

 PERATING SYSTEM

(V semester of B.Tech)

As per the curricullam and syllabus

Of

 Bharath Institute of Higher Education & Research

PREPARED BY

DR.A.KUMARAVEL

OPERATING SYSTEM LABORATORY

(V semester of B.Tech)

As per the curriculam and syllabus

Of

 Bharath Institute of Higher Education & Research

PREPARED BY

DR.A.KUMARAVEL

 Department of information technology

NEW EDITION

OPERATING SYSTEM

(V semester of B.Tech)

As per the curricullam and syllabus

Of

 Bharath Institute of Higher Education & Research

PREPARED BY
DR.A.KUMARAVEL

 Department of information technology

SCHOOL OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

LAB MANUAL

SUBJECT NAME: OPERATING SYSTEM LABORATORY

SUBJECT CODE: U20ITCJ07

 Regulation - 2020

VISION AND MISSION OF THE INSTITUTE

VISION

“Bharath Institute of Higher Education & Research (BIHER) envisions and constantly strives to provide an

excellent academic and research ambience for students and members of the faculties to inherit professional

competence along with human dignity and transformation of community to keep pace with the global challenges

so as to achieve holistic development.”

MISSION

▪ To develop as a Premier University for Teaching, Learning, Research and Innovation on par with leading

global universities.

▪ To impart education and training to students for creating a better society with ethics and morals.

▪ To foster an interdisciplinary approach in education, research and innovation by supporting lifelong

professional development, enriching knowledge banks through scientific research, promoting best practices

and innovation, industry driven and institute-oriented cooperation, globalization and international initiatives.

▪ To develop as a multi-dimensional institution contributing immensely to the cause of societal advancement

through spread of literacy, an ambience that provides the best of international exposures, provide health

care, enrich rural development and most importantly impart value-based education.

▪ To establish benchmark standards in professional practice in the fields of innovative and emerging areas in

engineering, management, medicine, dentistry, nursing, physiotherapy and allied sciences.

▪ To imbibe human dignity and values through personality development and social service activities.

VISION AND MISSION OF THE DEPARTMENT

VISION

 To be an excellence in education and research in Information Technology

producing global scholars for improvement of the society

MISSION

• To provide sound fundamentals, and advances in Information Technology, Software Engineering, data

Communications and Computer Applications by offering world class curriculum.

• To create ethically strong leaders and expert for next generation IT.

• To nurture the desire among faculty and students from across the globe to perform outstanding and

impactful research for the benefit of humanity and, to achieve meritorious and significant growth.

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

The Program Educational Objectives (PEOs) of Information technology are listed below: The graduate after 3-5

years of programme completion will

PEO1: PREPARATION

To provide students with sound fundamental in Mathematical, Scientific and Engineering fundamentals necessary

to formulate, analyse, and comprehend the fundamental concepts essential to articulate, solve and assess

engineering problems and to prepare them for research & development and higher learning.

PEO2: CORE COMPETENCE

To apply critical reasoning, quantitative, qualitative, designing and programming skills, to identify, solve

problems and to analyze the experimental evaluations, and finally making appropriate decisions along with

knowledge of computing principles and applications and be able to integrate this knowledge in a variety of industry

and inter-disciplinary setting.

PEO3: PROFESSIONALISM

To broaden knowledge to establish themselves as creative practicing professionals, locally and globally, in fields

such as design, development, problem solving to production support in software industries and R&D sectors.

PEO4: SKILL

To provide better opportunity to become a future researchers / scientist with good communication skills so that

they may be both good team-members and leaders with innovative ideas for a sustainable development.

PEO5: ETHICS

To be ethically and socially responsible solution providers and entrepreneurs in Computer Science and other

engineering discipline.

PROGRAMME OUTCOMES

PO 1

Engineering Knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO2

Problem Analysis: Identify, formulate, review research literature, and analyse complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences and engineering sciences.

PO 3

Design/Development of Solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO 4

Conduct Investigations of Complex Problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis

of the information to provide valid conclusions for complex problems.

PO 5

Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modelling to complex engineering

activities with an understanding of the limitations.

PO 6

The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

PO 7

Environment and Sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

PO 8
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO 9
Individual and Team Work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

PO 10

Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

PO 11

Project Management and Finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

PO 12
Life-long Learning: Recognize the need for, and have the preparation and ability to engage in

independent and lifelong learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOME

PSO 1

Programming Design : Design and develop algorithm for real life problems using latest

technologies and solve it by using computer programming languages and database technologies

.

PSO 2

IT Business Scalable Design : Analyze and recommend computing infrastructures and

operations requirements and Simulate and implement information networks using

configurations, algorithms, suitable protocol and security for valid and optimal connectivity.

PSO 3
Intelligent Agents Design : Design and execute projects for the development of data modeling,

data analytics and knowledge representation in various domain.

U20ITCJ07 – OPERATING SYSTEMS

PART-A INTRODUCTION OF THE COURSE

Course Code U20ITCJ07
L T P C

2 0 2 3

Course Title OPERATINGSYSTEMS

Course

Category
Professional Core (C) Contact Hrs 45

Pre-requisite U20CSCT01 Co- Requisite

Name of the Course Co-ordinator Ms. C. ANURADHA

Course offering Dept/School CSE

Course Objective and Summary

• To understand how an operating system controls the computing resources and provide services to the

users

• To understand the operating system functions, design and implementation

Course Outcomes (COs)

CO1 Illustrate the basic concepts, functionalities and structure of Operating System

CO2 Describe the concepts of process, threads, process scheduling and to clarify interprocess

communication, memory management, file and disk management methods.

CO3 Solve the process synchronization, mutual exclusion, deadlock and memory management problems

CO4 Implement the algorithms for process and disk scheduling and memory management.

CO5 Analyze algorithms of process and disk scheduling and memory management.

CO6 Evaluate process synchronization, process scheduling, memory management and disk scheduling

algorithms.

Mapping / Alignment of COs with PO & PSO

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

P
S

O
1

P
S

O
2

P
S

O
3

CO1 3

CO2 3 3

CO3 3

CO4 3

CO5 3

CO6 3

(Tick mark or level of correlation: 3-High, 2-Medium, 1-Low)

Index

S.
No.

Date Name of the Experiment Pg No. Signatur
e

1 28/4/22 WORKING WITH BASIC UNIX/ LINUX

COMMANDS

2

6/5/22

SHELL PROGRAMMING

a) BIGGEST OF THREE NUMBERS

b) FACTORIAL OF A NUMBER

c) MULTIPLICATION TABLE

d) SIMPLE ADD FUNCTION

e) FIBONACCI SERIES

f) SUM OF n NUMBERS

3

20/5/22

SYSTEM CALLS

a) PROGRAM USING fork()

b) PROGRAM USING getpid(), getppid()

c) PROGRAM USING opendir() readdir()

closedir()

d) PROGRAM USING exec()

e) PROGRAM USING wait() exec()

f) PROGRAM USING open() read() write()

4

27/5/22

NON PRE-EMPTIVE CPU SCHEDULING

ALGORITHMS

a) FIRST COME FIRST SERVED

b) SHORTEST JOB FIRST

c) PRIORITY SCHEDULING

d) ROUND ROBIN SCHEDULING

5

3/6/22

IMPLEMENTATION OF PROCESS

SYNCHRONIZATION USING SEMAPHORE

a) PRODUCER CONSUMER PROBLEM
b) DINING PHILOSOPHER PROBLEM

6 10/6/22 DEADLOCK AVOIDANCE

7

17/6/22

MEMORY MANAGEMENT TECHNIQUES

a) MFT

b) MVT

8

24/6/22

MEMORY ALLOCATION TECHNIQUES

a) Worst-Fit

b) Best – fit
c) First Fit

9 1/7/22 VIRTUAL MEMORY MANAGEMENT

TECHNIQUES

10

8/7/22

FILE ALLOCATION TECHNIQUES

a) SEQUENTIAL FILE ALLOCATION

b) LINKED FILE ALLOCATION
c) INDEXED FILE ALLOCATION

11

8/7/22

DISK SCHEDULING ALGORITHM

a) FCFS

b) SCAN

Exp-1 WORKING WITH BASIC UNIX/ LINUX

COMMANDS Date - 28/4/22

AIM : To work with basic UNIX commands.

COMMANDS :

1. DATE COMMANDS

SYNTAX : date

USES : Used to display system date and time.

OUTPUT : Thu May 4 15:52:02 IST 2006

OPTIONS :

SYNTAX : date+%m

USES : Used to print the month in number.

OUTPUT : 05

SYNTAX : date+%h

USES : Used to print the month in name.

OUTPUT : May

SYNTAX : date+%y
USES : Used to print the last 2 digits of year.
OUTPUT : 06

SYNTAX : date+%M

USES : Used to displays the time in minute.
OUTPUT : 53

SYNTAX : date+%H

USES : Used to displays the time in hour.

