

B.Tech Civil Engineering

U20CYBJ01 - Engineering Chemistry

Course File

School of Civil and Infrastructure Engineering

Vision and Mission of the Department

Vision

The Department of Civil Engineering is striving to become as a world class academic centre for quality education and research in diverse areas of civil engineering, with a strong social commitment.

Mission

Mission of the department is to achieve international recognition by:

M1: Producing highly competent and technologically capable professionals.

M2: Providing quality education in undergraduate and post graduate levels, with strong emphasis on professional ethics and social commitment.

M3: Developing a scholastic environment for the state – of –art research, resulting in practical applications.

M4: Undertaking professional consultancy services in specialized areas of civil engineering.

Program Educational Objectives (PEOs)

PEO1: PREPARATION

Civil Engineering Graduates are in position with the knowledge of Basic Sciences in general and Civil Engineering in particular so as to impart the necessary skill to analyze, synthesize and design civil engineering structures.

PEO2: CORE COMPETENCE

Civil Engineering Graduates have competence to provide technical knowledge, skill and also to identify, comprehend and solve problems in industry, research and academics, related to recent developments in civil and environmental engineering.

PEO3: PROFESSIONALISM

Civil Engineering Graduates are successfully work in various Industrial and Government organizations, both at the National and International level, with professional competence and ethical administrative insight so as to be able to handle critical situations and meet deadlines.

PEO4: SKILL

Civil Engineering Graduates have better opportunity to become a future researchers/ scientists with good communication skills so that they may be both good team-members and leaders with innovative ideas for a sustainable development.

PEO5: ETHICS

Civil Engineering Graduates are framed to improve their technical and intellectual capabilities through life-long learning process with ethical feeling so as to become good teachers, either in a class or to juniors in industry.

PROGRAMME OUTCOMES (POs)

On completion of B.Tech in Civil Engineering Programme, Graduates will have to

- 1) Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of complex civil engineering problems
- 2) **Design/Development of Solutions:** Design solutions for complex civil engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 3) Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 4) Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 5) **Problem analysis:** Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 6) Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 7) **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 8) Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 9) Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- **10)** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- 11) Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 12) Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

COURSE FILE

FACULTY	Dr. G.NITHYA	FACULTY DEPT	CHEMISTRY
SUBJECT	ENGINEERING CHEMISTRY	SUBJECT CODE	U20CYBJ01
YEAR	2022 - 2023 (TERM I)	SEMESTER	ODD
DEG &BRANCH	B.TECH (ECE)	DURATION	90 Hours
SL.NO	DETAILS IN COURSE FILE	J,	REMARKS
1,	LEARNING OUTCOMES		
2.	LESSON PLAN		
3.	CO-PO MAPPING		
4.	INDIVIDUAL TIME TABLE		
5.	SYLLABUS WITH COURSE OUTCOMES		- V
6.	LECTURE NOTES (FOR ALL UNITS)		V
7.	CLA I - QUESTION PAPER		
8.	CLA I-KEY		
9.	CLA I - SAMPLE ANSWER SHEETS		V
10.	CLA II - QUESTION PAPER		
11.	CLA II - KEY		V
12.	CLA II - SAMPLE ANSWER SHEETS		
13.	CLA III - QUESTION PAPER		/
14.	CLA III - KEY		
15.	CLA III - SAMPLE ANSWER SHEETS		V
16.	ASSIGNMENT QUESTIONS		
17.	SAMPLE ASSIGNMENTS		
18.	END SEMESTER QUESTION PAPER		
19.	END SEMESTER ANSWER KEY		~/
20.	TEXT BOOK AND REFERENCE BOOK		V
21.	QUESTION BANK		V
22.	STUDENT PERFORMANCE RECORD		V
23.	STUDENT ATTENDANCE RECORD		Y
24.	COURSE END SURVEY		5
25.	CO ATTAINMENT		V

Gy Dittup Course Coordinator

HOD

5~0

1

LEARNING OUTCOMES

0

()

INSTITUTE OF HIGHER EDUCATION AND RESEARCH (Declared as Deemed-to-be University under section 3 of UGC Act, 1956) (Vide Natification No. F.9-5/2009 - U.3. Ministry of Human Resource Development, Govt. of India, dated 4" July 2002)

SCHOOL OF BASIC SCIENCES DEPARTMENT OF CHEMISTRY LEARNING OUTCOMES

Course Name: ENGINEERING CHEMISTRY (2022-23 R)

Course Code: U20CYBJ01

The learning of Engineering chemistry helps:

- Acquire knowledge about atomic and molecular orbitals.
- Identify the structure of unknown/new compounds with the help of spectroscopy.
- Demonstrate adequate acquired knowledge of the techniques to characterize surfaces and materials.
- Understand the causes of corrosion, its consequences and methods to minimize corrosion and to improve industrial designs.
- Apply thermal analysis techniques to determine thermal stability of solids and thermodynamic transitions of the specimen.
- Understand the mechanisms of major classes of organic reactions, including substitutions, eliminations and additions.

