plt.imshow(canny_image, cmap='gray')

plt.title("Canny Edge Detection")

plt.tight_layout()

plt.show()

15

OUTPUT:

RESULT: Hence the program that covers image segmentation techniques using Python and OpenCV

has been executed successfully.

16

Exp - 8 Finding Contours and Calculating Region-Based

Properties Date -

AIM: The program aims to load an image, find contours in the image, draw the contours on a black

background, calculate region-based properties (centroid coordinates), and display the original image

along with the contour.

ALGORITHM:

1. *Load Image: * Specify the file path of your image.

2. *Read Image: * Use OpenCV to read the image in grayscale mode.

3. *Find Contours: * Utilize the `findContours` function to identify contours in the image.

4. *Draw Contours: * Create a black background and draw the identified contours on it.

5. *Calculate Moments: * Compute image moments for region-based properties using

`cv2.moments`.

6. *Extract Centroid Coordinates: * Calculate centroid coordinates from the moments.

7. *Display Images: * Use `cv2.imshow` to display the original and contour images.

8. *Wait for User Input: * Use `cv2.waitKey(0)` to wait until a key is pressed.

9. *Close Windows: * Close image display windows with `cv2.destroyAllWindows()`.

10. *Print Centroid Coordinates: * Output the calculated centroid coordinates (X and Y) to

the console.

PROGRAM:

import cv2

import numpy as np

image_path = "surprising.png"

image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

contours, _ = cv2.findContours(image, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

contour_image = np.zeros_like(image)

cv2.drawContours(contour_image, contours, -1, 255, 2)

moments = cv2.moments(contours[0])

centroid_x = int(moments["m10"] / moments["m00"])

centroid_y = int(moments["m01"] / moments["m00"])

cv2.imshow("Original Image", image)

cv2.imshow("Contour Image", contour_image)

cv2.waitKey(0)

cv2.destroyAllWindows()

print("Centroid X:", centroid_x)

print("Centroid Y:", centroid_y)

17

OUTPUT:

RESULT: The program will display the original image and the contour image, while also printing

the calculated centroid coordinates (X and Y) on the console.

18

Exp - 9 Colour Balance Correction using White Balance

Algorithms Date -

AIM: The aim of this Python code is to demonstrate colour image processing techniques using the

Balance White Algorithms.

ALGORITHM:

1. Load a color image from the specified file path using OpenCV's `cv2.imread()` function.
2. Convert the loaded image to three different color models:

- Grayscale using `cv2.cvtColor()` with the ̀ cv2.COLOR_BGR2GRAY` conversion.

- HSV using `cv2.cvtColor()` with the `cv2.COLOR_BGR2HSV` conversion.

- CIELab using ̀ cv2.cvtColor()` with the `cv2.COLOR_BGR2LAB` conversion.

3. Display the original and converted images using Matplotlib. The original image is

displayed along with the grayscale, HSV, and CIELab versions in a 2x2 grid

4. Apply color balance correction to the original image using the white balance algorithm

from OpenCV's xphoto module. The `cv2.xphoto.createSimpleWB().balanceWhite()`

function is used for this purpose.
5. Display the color balance corrected image using Matplotlib.

PROGRAM:

import cv2

import numpy as np

import matplotlib.pyplot as plt

image_path = "surprising.png"

image = cv2.imread(image_path)

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

lab_image = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)

plt.figure(figsize=(12, 8))

plt.subplot(2, 2, 1)

plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

plt.title("Original Image")

plt.subplot(2, 2, 2)

plt.imshow(gray_image, cmap="gray")

plt.title("Grayscale Image")

plt.subplot(2, 2, 3)

plt.imshow(hsv_image)

plt.title("HSV Image")

plt.subplot(2, 2, 4)

plt.imshow(lab_image)

plt.title("CIELab Image")

plt.tight_layout()

plt.show()

wb = cv2.xphoto.createGrayworldWB()

wb.setSaturationThreshold(0.99)

image = wb.balanceWhite(image)

gray_world_image = cv2.xphoto.createSimpleWB().balanceWhite(image)

gray_world_image = cv2.cvtColor(gray_world_image, cv2.COLOR_BGR2RGB)

19

plt.figure(figsize=(8, 6))

plt.imshow(gray_world_image)

plt.title("Color Balance Corrected Image")

plt.axis("off")

plt.show()

OUTPUT:

RESULT: The result of running this code is a series of visualizations showing the original colour

image and its conversions to grayscale, HSV, and CIE Lab colour models.

20

Exp - 10
Edge Detection using the Canny Edge Detector

Date -

AIM: The aim of this Python code is to perform basic image analysis and Apply edge detection using

the Canny edge detector.

ALGORITHM:

1. Load the original image and the template image using OpenCV's `cv2.imread` function.

2. Use the `cv2.matchTemplate` function to perform template matching on the original image

with the template image. This results in a correlation map (`result`).
3. Find the location of the maximum correlation in the correlation map using

`cv2.minMaxLoc`.

4. Highlight the region with the maximum correlation in the original image using a rectangle.

5. Apply the Canny edge detector to the original image using `cv2.Canny`.

6. Display the original image, the template matching result, and the edge detection result

using matplotlib.

PROGRAM:

import cv2

import matplotlib.pyplot as plt

import matplotlib.patches as patches

image_path = "surprising.png"

image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

template_path = "surprising.png"

template = cv2.imread(template_path, cv2.IMREAD_GRAYSCALE)

result = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED)

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)

top_left = max_loc

bottom_right = (top_left[0] + template.shape[1], top_left[1] +

template.shape[0])

edges = cv2.Canny(image, threshold1=100, threshold2=200)

plt.figure(figsize=(12, 8))

plt.subplot(1, 3, 1)

plt.imshow(image, cmap='gray')

plt.title("Original Image")

plt.subplot(1, 3, 2)

plt.imshow(result, cmap='gray')

plt.title("Template Matching Result")

plt.xticks([]), plt.yticks([]) # Hide axes

rectangle = patches.Rectangle(top_left, template.shape[1],

template.shape[0], linewidth=2, edgecolor='r', facecolor='none')

plt.gca().add_patch(rectangle) # Highlight the matching area

plt.subplot(1, 3, 3)

plt.imshow(edges, cmap='gray')

plt.title("Edge Detection Result")

plt.tight_layout()

plt.show()

21

OUTPUT:

RESULT: The result is a visual representation of the original image, the template matching result,

and the edge detection result. The edge detection result is displayed using the Canny edge detector.