OUTPUT : 15

SYNTAX : date+%a

USES : Used to displays the aggregated form of the day.
OUTPUT : Thu

SYNTAX : date+%r
USES : Used to displays the time in AM or PM.
OUTPUT : 03:54:43PM

SYNTAX : date+%T

USES : Used to displays the full time in the format of HH:MM:SS.

OUTPUT : 15:55:58

2. CALENDER :

SYNTAX : cal

USES : It displays the current month calendar.

OUTPUT : May 2006

Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27
28 29 30 31

SYNTAX : cal1998

USES : It displays the mentioned year calendar.

OUTPUT : It will displays the given year calendar.

3. ECHO

SYNTAX : echo “ UNIX”

USES : Used to displaying the given text.

OUTPUT : UNIX

TYPING CONTENT IN MORE THAN ONE LINE

SYNTAX : echo “ This command

> line exceeds

> a single line"

OUTPUT : This command line exceeds a single line
USES : Used to display the multiple line as we entered while

executing the command.

SYNTAX : echo This command \

> line exceeds \

> a single line"

OUTPUT : This command line exceeds a single line.

USES : The Backslash character at the end of each line

(followed by pressing the ENTER key) informs the shell that the user
wants to continue the command on the next line. It is used to display the

multiple lines into single line.

4. BC

SYNTAX : bc

USES : Used to perform simple mathematical calculations. By default
this command accepts decimal numbers and also perform

mathematical calculations on octal and hexadecimal
numbers.

OUTPUT : 1) 5+3

8

2) 1.1+2.2

3.3

3) 3.3-1.2

2.1

4) 5.6*4.1

22.9

5) 8.4/3.2

2

6) 3-1

2

7) 4*5

20

5. WHO

SYNTAX : who

USES : Used to display the login details for all users using

the UNIX systems.
OUTPUT : student pts/1 May 4

15:50(192.168.2.3) student pts/11
 May 4

10:47(192.168.2.19)
root :0 May 4 14:52(console)

6. WHO AM I

SYNTAX : whoami
USES : Used to displays the login details of the current

users of the system, who invokes the command.
OUTPUT : student pts/1 May 4 15:50(192.168.2.3)

7. TTY

SYNTAX : tty (tele type)
USES : It gives the file name of the terminal that you are

using , tell you the device name and the name of
the terminal that you currently working in.

OUTPUT : /dev/pts/1

8. MAN

SYNTAX : man any command
USES : It offers the online help facilities and it gives all

details for the particular commands that which

user can type file and the directory commands.

DIRECTORY COMMANDS

9. MAKE DIRECTORY

SYNTAX : mkdir directoryname

USES : Used to create a new directory.

OUTPUT : mkdir jeeva

10. CHANGE DIRECTORY

SYNTAX : cd directoryname
USES : Used to change from one working directory

to another directory specified.
OUTPUT : cd jeeva

11. REMOVE DIRECTORY

SYNTAX : rmdir

USES : Used to remove the directory.

OUTPUT : rmdir jeeva

12. PWD

SYNTAX : pwd

USES : Used to display the path that we are working.

OUTPUT : /home/student/vs

FILE & REDIRECTION COMMANDS

13. CAT

SYNTAX : cat > filename
USES : Used to create a new file & insert a content into

that file. Press CTRL + D to exit from that file.

OUTPUT : cat>sample
flower
jasmin
e rose

Press ctrl + d

14. SYNTAX : cat filename

USES : Used to display the content of that file.

OUTPUT : cat sample
flower
jasmin
e rose

15. SYNTAX : cat < filename1 >filename2
USES : It will copy the content of filename1 to filename2

.the content of filename to is erased.

OUTPUT : cat sample1 cat <sample > sample1 cat sample1

a flower flower

b jasmine jasmine

c rose
 rose d

16. SYNTAX :

USES :

OUTPUT :

cat filename1 filename2 >filename3
The output of filename1 and filename2 are concatenated

and stored in the filename3 , and it is not displayed in the

terminal. Here filename3 is already exits. To view the

contents of the file use cat command.

catsample1 catsample2 catsample3

flower ab flower

jasmine bc jasmine rose

rose d

ef
a
b

bc

df

17. SYNTAX :
USES :

EXAMPLE :

SYNTAX :

USES :

OUTPUT :

any command > filename
The output of any command is stored in the file(filename) and

it not displayed in the command prompt. To view the output
use cat command.

who >sample
The result of who am i is stored in sample.to view

the contents use cat sample.

who> sample4
cat sample4

student pts/1 May 4 15:50(192.168.2.3)

student pts/11 May 4 10:47(192.168.2.19)

root :0 May 4 14:52(console)

APPEND THE FILE CONTENTS

18. SYNTAX :
USES :

cat filename1 >>filename2
Used to append the contents of
filename1

to filename2.

 OUTPUT : catsample1 catsample2

flower ab

jasmine bc
rose d ef

cat sample1 >>
sample2

cat
sample3

ab
b
c

d

ef
flower
jasmin
e
rose

19. SYNTAX :
USES :

cat filename1 filename2 >>filename3
The output of filename1 and filename2 are append in the

filename3 , and it is not displayed in the terminal. Here filename3 is not already exits.
It is a new file .so contents are not over written. To view the contents of the file use
cat command.

RENAMING THE FILE

20. SYNTAX : mv source filename destination filename
USES : Used to rename the file.

LIST OUT COMMANDS

21. SYNTAX : ls

USES : Used to list out all files in a directory.

22. SYNTAX : ls-a
USES : Used to list out all files including hidden files (Files that begin

with (. , ..)

23. SYNTAX : ls-i
USES : Used to list out all files with its i-node number in

the first column.

24. SYNTAX : ls -r
USES : Used to list out all files in reverse alphabetical order.

25. SYNTAX : ls -t
USES : Used to list out all files in the order of their

last modification time.

26. SYNTAX : ls -u
USES : Used to list out all files in the order of their

last access time.

27. SYNTAX : ls-l
USES : Used to list out all files in long format (one entry per line)

,giving its mode, number of links, owner, group , size in

bytes, the time that each file was last modified.

28. SYNTAX : ls -lt
USES : Used to list out all files in long format with their last

modification time.

FILTER COMMANDS

29. SYNTAX : head -n filename
USES : Used to display the Top ‘n’ lines of the file.

30. SYNTAX : tail -n filename
USES : Used to display the Bottom ‘n’ lines of the file.

31. SYNTAX :

USES :

more filename

To see the content of the filename on the screen one
page at a time.

WORD COUNT COMMAND

32. SYNTAX :
USES :

wc filename
It will display the no of lines ,no of words and used to

display no of characters.

33. SYNTAX :

USES :

wc -l filename

Used to display no of lines in a filename.

34. SYNTAX :
USES :

wc -w filename
Used to display no of words in a filename.

35. SYNTAX :
USES :

wc -c filename
Used to display no of Characters in a filename.

COMMON COMMAND

36. SYNTAX :
USES :

EXAMPLE :

OUTPUT :

comm. filename1filenmae2
This command each line of first file with its corresponding

line in the second file. Output contains 3 columns. First
column contains lines unique to filename1 . Second column

contains lines unique to filename2.Third column contains

lines common to both.

$cat n1 $cat nithi

sridhar sridhar

ramamoorthy vikky

mahalashmi vimal

jegan prabhu

$comm n1 nithi
sridhar
vikky

vima
l

 OPTIONS :

37. SYNTAX :
USES :

comm -1filename
It doesn’t include the first column in output.

38. SYNTAX :

USES :

comm -2filename

It doesn’t include the second column inoutput.

39. SYNTAX :
USES :

comm -3filename
It doesn’t include the third column inoutput.

COMPARE COMMAND

40. SYNTAX :

USES :

OUTPUT :

cmp filename1filename2
Two files are compared byte by byte and the

location of the first mismatch is echoed in

thescreen.
cmp sample1 sample5
sample1 sample5 differ: byte 7, line 1

41. SYNTAX :

USES :

OUTPUT :

cmp –l file1file2

This option gives the detailed list of the byte

number and the differing bytes in octal for each

character that differ in bothfiles.

cat sample1 catsample2

flower flower

jasmine carrot

rose papaya
banana

cmp -l sample1 sample5

7 12 40

8 152 12

9 141 143

10 163 141

11 155 162

12 151 162

13 156 157

14 145 164

16 162 160
17 157 141

cmp: EOF on sample1

CUT COMMAND

42. SYNTAX :
USES :

cut -d “any character “ -f2filename.
Used to cut the character from first to the specified

character from the file.

 OUTPUT : catsample1
flower
jasmin
e rose
cut -d "w" -f2 sample1

er
jasmin
e rose

43. SYNTAX :

USES :

OUTPUT :

cut –c 1-3filename

It will command the character which are defined in numbers

and it will displays the character up to that specified number.
catsample5 cut -c 4sample5

Flower x

Carrot r

Papaya a

Banana a

44. COPY COMMAND :

SYNTAX : cp source filename destination filename

USES : Used to copy the source file contents to destination file

contents.

45. PASTE COMMAND :

SYNTAX : paste file1file2

USES : This command merges the contents of 2 files in into a single

file. It reads a line from file in the file list specified and

combines them into a single file.
OUTPUT : paste sample1 sample2

flower ab

jasmine bc

rose d
ef
flower
jasmin
e rose

UNIQUE COMMAND

46. SYNTAX :
USES :

uniq filename
Used to display the unique lines present in thefile.

OUTPUT :

OPTIONS :

$ cat n1

Sridhar
Ramamoorth
y

Mahalashmi
Jegan
Prhb
u

prhb
u

$ uniq n1

Sridhar
Ramamoorth
y

Mahalashmi
jegan
prhbu

47. SYNTAX :

USES :

OUTPUT :

uniq - ufilename

Used to display only unique lines present in

thefile.

$ uniq –u n1

sridhar
ramamoorthy

mahalashmi
jegan

48. SYNTAX :
USES :

uniq - dfilename
Used to display the duplicate lines in thefile.

OUTPUT : $ uniq –d n1

prhbu

49. SYNTAX : uniq - cfilename
USES : Used to count the duplicate lines in thefile.

OUTPUT : $ uniq –c n1
sridhar
ramamoorthy

mahalashmi
jegan

GREP COMMAND

SYNTAX : $grep ` ` filename

USES : This command is used to search for a particular pattern from a

file or from the standard input and display those lines on the

standard output.
OPTIONS :

50. SYNTAX : $grep –v ̀ ̀ filename

USES : displays only those lines that do not match the patternspecified.
OUTPUT : name : Bahirathi

51. SYNTAX : $grep –c ̀ ̀ filename
USES : displays only the count of those lines, which match the

pattern, specified.

OUTPUT : $grep –c ̀ ̀ alamu

3

52. SYNTAX : $grep –n ̀ ̀ filename
USES : displays those lines, which match the pattern, specified along

with line number at the beginning of the line

OUTPUT : $grep –n ̀ ̀ alamu
1:rathi
3:rgi
5:vrs

53. SYNTAX : $grep i ` `filename
USES : displays those lines, which match the pattern specified

ignoring the case distinction.

OUTPUT : $grep –i ̀ ̀ alamu

rathi
raji
vrs

54. PIPE COMMAND : A pipe is a mechanism, which takes the output of the

command as its input for the next command .

SYNTAX : Command |command

OUTPUT : $ who |wc -l

55. TEE COMMAND :

SYNTAX : command|tee

USES : used to join pipes and make copies of input.

OUTPUT : $who |tee rs | wc -l

WILD CARDS

56. *

SYNTAX : $ls*
USES : used in representing any number of characters when used

in the prefix or suffix.

57. ?

SYNTAX : $ls ?
USES : this character is use to represent one character wither in

prefix or in suffix of the filename.

SORTING COMMANDS

58. SORT :

SYNTAX : $ sort filename

 USES :

OUTPUT :

Sort filter arranger input from standard input in alphabetical
order

$Sort alamu
 OPTIONS :

59. SYNTAX :

USES :

OUTPUT :

$ sort –rfilename
sort command when used with this option will display input
taken from keyboard in reverse alphabetical order .
sort –r alamu

343

 56

 34

 12

60. SYNTAX :

USES :

OUTPUT :

$ sort –nfilename
This option will arrange the input according to numerical and

display it .
sort –n alamu

12

 24

 56
 343

61. SYNTAX :

USES :

$ sort –ffilename
digits alphabets and other characters taken as input are

converted to ASCII value . Sort arranges them according to

their ASCII value.
 OUTPUT : sort –f alamu

*

1
2

 24

 56

 343

62. SYNTAX :

USES :

OUTPUT :

$ sort –ufilename
this option will remove duplicate lines from input and

displays as output
sort –u alamu

malathi
raji
rathi
vassanthi
vrs

63. CHMOD :

 SYNTAX :
USES :

OUTPUT :

$ chmod -w dir name
This command is used to set the three permissions for all the

three categories of users of the file . Only the owner of the file

can use it.

$ chmod –w cs 2 3

Ls –l cs 2 3

Total 8
Drwx rwx r-x 2 linux 4096 jun 24 14.46 cs 23

CP COMMAND

64. SYNTAX :

USES :

OPTIONS :
OUTPUT :

$ cp –I filename1 filename2
This command helps us to create duplicate

copies of ordinary file.
$ cp –i filename1filename2
$cp rathi :rs

Cat rs
Name : bahirathi
Roll no: 01 cs 23

3.7.1982

65. SYNTAX :
USES :

OUTPUT :

$cp –I filename1filename2
The –I (interactive option , originally warns the users before

over writing the destination file.
$cp –I rs rathi

 cp : overwrite ‘rathi’? n

66. SYNTAX :
USES :

OUTPUT :

$cp –r filename1filename2
it is now possible to copy an entire directory structures with –

r (recursive) option
$ cp –r rs rathi

67. THE PATH

 SYNTAX :

USES :
OUTPUT :

$echo PATH

It specifies the current path of the operating system.
/bin:/usv/bin:/usr/local/bin

68. CHANGE THE PASSWORD :

SYNTAX : $passwd

USE : password can be changed by using passwd command

OUTPUT : $ passwd
UX: passwd: INFO: change password for
local Old password: *****

New password: ******

Re-enter new password: ******

$

RESULT:

Exp-2
SHELL PROGRAMMING

Date - 6/5/22

2.A) BIGGEST AMONG THREE NUMBERS

AIM : To write a shell script to find the biggest of three numbers.

ALGORITHM :

Step 1 : Start The Problem

Step 2 : Take Three Inputs From The User
Step 3 : In If-Else Condition, Check Which Is The

Greatest Step 4 : Also Check With The Third

Number
Step 5 : Find The

Result Step 6 : Print
The Result Step 7 :
Stop The Program

PROGRAM :

echo “Enter three Numbers :”

read a b c
if [$a -gt $b] && [$a -gt $c]
then

echo “$a is Greatest”

elif [$b -gt $c] && [$b -gt $a

] then

els

e fi

echo “$b is

Greatest” echo “$c

is Greatest!”

OUTPUT :

Enter three number
: 23

67

40

B is big.

RESULT :

2.B) FACTORIAL OF A GIVEN NUMBER

AIM : To write a shell script to print the factorial of a given number.

ALGORITHM :

Step 1 : Get a number
Step 2 : Use do-while loop to compute the factorial by using the below

formula Step 3 : fact(n) = n * n-1 * n-2 * .. 1
Step 4 : Display the result.

PROGRAM :

#!/bin/bash

echo "Enter a number : "
read num

fact=1

while [$num -gt 1]
do
fact=$((fact * num))
num=$((num - 1)) done

echo Factorial=$fact

OUTPUT :

Enter a number
: 4
24

RESULT :

2.C) MULTIPLICATION TABLE OF A NUMBER

AIM : To write a shell script to print the multiplication table of given number up to a

given range.

ALGORITHM :

Step 1 : Get the numbers to be displayed for multiplication and limit of the multiplication

table.
Step 2 : Check using while

loop. Step 3 : Calculate the

result.

Step 4 : Increment the variable and repeat.

Step 5 : Display the value and terminate the program.

PROGRAM :

#!/bin/bash
echo "Enter the Number : "
read a
echo Multiplication Table of $a

for((i=1;i<=10;i++))

do

echo

$i*$a=$(($a*$i))
done

OUTPUT :

Enter the Number : 5

Multiplication Table of 5

1*5=5

2*5=10

3*5=15

4*5=20

5*5=25

6*5=30

7*5=35

8*5=40

9*5=45

10*5=50

RESULT :

2.D) SIMPLE ADD FUNCTION

AIM : To write a shell program to call the function with arguments, add the

argument values after the function name.

ALGORITHM :

Step 1 : Initialize two variables.
Step 2 : Declare and implement the addition function.
Step 3 : Call the add function with two arguments.

PROGRAM :

function add()

{

sum=$(($1 + $2))
echo "Sum = $sum"
}
a=1
0

b=2
0
#call the add function and pass the

values add $a $b

OUTPUT :

Sum = 30

RESULT :

2.E) FIBONACCI SERIES

AIM : To write a shell program to print the Fibonacci series of a given number.

ALGORITHM :

Step 1: Start

Step 2: Declare variable x, y, z, n, i
Step 3: Initialize variable x=0, y=1 and

i=2 Step 4: Read n from user

Step 5: Print x and y
Step 6: Repeat until i<=n :

z=x+y
print z

x=y,
y=z

i=i+1
Step 7: Stop

PROGRAM :

clear

echo "Program to Find Fibonacci Series"

echo "How many number of terms to be generated ?"
read n
x=
0

y=
1

i=2
echo "Fibonacci Series up to $n terms

:" echo "$x"

echo "$y"
while [$i -lt $n]
do
i=`expr $i + 1 `
z=`expr $x + $y

` echo "$z"
x=$y

y=$z

don
e

OUTPUT :

Program to Find Fibonacci Series
How many number of terms to be generated ? 7

Fibonacci Series up to 7 terms :
0 1 1 2 3 5 8

RESULT :

2.F) SUM OF N NATURAL NUMBERS

AIM : To write a shell program to find the sum of n natural numbers.

ALGORITHM :

Step 1 : Start

Step 2 : Display “Enter the number of
N” Step 3 : read n

Step 4 : sum ← 0

Step 5 : Repeat Step 6

i ← 0

While i ≤ n

Step 6 : sum ← sum + i

Step 7 : Display “the sum is”

sum Step 8 : Stop

PROGRAM :

echo "Enter the number of N : "
read n
sum=0
for ((i=0; i<=n; i++

)) do
sum=$((sum + i))
done
echo -e "The sum of first N number is \t $sum"

OUTPUT :

Enter the number of N : 5

The sum of first N number is 15

RESULT :

Exp-3
SYSTEM CALLS

Date - 20/5/22

3.A) PROGRAM USING SYSTEM CALL fork()

AIM : To write a C program to implement fork() system call.

DESCRIPTION OF SYSTEM CALLS USED :

1. fork() - Used to create new processes. The new process consists of a copy of
the address space of the original process. The value of process id for the child

process is zero, whereas the value of process id for the parent is an integer
value greater than zero.
Syntax : fork()

2. execlp() - Used after the fork() system call by one of the two processes to

replace the process‟ memory space with a new program. It loads a binary file

into memory destroying the memory image of the program containing the

execlp system call and starts its execution. The child process overlays its

address space with the UNIX command /bin/ls using the execlp system call.

Syntax : execlp()
3. wait() - The parent waits for the child process to complete using the wait system

call. The wait system call returns the process identifier of a terminated child, so

that the parent can tell which of its possibly many children has terminated.
Syntax : wait(NULL)

4. exit() - A process terminates when it finishes executing its final statement
and asks the operating system to delete it by using the exit system call. At
that point, the process may return data (output) to its parent process (via the

wait system call). Syntax: exit(0)

PROGRAM :

#include<stdio.h>

#include<stdlib.h
>

#include<unistd.h
>

void main(int argc,char *arg[])
{ int pid;
pid=fork();
if(pid<0)
{ printf("fork failed"); exit(1); }
else if(pid==0)
{
execlp("whoami","ls",NULL)
; exit(0);

}

else

{ printf("\n Process id is %d\n",getpid());

wait(NULL);
exit(0);

}

}

OUTPUT :

[cse6@localhost Pgm]$ cc

prog4a.c [cse6@localhost Pgm]$

./a.out Process id is 156234

RESULT :

3.B) PROGRAM USING SYSTEM CALL getpid() &

getppid()

AIM : To write a C program to implement getpid() and getppid() system calls.

DESCRIPTION OF SYSTEM CALLS USED :

1. getpid() - Each process is identified by its id value. This function is used to get
the id value of a particular process.

2. getppid() - Used to get particular process parent’s id value.
3. perror() - Indicate the process error.

PROGRAM :

#include<stdio.h>

#include<unistd.h
>

#include<stdlib.h
> int main()
{ int pid;
pid=fork(
); if(pid==

-1)
{ perror("fork failed");
exit(0);

}

if(pid==0)

{ printf("\n Child process is under execution");
printf("\n Process id of the child process is %d", getpid());
printf("\n Process id of the parent process is %d",
getppid());

}

else

{ printf("\n Parent process is under execution");

printf("\n Process id of the parent process is %d", getpid());
printf("\n Process id of the child process in parent is %d",
getpid()); printf("\n Process id of the parent of parent is %d",
getppid());

}

return(0);
}

OUTPUT :

Parent process is under execution

Process id of the parent process is

5194
Process id of the child process in parent is 5194

Process id of the parent of parent is 5193

RESULT :

3.C) PROGRAM USING SYSTEM

CALL opendir() readdir() &

closedir()

AIM : To write a C program to implement opendir(), readdir() and closedir() system

calls.

SYSTEM CALLS USED :

1. opendir() - Open a directory.

2. readdir() - Read a directory.

3. closedir() - Close a directory

PROGRAM :

#include<stdio.h>

#include<sys/types.h>

#include<sys/dir.h>

void main(int agrc,char *argv[])

{ DIR *dir;

struct dirent *rddir;
printf("\n Listing the directory content\n");
dir=opendir(argv[1]);
while((rddir=readdir(dir))!=NULL)
{ printf("%s\t\n",rddir->d_name); }
closedir(dir);

}

OUTPUT :

[cse6@localhost Pgm]$ cc proga.c

[cse6@localhost Pgm]$./a.out mkdir cse

[cse6@localhost Pgm]$ cd cse

[cse6@localhost Pgm]cse$ cat>file1

[cse6@localhost Pgm]cse$ cat>file2

[cse6@localhost Pgm]cse$ cd

[cse6@localhost Pgm]$./a.out cse
File1

File 2

RESULT :

3.D) PROGRAM USING SYSTEM CALL exec()

AIM : To write a C program to implement exec() system call.

SYSTEM CALLS USED :

1. execlp() - Used after the fork() system call by one of the two processes to replace

the process’ memory space with a new program. It loads a binary file into

memory destroying the memory image of the program containing the execlp

system call and starts its execution. The child process overlays its address

space with the UNIX command /bin/ls using the execlp system call.
Syntax : execlp()

PROGRAM :

#include<stdio.h>

#include<unistd.h>

main()
{ printf(“\n exec system call”);
printf(“displaying the date”);
execlp(“/bin/date”, “date”, 0);

}

OUTPUT :

Wed 04 May 2022 03:36:34 AM UTC

RESULT :

3.E) PROGRAM USING SYSTEM CALL wait() & exit(
)

AIM : To write a C program to implement wait() and exit() system calls.

SYSTEM CALLS USED :

1. fork () - Used to create new process. The new process consists of a copy of
the address space of the original process. The value of process id for the child

process is zero, whereas the value of process id for the parentis an int value

greater than zero. Syntax: fork ()
2. wait () - The parent waits for the child process to complete using the wait

system call. The wait system call returns the process identifier of a terminated

child, so that the parent can tell which of its possibly many children has

terminated.
Syntax: wait (NULL)

3. exit () - A process terminates when it finishes executing its final statement
and asks the operating system to delete it by using the exit system call. At
that point, the process may return data (output) to its parent process (via the

wait system call). Syntax: exit(0)

PROGRAM :

#include<stdio.h>

#include<unistd.h>

main()
{ int i, pid;
pid=fork(
); if(pid==

-1)
{ perror(“fork failed”);
exit(0);

}

else if(pid==0)

{ printf(“\n Child process starts‟);

for(i=0; i<5; i++)

{ printf(“\n Child process %d is called”,
i); } printf(“\n Child process ends”);

}

else

{ wait(0);

printf(“\n Parent process ends”);

}

exit(0);
}

OUTPUT :

Child process starts

Child process 0 is

called Child process 1

is called Child

process 2 is called

Child process 3 is

called Child process 4

is called Child

process ends Parent
process ends

RESULT :

3.F) PROGRAM USING SYSTEM CALL open() read() &

close()

AIM : To write a C program to implement open(), read() and close() system calls.

SYSTEM CALLS USED :

1. open()

2. read()

3. write()

4. close()

5. gets()
6. lseek()

PROGRAM :

#include<stdio.h>

#include<unistd.h>

#include<string.h>

#include<fcntl.h>

main()
{ int fd[2];
char buf1[25]= ”just a

test\n”,buf2[50]; fd[0]=open(“file1”,
O_RDWR); fd[1]=open(“file2”,
O_RDWR); write(fd[0], buf1,
strlen(buf1)); printf(“\n Enter the text
now….”); gets(buf1);
write(fd[0], buf1, strlen(buf1));
lseek(fd[0], SEEK_SET, 0);
read(fd[0], buf2,
sizeof(buf1)); write(fd[1],
buf2, sizeof(buf2));
close(fd[0]);
close(fd[1]);
printf(“\n”);
return0;

}

OUTPUT :

Enter the text
now….progress

Cat file1 Just a

test progress

Cat file2 Just a

test progress

RESULT :

Exp-4 NON PRE-EMPTIVE CPU

SCHEDULING

ALGORITHMS

Date - 27/5/22

OBJECTIVE : To simulate the following non pre-emptive CPU scheduling algorithms to

find turnaround time and waiting time

a) FCFS

b) SJF

c) Round Robin
d) Priority

ENVIRONMENT :

LINUX LANGUAGE :

C

DESCRIPTION : Assume all the processes arrive at the same time.

FCFS CPU SCHEDULING ALGORITHM

For FCFS scheduling algorithm, read the number of processes/jobs in the system, their
CPU burst times. The scheduling is performed on the basis of arrival time of the

processes irrespective of their other parameters. Each process will be executed

according to its arrival time. Calculate the waiting time and turnaround time of each of
the processes accordingly.

SJF CPU SCHEDULING ALGORITHM

For SJF scheduling algorithm, read the number of processes/jobs in the system, their
CPU burst times. Arrange all the jobs in order with respect to their burst times. There

may be two jobs in queue with the same execution time, and then FCFS approach is

to be performed. Each process will be executed according to the length of its burst
time. Then calculate the waiting time and turnaround time of each of the processes

accordingly.

ROUND ROBIN CPU SCHEDULING ALGORITHM

For round robin scheduling algorithm, read the number of processes/jobs in the

system, their CPU burst times, and the size of the time slice. Time slices are

assigned to each process in equal portions and in circular order, handling all
processes execution. This allows every process to get an equal chance. Calculate

the waiting time and turnaround time of each of the processes accordingly.

PRIORITY CPU SCHEDULING ALGORITHM

For priority scheduling algorithm, read the number of processes/jobs in the system,
their CPU burst times, and the priorities. Arrange all the jobs in order with respect to

their priorities. There may be two jobs in queue with the same priority, and then FCFS

approach is to be performed. Each process will be executed according to its priority.

Calculate the waiting time and turnaround time of each of the processes

accordingly.

PROGRAM :

(a) FCFS

#include

<stdio.h> int
main()
{ int bt[20], wt[20], tat[20], i, n;
float wtavg, tatavg;
printf("\nEnter the number of processes -- ");
scanf("%d", &n);

for(i=0;i<n;i++)
{ printf("\nEnter Burst Time for Process %d -- ", i);
scanf("%d", &bt[i]);

}

wt[0]=wtavg=0;
tat[0]=tatavg=bt[0];
for(i=1;i<n;i++)

{ wt[i] = wt[i - 1] + bt[i - 1];
tat[i] = tat[i - 1] + bt[i];
wtavg = wtavg + wt[i];
tatavg = tatavg +

tat[i];

}

printf("\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");

for(i=0;i<n;i++)

printf("\n\t P%d \t\t %d \t\t %d \t\t %d", i, bt[i], wt[i], tat[i]);
printf("\nAverage Waiting Time -- %f", wtavg / n);
printf("\nAverage Turnaround Time -- %f", tatavg / n);
return 0;

}

OUTPUT :

(b) SJF

#include

<stdio.h> int
main()
{ int p[20],bt[20],wt[20],tat[20],i,k,n,temp;
float wtavg, tatavg;
printf("\nEnter the number of processes -- ");
scanf("%d", &n);

for(i=0;i<n;i++)

{ p[i]=i;
printf("Enter Burst Time for Process %d -- ", i);
scanf("%d", &bt[i]);

}

for(i=0;i<n;i++)
for(k=i+1;k<n;k++)
if(bt[i]>bt[k])

{ temp=bt[i];
bt[i]=bt[k];
bt[k]=temp;

}
wt[0]=wtavg=0;
tat[0]=tatavg=bt[0];
for(i=1;i<n;i++)

{ temp=p[i];
p[i]=p[k];
p[k]=temp;
wt[i]=wt[i-1]+bt[i-1];
tat[i]=tat[i-1]+bt[i];
wtavg=wtavg+wt[i];
tatavg=tatavg+tat[i]
;

}

printf("\n\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");

for(i=0;i<n;i++)
printf("\n\t P%d \t\t %d \t\t %d \t\t %d", p[i], bt[i], wt[i], tat[i]);
printf("\nAverage Waiting Time -- %f", wtavg / n);
printf("\nAverage Turnaround Time -- %f", tatavg / n);
return 0;

}

OUTPUT:

(c) ROUND ROBIN

#include

<stdio.h> int
main()
{ int i, j, n, bu[10], wa[10], tat[10], t, ct[10], max;
float awt = 0, att = 0, temp = 0;
printf("Enter the no of processes -- ");
scanf("%d", &n);

for(i=0;i<n;i++)

{ printf("\nEnter Burst Time for process %d -- ", i +

1); scanf("%d", &bu[i]);
ct[i]=bu[i];

}
printf("\nEnter the size of time slice -- ");
scanf("%d",&t);
max=bu[0];
for(i=1;i<n;i++)
if(max<bu[i])
max=bu[i];
for(j=0;j<(max/t)+1;j+
+) for(i=0;i<n;i++)
if(bu[i]!=0)

if(bu[i]<=t)
{ tat[i]=temp+bu[i];
temp=temp+bu[i]
; bu[i]=0;

}

else

{ bu[i]=bu[i]-t;
temp=temp+t;

}

for(i=0;i<n;i++)
{ wa[i]=tat[i]-ct[i];
att+=tat[i];
awt+=wa[i];

}
printf("\nThe Average Turnaround time is -- %f", att / n);
printf("\nThe Average Waiting time is -- %f ", awt / n);
printf("\n\tPROCESS\t BURST TIME \t WAITING TIME\tTURNAROUND TIME\n");

for (i = 0; i < n; i++)
printf("\t%d \t %d \t\t %d \t\t %d \n", i + 1, ct[i], wa[i], tat[i]);
return 0;

}

OUTPUT :

(d) PRIORITY

#include

<stdio.h> int
main()
{ int
p[20],bt[20],pri[20],wt[20],tat[20],i,k,n,temp;
float wtavg, tatavg;
printf("Enter the number of processes ---
"); scanf("%d", &n);

for(i=0;i<n;i++)
{ p[i]=i;
printf("Enter the Burst Time & Priority of Process %d --- ", i);
scanf("%d %d", &bt[i], &pri[i]);

}
for(i=0;i<n;i++)
for(k=i+1;k<n;k++)
if(pri[i]>pri[k])

{ temp=p[i];

p[i]=p[k];
p[k]=temp;
temp=bt[i];

bt[i]=bt[k];
bt[k]=temp;
temp=pri[i];
pri[i]=pri[k];
pri[k]=temp;

}
wtavg=wt[0]=0;

tatavg=tat[0]=bt[0];
for(i=1;i<n;i++)

{ wt[i]=wt[i-1]+bt[i-1];
tat[i]=tat[i-1]+bt[i];
wtavg=wtavg+wt[i];
tatavg = tatavg +

tat[i];
}

printf("\nPROCESS\t\tPRIORITY\tBURST TIME\tWAITING TIME\tTURNAROUND

TIME");

for(i=0;i<n;i++)

printf("\n%d \t\t %d \t\t %d \t\t %d \t\t %d ", p[i], pri[i], bt[i], wt[i], tat[i]);
printf("\nAverage Waiting Time is --- %f", wtavg / n);
printf("\nAverage Turnaround Time is --- %f", tatavg /
n); return 0;

}

OUTPUT :

RESULT :

Exp-5 IMPLEMENTATION OF PROCESS

SYNCHRONIZATION USING

SEMAPHORE

Date - 3/6/22

OBJECTIVE :

(a) To simulate producer-consumer problem using semaphores.
(b) To simulate the concept of Dining-Philosophers problem.

ENVIRONMENT :

LINUX LANGUAGE : C

DESCRIPTION :

(a) Producer-consumer problem, is a common paradigm for cooperating processes.
A producer process produces information that is consumed by a consumer process.
One solution to the producer-consumer problem uses shared memory. To allow

producer and consumer processes to run concurrently, there must be available a

buffer of items that can be filled by the producer and emptied by the consumer. This

buffer will reside in a region of memory that is shared by the producer and consumer
processes. A producer can produce one item while the consumer is consuming

another item. The producer and consumer must be synchronized, so that the

consumer does not try to consume an item that has not yet been produced.

(b) The dining-philosophers problem is considered a classic synchronization problem

because it is an example of a large class of concurrency-control problems. It is a

simple representation of the need to allocate several resources among several
processes in a deadlock-free and starvation-free manner. Consider five philosophers

who spend their lives thinking and eating. The philosophers share a circular table

surrounded by five chairs, each belonging to one philosopher. In the centre of the

table is a bowl of rice, and the table is laid with five single chopsticks. When a

philosopher thinks, she does not interact with her colleagues. From time to time, a

philosopher gets hungry and tries to pick up the two chopsticks that are closest to

her (the chopsticks that are between her and her left and right neighbours). A

philosopher may pick up only one chopstick at a time. Obviously, she cam1ot pick up

a chopstick that is already in the hand of a neighbour. When a hungry philosopher
has both her chopsticks at the same time, she eats without releasing her chopsticks.
When she is finished eating, she puts down both of her chopsticks and starts

thinking again. The dining-philosophers problem may lead to a deadlock situation

and hence some rules have to be framed to avoid the occurrence of deadlock.

PROGRAM :

(a) PRODUCER CONSUMER PROBLEM

#include

<stdio.h> void

main()
{ int buffer[10],bufsize,in,out,produce,consume,choice =

0; in=0;

out=0;
bufsize=10;
while(choice!=3
)
{ printf("\n1.Produce \t 2. Consume \t3.Exit");
printf("\nEnter your choice:");
scanf("%d",
&choice);
switch(choice)
{ case 1:

if((in+1)%bufsize==out)
printf("Buffer is Full");
else
{ printf("\nEnter the value:");
scanf("%d", &produce);
buffer[in]=produce;
in=(in+1)%bufsize;

}

break;
case 2: if(in==out)

printf("\nBuffer is Empty");
else

{ consume = buffer[out];
printf("The consumed value is % d",
consume); out = (out + 1) % bufsize;

}

break;

}

}

}

OUTPUT:

(b) DINING PHILOSOPHER PROBLEM

#include

<stdio.h>

#include

<stdlib.h>
int
tph,philname[20],status[20],howhung,hu[20],cho;
void one()

{ int pos=0,x,i;
printf("\nAllow one philosopher to eat at any time\n");
for(i=0;i<howhung;i++,pos++)
{ printf("\nP %d is granted to eat",philname[hu[pos]]);
for(x=pos;x<howhung;x++)
printf("\nP %d is waiting", philname[hu[x]]);

}
}

void two()

{ int i,j,s=0,t,r,x;
printf("\n Allow two philosophers to eat at same

time\n"); for (i = 0; i < howhung; i++)

{ for (j = i + 1; j < howhung; j++)

{ if (abs(hu[i] - hu[j]) >= 1 && abs(hu[i] - hu[j]) != 4)
{ printf("\n\ncombination %d \n", (s +

1)); t = hu[i];
r = hu[j];
s++;
printf("\nP %d and P %d are granted to eat",
philname[hu[i]],philname[hu[j]]); for (x = 0; x < howhung; x++)

{ if((hu[x]!=t)&&(hu[x]!=r))
printf("\nP %d is waiting", philname[hu[x]]);

}

}

}

}

}

void main()

{ int i;

printf("\n\nDINING PHILOSOPHER PROBLEM");

printf("\nEnter the total no. of philosophers: ");
scanf("%d", &tph);

for(i=0;i<tph;i++)

{
philname[i]=(i+1
); status[i]=1;

}
printf("How many are hungry : ");
scanf("%d",&howhung);

if(howhung==tph)

{ printf("\nAll are hungry..\nDead lock stage will occur");
printf("\nExiting..");

}

else

{ for(i=0;i<howhung;i++)
{ printf("Enter philosopher %d position: ",(i+1));
scanf("%d", &hu[i]);
status[hu[i]] = 2;

}

do
{ printf("\n1.One can eat at a time\t2.Two can eat at a time\t3.Exit\nEnter your

choice:");
scanf("%d", &cho);
switch (cho)
{ case 1: one();
break; case 2:
two(); break; case

3: exit(0);

default: printf("\nInvalid option..");

}

} while(1);

}

}

OUTPUT:

RESULT :

Exp-6
DEADLOCK AVOIDANCE

Date - 10/6/22

OBJECTIVE : To simulate Bankers algorithm for the purpose of Deadlock avoidance

ENVIRONMENT :

LINUX LANGUAGE : C

DESCRIPTION :

In a multiprogramming environment, several processes may compete for a finite

number of resources. A process requests resources; if the resources are not available

at that time, the process enters a waiting state. Sometimes, a waiting process is never
again able to change state, because the resources it has requested are held by other
waiting processes. This situation is called a deadlock. Deadlock avoidance is one of
the techniques for handling deadlocks. This approach requires that the operating

system be given in advance additional information concerning which resources a

process will request and use during its lifetime.
With this additional knowledge, it can decide for each request whether or not the

process should wait. To decide whether the current request can be satisfied or must be

delayed, the system must consider the resources currently available, the resources

currently allocated to each process, and the future requests and releases of each

process. Banker’s algorithm is a deadlock avoidance algorithm that is applicable to a

system with multiple instances of each resource type.

PROGRAM :

#include

<stdio.h> struct
file

{ int all[10],max[10],need[10],flag;

};

void main()

{ struct file f[10];

int fl,i,j,k,p,b,n,r,g,cnt = 0,id,newr,avail[10], seq[10];
printf("Enter number of processes -- ");

scanf("%d", &n);
printf("Enter number of resources -- ");
scanf("%d", &r);
for(i=0;i<n;i++)
{ printf("Enter details for P%d", i);
printf("\nEnter allocation\t -- \t");
for(j=0;j<r;j++)
scanf("%d", &f[i].all[j]);
printf("Enter Max\t\t -- \t");
for(j=0;j<r;j++)

scanf("%d", &f[i].max[j]);

f[i].flag = 0;

}

printf("\nEnter Available Resources\t --
\t"); for(i=0;i<r;i++)

scanf("%d", &avail[i]);
printf("\nEnter New Request Details -- ");
printf("\nEnter pid \t -- \t");

scanf("%d", &id);
printf("Enter Request for Resources \t -- \t");
for(i=0;i<r;i++)
{ scanf("%d",&newr);
f[id].all[i]+=newr;
avail[i]=avail[i]-
newr;

}

for(i=0;i<n;i++)

{ for(j=0;j<r;j++)

{ }

}

cnt = 0;

fl = 0;
f[i].need[j]=f[i].max[j]-f[i].all[j];
if(f[i].need[j]<0)
f[i].need[j]=0;
while(cnt!=n)

{ g=0;

for(j=0;j<n;j++)

{ if(f[j].flag==0)

{ b=0;

for(p=0;p<r;p++)
{

if(avail[p]>=f[j].need[p
]) b=b+1;
else

b=b-
1;

}
if(b==r)
{ printf("\nP%d is visited", j);
seq[fl++]=j;
f[j].flag=1;
for(k=0;k<r;k++)
avail[k]=avail[k]+f[j].all[k
]; cnt=cnt+1;
printf("(");
for(k=0;k<r;k++)
printf("%3d", avail[k]);
printf(")");

g = 1;

}

}

}

if(g==0)
{ printf("\n REQUEST NOT GRANTED -- DEADLOCK

OCCURRED"); printf("\n SYSTEM IS IN UNSAFE STATE");
goto y;

}

}

printf("\nSYSTEM IS IN SAFE STATE");

printf("\nThe Safe Sequence is -- (");
for(i=0;i<fl;i++)

printf("P%d ", seq[i]);

printf(")");
y:
printf("\nProcess\t\tAllocation\t\tMax\t\t\tNeed\n");
for(i=0;i<n;i++)
{ printf("P%d\t", i);
for(j=0;j<r;j++)
printf("%6d",f[i].all[j]);
for (j=0;j<r;j++)
printf("%6d",f[i].max[j]);
for (j=0;j<r;j++)
printf("%6d",f[i].need[j])
; printf("\n");

}

}

OUTPUT:

RESULT :

Exp-7
MEMORY MANAGEMENT

TECHNIQUES
Date - 17/6/22

OBJECTIVE : To simulate the (a) MFT and (b) MVT memory management techniques

ENVIRONMENT :

LINUX LANGUAGE : C

DESCRIPTION :

MFT (Multiprogramming with a Fixed number of Tasks) is one of the old memory

management techniques in which the memory is partitioned into fixed size partitions

and each job is assigned to a partition. The memory assigned to a partition does not

change. MVT (Multiprogramming with a Variable number of Tasks) is the memory

management technique in which each job gets just the amount of memory it needs.

That is, the partitioning of memory is dynamic and changes as jobs enter and leave

the system. MVT is a more ``efficient'' user of resources. MFT suffers with the

problem of internal fragmentation and MVT suffers with external fragmentation.

PROGRAM :

(a) MFT:

#include<stdio.h>

void main()
{ int ms, bs, nob, ef, n, mp[10], tif =

0; int i, p = 0;
printf("Enter the total memory available (in Bytes) --
"); scanf("%d", &ms);
printf("Enter the block size (in Bytes) -- ");
scanf("%d", &bs);

nob = ms / bs;

ef = ms - nob * bs;

printf("\nEnter the number of processes -- ");
scanf("%d", &n);

for (i = 0; i < n; i++)
{ printf("Enter memory required for process %d (in Bytes)-- ", i + 1);
scanf("%d", &mp[i]);

}

printf("\nNo. of Blocks available in memory -- %d", nob);

printf("\n\nPROCESS\tMEMORY REQUIRED\t ALLOCATED\tINTERNAL

FRAGMENTATION");

for (i = 0; i < n && p < nob; i++)

{ printf("\n %d\t\t%d", i + 1, mp[i]);
if (mp[i] > bs)

printf("\t\tNO\t\t---");

else
{ printf("\t\tYES\t%d", bs -
mp[i]); tif = tif + bs - mp[i];
p++;

}

}

if (i < n)
printf("\nMemory is Full, Remaining Processes cannot be accomodated");
printf("\n\nTotal Internal Fragmentation is %d", tif);

printf("\nTotal External Fragmentation is %d", ef);

}

OUTPUT :

RESULT :

(b) MVT:

#include

<stdio.h> void

main()
{ int ms, mp[10], i, temp, n = 0;
char ch = 'y';
printf("\nEnter the total memory available (in Bytes)-- ");
scanf("%d", &ms);

temp = ms;

for (i = 0; ch == 'y'; i++, n++)

{ printf("\nEnter memory required for process %d (in Bytes) -- ", i + 1);
scanf("%d", &mp[i]);

if (mp[i] <= temp)
{ printf("\nMemory is allocated for Process %d ", i +

1); temp = temp - mp[i];

}

else

{ printf("\nMemory is Full");
break;

}
printf("\nDo you want to continue(y/n) -- ");
scanf(" %c", &ch);

}
printf("\n\nTotal Memory Available -- %d", ms);
printf("\n\n\tPROCESS\t\t MEMORY

ALLOCATED "); for (i = 0; i < n; i++)

printf("\n \t%d\t\t%d", i + 1, mp[i]);
printf("\n\nTotal Memory Allocated is %d", ms -
temp); printf("\nTotal External Fragmentation is

%d", temp);
}

OUTPUT:

RESULT :

Exp-8
MEMORY ALLOCATION TECHNIQUES

Date - 24/6/22

OBJECTIVE : To simulate the following contiguous memory allocation techniques

a) Worst-fit b) Best-fit c) First-

fit ENVIRONMENT : LINUX

LANGUAGE : C

DESCRIPTION :

One of the simplest methods for memory allocation is to divide memory into several
fixed- sized partitions. Each partition may contain exactly one process. In this multiple-
partition method, when a partition is free, a process is selected from the input queue

and is loaded into the free partition. When the process terminates, the partition

becomes available for another process. The operating system keeps a table indicating

which parts of memory are available and which are occupied. Finally, when a process

arrives and needs memory, a memory section large enough for this process is

provided. When it is time to load or swap a process into main memory, and if there is

more than one free block of memory of sufficient size, then the operating system must
decide which free block to allocate. Best fit strategy chooses the block that is closest in

size to the request. First-fit chooses the first available block that is large enough.
Worst-fit chooses the largest available block

PROGRAM

(a) WORST-FIT

#include

<stdio.h>

#define max 25

void main()
{ int frag[max], b[max], f[max], i, j, nb, nf, temp, highest =

0; static int bf[max], ff[max];
printf("\n\tMemory Management Scheme - Worst Fit");
printf("\nEnter the number of blocks:"); scanf("%d", &nb);
printf("Enter the number of files:"); scanf("%d", &nf);
printf("\nEnter the size of the blocks:-\n");

for (i = 1; i <= nb; i++)

{ printf("Block %d:", i);

scanf("%d", &b[i]);

}
printf("Enter the size of the files :-\n");
for (i = 1; i <= nf; i++)

{ printf("File %d:", i);

scanf("%d", &f[i]);

}

for (i = 1; i <= nf; i++)

{ for (j = 1; j <= nb; j++)

{ if (bf[j] != 1)
{ temp = b[j] - f[i];
if (temp >= 0)

if (highest < temp)

{ ff[i] = j;
highest = temp;

}

}

}

frag[i] = highest;
bf[ff[i]] = 1;

highest = 0;
}
printf("\nFile_no:\tFile_size

:\tBlock_no:\tBlock_size:\tFragement"); for (i = 1; i <= nf; i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d", i, f[i], ff[i], b[ff[i]], frag[i]);

}

OUTPUT :

(b) BEST – FIT

#include

<stdio.h>

#define max 25

void main()
{ int frag[max], b[max], f[max], i, j, nb, nf, temp, lowest =

10000; static int bf[max], ff[max];
printf("\n\tMemory Management Scheme - Best Fit");
printf("\nEnter the number of blocks:"); scanf("%d", &nb);
printf("Enter the number of files:"); scanf("%d", &nf);

printf("\nEnter the size of the blocks:-\n");
for (i = 1; i <= nb; i++)

{ printf("Block %d:", i);

scanf("%d", &b[i]);

}
printf("Enter the size of the files :-\n");
for (i = 1; i <= nf; i++)

{ printf("File %d:", i);

scanf("%d", &f[i]);

}

for (i = 1; i <= nf; i++)

{ for (j = 1; j <= nb; j++)

{ if (bf[j] != 1)

{ temp = b[j] - f[i];
if (temp >= 0)
if (lowest > temp)

{ ff[i] = j;

lowest = temp;

}

}

}

frag[i] = lowest;
bf[ff[i]] = 1;

lowest = 10000;

}
printf("\nFile No\tFile Size \tBlock No\tBlock

Size\tFragment"); for (i = 1; i <= nf && ff[i] != 0; i++)
printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d", i, f[i], ff[i], b[ff[i]], frag[i]);

}

OUTPUT :

(c) FIRST FIT

#include

<stdio.h>

#define max 25

void main()
{ int frag[max], b[max], f[max], i, j, nb, nf, temp;
static int bf[max], ff[max];
printf("\n\tMemory Management Scheme - First
Fit"); printf("\nEnter the number of blocks:");

scanf("%d", &nb);
printf("Enter the number of files:");
scanf("%d", &nf);
printf("\nEnter the size of the blocks:-\n");
for (i = 1; i <= nb; i++)
{ printf("Block %d:", i);
scanf("%d", &b[i]);

}
printf("Enter the size of the files :-\n");
for (i = 1; i <= nf; i++)
{ printf("File %d:", i);
scanf("%d", &f[i]);

}

for (i = 1; i <= nf; i++)

{ for (j = 1; j <= nb; j++)

{ if (bf[j] != 1)

{ temp = b[j] - f[i];
if (temp >= 0)
{ ff[i] = j;
break;

}

}

}

frag[i] = temp;
bf[ff[i]] = 1;

}

printf("\nFile_no:\tFile_size

:\tBlock_no:\tBlock_size:\tFragement"); for (i = 1; i <= nf; i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d", i, f[i], ff[i], b[ff[i]], frag[i]);

}

OUTPUT :

RESULT :

Exp-9 VIRTUAL MEMORY MANAGEMENT

TECHNIQUES Date - 1/7/22

OBJECTIVE : To simulate paging technique of memory management.

ENVIRONMENT :

LINUX LANGUAGE : C

DESCRIPTION :

In computer operating systems, paging is one of the memory management schemes

by which a computer stores and retrieves data from the secondary storage for use in

main memory. In the paging memory-management scheme, the operating system

retrieves data from secondary storage in same-size blocks called pages. Paging is a

memory-management scheme that permits the physical address space a process to

be non-contiguous. The basic method for implementing paging involves breaking

physical memory into fixed-sized blocks called frames and breaking logical memory

into blocks of the same size called pages. When a process is to be executed, its

pages are loaded into any available memory frames from their source.

PROGRAM :

#include

<stdio.h> void

main()

{
int ms, ps, nop, np, rempages, i, j, x, y, pa,
offset; int s[10], fno[10][20];
printf("\nEnter the memory size -- ");
scanf("%d", &ms);
printf("\nEnter the page size -- ");
scanf("%d", &ps);

nop = ms / ps;
printf("\nThe no. of pages available in memory are -- %d ", nop);
printf("\nEnter number of processes -- ");
scanf("%d",
&np); rempages

= nop;

for (i = 1; i <= np; i++)

{

printf("\nEnter no. of pages required for p[%d]-- ", i);
scanf("%d", &s[i]);

if (s[i] > rempages)

{

printf("\nMemory is Full");
break;
}

rempages = rempages - s[i];
printf("\nEnter pagetable for p[%d] --- ",
i); for (j = 0; j < s[i]; j++)
scanf("%d", &fno[i][j]);

}
printf("\nEnter Logical Address to find Physical Address ");
printf("\nEnter process no. and pagenumber and offset -- ");
scanf("%d %d %d", &x, &y, &offset);

if (x > np || y >= s[i] || offset >= ps)
printf("\nInvalid Process or Page Number or
offset"); else

{

pa = fno[x][y] * ps + offset;

printf("\nThe Physical Address is -- %d", pa);

}

}

OUTPUT:

RESULT :

Exp-10
FILE ALLOCATION TECHNIQUES

Date - 8/7/22

OBJECTIVE : Write a C program to simulate the following file allocation strategies.
a) Sequential b) Linked c)

Indexed ENVIRONMENT :

LINUX LANGUAGE : C

DESCRIPTION :

A file is a collection of data, usually stored on disk. As a logical entity, a file enables to

divide data into meaningful groups. As a physical entity, a file should be considered in

terms of its organization. The term "file organization" refers to the way in which data is

stored in a file and, consequently, the method(s) by which it can be accessed.

SEQUENTIAL FILE ALLOCATION : In this file organization, the records of the file are

stored one after another both physically and logically. That is, record with sequence

number 16 is located just after the 15th record. A record of a sequential file can only be

accessed by reading all the previous records.

LINKED FILE ALLOCATION : With linked allocation, each file is a linked list of disk

blocks; the disk blocks may be scattered anywhere on the disk. The directory contains

a pointer to the first and last blocks of the file. Each block contains a pointer to the next
block.

INDEXED FILE ALLOCATION : Indexed file allocation strategy brings all the pointers

together into one location: an index block. Each file has its own index block, which is

an array of disk- block addresses. The ith entry in the index block points to the ith

block of the file. The directory contains the address of the index block. To find and

read the ith block, the pointer in the ith index-block entry is used.

PROGRAM :

(a) SEQUENTIAL FILE ALLOCATION

#include

<stdio.h>

#include

<string.h> struct
fileTable

{
char
name[20]; int
sb, nob;
} ft[30];

void main()

{
int i, j, n;
char

s[20];

printf("Enter no of files :");
scanf("%d", &n);

for (i = 0; i < n; i++)

{

printf("\nEnter file name %d :", i + 1);
scanf("%s", ft[i].name);
printf("Enter starting block of file %d :", i +

1); scanf("%d", &ft[i].sb);
printf("Enter no of blocks in file %d :", i + 1);
scanf("%d", &ft[i].nob);
}
printf("\nEnter the file name to be searched -- ");
scanf("%s", s);

for (i = 0; i < n; i++)

if (strcmp(s, ft[i].name) ==

0) if (i == n)
printf("\nFile Not Found");
else

{

printf("\nFILE NAME START BLOCK NO OF BLOCKS BLOCKS OCCUPIED\n");
printf("\n%s\t\t%d\t\t%d\t", ft[i].name, ft[i].sb, ft[i].nob);
for (j = 0; j < ft[i].nob; j++)
printf("%d, ", ft[i].sb + j);

}

}

OUTPUT:

(b) LINKED FILE ALLOCATION

#include

<stdio.h>

#include

<string.h>

#include

<stdlib.h> struct
fileTable

{
char
name[20]; int
nob;

struct block *sb;

} ft[30];

struct block

{

int bno;

struct block *next;

};

void main()

{
int i, j, n;
char
s[20];
struct block *temp;
printf("Enter no of files :");
scanf("%d", &n);

for (i = 0; i < n; i++)

{

printf("\nEnter file name %d :", i + 1);
scanf("%s", ft[i].name);
printf("Enter no of blocks in file %d :", i + 1);
scanf("%d", &ft[i].nob);
ft[i].sb = (struct block *)malloc(sizeof(struct
block)); temp = ft[i].sb;
printf("Enter the blocks of the file :");
scanf("%d", &temp->bno);

temp->next = NULL;
for (j = 1; j < ft[i].nob; j++)

{

temp->next = (struct block *)malloc(sizeof(struct
block)); temp = temp->next;

scanf("%d", &temp->bno);

}

temp->next = NULL;

}

printf("\nEnter the file name to be searched -- ");

scanf("%s", s);
for (i = 0; i < n; i++)

if (strcmp(s, ft[i].name) == 0)
break;

if (i == n)
printf("\nFile Not Found");
else

{

printf("\nFILE NAME NO OF BLOCKS BLOCKS OCCUPIED");
printf("\n %s\t\t%d\t", ft[i].name, ft[i].nob);
temp = ft[i].sb;

for (j = 0; j < ft[i].nob; j++)

{

printf("%d ", temp->bno);
temp = temp->next;

}

}

}

OUTPUT:

(c) INDEXED FILE ALLOCATION

#include

<stdio.h>

#include

<string.h> struct
fileTable
{ char name[20];
int nob,
blocks[30];

} ft[30];

void main()

{ int i, j, n;

char s[20];

printf("Enter no of files :");

scanf("%d", &n);
for (i = 0; i < n;
i++)
{ printf("\nEnter file name %d :", i + 1);
scanf("%s", ft[i].name);
printf("Enter no of blocks in file %d :", i + 1);
scanf("%d", &ft[i].nob);
printf("Enter the blocks of the file

:"); for (j = 0; j < ft[i].nob; j++)
scanf("%d", &ft[i].blocks[j]);

}

printf("\nEnter the file name to be searched -- ");
scanf("%s", s);

for (i = 0; i < n; i++)
if (strcmp(s, ft[i].name) == 0)
break;
if (i == n)
printf("\nFile Not Found");
else

{ printf("\nFILE NAME NO OF BLOCKS BLOCKS OCCUPIED");

printf("\n %s\t\t%d\t", ft[i].name, ft[i].nob);
for (j = 0; j < ft[i].nob; j++)

printf("%d, ", ft[i].blocks[j]);

}

}

OUTPUT :

RESULT :

Exp-11
DISK SCHEDULING ALGORITHM

Date - 8/7/22

OBJECTIVE : Write a C program to simulate disk scheduling algorithms

a) FCFS b) SCAN

ENVIRONMENT :

LINUX LANGUAGE :

C DESCRIPTION :

One of the responsibilities of the operating system is to use the hardware efficiently.
For the disk drives, meeting this responsibility entails having fast access time and

large disk bandwidth. Both the access time and the bandwidth can be improved by

managing the order in which disk I/O requests are serviced which is called as disk

scheduling. The simplest form of disk scheduling is, of course, the first-come, first-
served (FCFS) algorithm. This algorithm is intrinsically fair, but it generally does not
provide the fastest service. In the SCAN algorithm, the disk arm starts at one end,
and moves towards the other end, servicing requests as it reaches each cylinder,
until it gets to the other end of the disk. At the other end, the direction of head

movement is reversed, and servicing continues.

PROGRAM :

a) FCFS

#include

<stdio.h>

#include

<stdlib.h> int
main()

{

int RQ[100], i, n, TotalHeadMoment = 0, initial;
printf("Enter the number of Requests\n");
scanf("%d", &n);
printf("Enter the Requests

sequence\n"); for (i = 0; i < n; i++)

scanf("%d", &RQ[i]);

printf("Enter initial head position\n");
scanf("%d", &initial);
// logic for FCFS disk

scheduling for (i = 0; i < n; i++)

{
TotalHeadMoment = TotalHeadMoment + abs(RQ[i] - initial);
initial = RQ[i];

}
printf("Total head moment is %d",
TotalHeadMoment); return 0;

}

OUTPUT :

b) SCAN

#include<stdio.h
>

#include<stdlib.h
> int main()

{

int
RQ[100],i,j,n,TotalHeadMoment=0,initial,size,move;
printf("Enter the number of Requests\n");
scanf("%d",&n);
printf("Enter the Requests sequence\n");
for(i=0;i<n;i++)

scanf("%d",&RQ[i]);
printf("Enter initial head position\n");
scanf("%d",&initial);
printf("Enter total disk size\n");
scanf("%d",&size);
printf("Enter the head movement direction for high 1 and for low 0\n");
scanf("%d",&move);

// logic for C-Scan disk scheduling
/*logic for sort the request array */
for(i=0;i<n;i++)

{

for(j=0;j<n-i-1;j++)

{
if(RQ[j]>RQ[j+1
])

{
int temp;
temp=RQ[j];

RQ[j]=RQ[j+1];

RQ[j+1]=temp;

}

}

}
int index;
for(i=0;i<n;i++)

{

if(initial<RQ[i])

{
index=i;
break;

}
}
// if movement is towards high value

if(move==1)

{

for(i=index;i<n;i++)

{

TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-
initial); initial=RQ[i];

}
// last movement for max size

TotalHeadMoment=TotalHeadMoment+abs(size-RQ[i-
1]-1);
/*movement max to min disk */
TotalHeadMoment=TotalHeadMoment+abs(size-
1-0); initial=0;

for(i=0;i<index;i++)

{
TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-
initial); initial=RQ[i];

}

}
// if movement is towards low value

else

{

for(i=index-1;i>=0;i--)

{

TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-
initial); initial=RQ[i];

}
// last movement for min size

TotalHeadMoment=TotalHeadMoment+abs(RQ[i+1
]-0);
/*movement min to max disk */
TotalHeadMoment=TotalHeadMoment+abs(size-

1-0);

initial =size-1;

for(i=n-1;i>=index;i--)

{
TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-
initial); initial=RQ[i];

}

}
printf("Total head movement is

%d",TotalHeadMoment); return 0;
}

OUTPUT :

RESULT :