LESSON PLAN

 \bigcirc

()

LESSON PLAN

Name of the Department	:	CHEMISTRY
Name of the School	:	SCHOOL OF BASIC SCIENCES
Program Name/Code	:	B.TECH (ALL BRANCHES) / FIRST YEAR
Academic Year / Semester	:	2022-2023/ ODD SEMESTER
Course Name/Code	:	ENGINEERING CHEMISTRY/U20CYBJ01
a. No. of Credits	:	5
b. Total Contact Hours	:	70 (Theory) + 20 (Experiment)
Staff Name / ID	:	Dr. G.NITHYA / 5343

Hours	Торіс	со	Reference	Teaching Tool	Proposed Date	Completed Date	Blooms Taxonom y Level			
	Ato	mic and	UNIT- I d Molecular	structure						
2 1	Introduction to Atom and molecules	CO1	R1	T2	10.10.2022	10.10.2022	1			
1	Schrodinger equation	CO1	R1	T1	11.10.2022	12.10.2022	2			
1	Particle in a box solution	C01	R1	T1	12.10.2022	13.10.2022	4			
1	Molecular orbitals theory	CO1	R1	T1	13.12.2022	14.10.2022	2			
1	MOT diagram of diatomic molecules	CO1	R1	T2	17.10.2022	17.10.2022	4			
1	MOT diagram of hetero nuclear diatomic molecules	CO1	R1	T2	18.10.2022	19.10.2022	4			
1	Huckel's rule	CO1	R1	T2	19.10.2022	20.10.2022	2			
2	π -molecular orbitals of butadiene and benzene	CO1	R1	T3	20.10.2022	21.10.2022 & 26.10.2022	4			
1	Introduction to Crystal Field Theory	CO1	R1	T2	26.10.2022	27.10.2022	2			
1	CFT Diagram of Octahedral complex	CO1	R1	T1	27.10.2022	28.10.2022	4			
1	CFT Diagram of Octahedral complex	CO1	R1	T1	31.10.2022	31.10.2022	4			
1	Energy level diagrams for transition metal ions	CO1	R1	Т3	01.11.2022	03.11.2022	4			
1Magnetic properties of transition compounds.CO1R1T302.11.202204.11.20224										
	Fundamenta	ls and	UNIT –II Application	s of Spectr	oscopy					
1	Spectroscopy Introduction & Electro Magnetic Spectrum	CO2	R2	T2	02.11.2022	07.11.2022	2			

							_
1	UV-Visible spectroscopy	CO6	R2	T2	03.11.2022	07.11.2022	2
1	Electronic Transition Level of UV-Visible spectroscopy	CO6	R2	T2	07.11.2022	09.11.2022	3
1	Instrumentation and working procedure of UV-Visible Spectroscopy	CO6	R2	T2	08.11.2022	10.11.2022	3
1	Applications of Electronic spectroscopy	CO2	R2	T1	09.11.2022	16.11.2022	3
1	Principles of Rotational spectroscopy	CO2	R2	T2	10.11.2022	17.11.2022	2
1	Principles of Vibrational spectroscopy	CO2	R2	T2	14.11.2022	18.11.2022	2
1	Instrumentation and working procedure of IR Spectroscopy	CO2	R2	T2	15.11.2022	21.11.2022	3
1	Applications of IR Spectroscopy	CO2	R2	T1	16.11.2022	23.11.2022	2
1	Selection rules and Applications of rotational and Vibrational spectroscopy	CO2	R2	T2	17.11.2022	24.11.2022	3
1	Principle of Nuclear magnetic resonance spectroscopy	CO2	R2	T2	18.11.2022	24.11.2022	3
1	Instrumentation and working procedure of NMR Spectroscopy	CO2	R2	T2	21.11.2022	25.11.2022	3
1	¹ H and ¹³ C NMR Chemical shift in NMR Spectroscopy	CO2	R2	T2	22.11.2022	28.11.2022	2
1	Applications of Nuclear magnetic resonance spectroscopy	CO2	R2	T1	23.11.2022	29.11.2022	3
	Surface chara		NIT –III tion and [Ionization	Energy		
1	Introduction of X-ray Photoelectron Spectroscopy (XPS)	CO3	R3	T2	24.11.2022	30.11.2022	4
1	Application of X-ray Photoelectron Spectroscopy (XPS)	CO3	R3	T1	28.11.2022	01.12.2022	2
1	Introduction of X-ray Diffraction Spectroscopy (XRD)	CO3	R3	T2	29.11.2022	02.12.2022	4

1	Applications of X-ray Diffraction Spectroscopy (XRD)	CO3	R3	T1	30.11.2022	06.12.2022	2
1	State equation of Real gases	CO3	R3	T1	01.12.2022	07.12.2022	3
1	Critical phenomena	CO3	R3	T1	05.12.2022	8.12.2022	3
1	Effective nuclear charge, penetration of orbitals	CO3	R3	T1	06.12.2022	12.12.2022	4
1	Electronic configurations, Aufbau principle, Hunds Rule and Pauling exclusion principle,	CO3	R3	T2	07.12.2022	13.12.2022	1
2	Atomic and Ionic Size according to periodic table	CO3	R3	T2	08.12.2022	14.12.2022 & 15.12.2022	2
1	Ionization energies, Electron affinity & Electronegativity and the periodic trends	CO3	R3	T2	12.12.2022	16.12.2022	2
1	Polarizability of diatomic, poly atomic molecules and Oxidation states	CO3	R3	T2	13.12.2022	19.12.2022	4
1	Coordination numbers and geometries	CO3	R3	T2	14.12.2022	20.12.2022	4
1	Geometries in Coordination Compounds with examples	CO3	R3	T2	15.12.2022	21.12.2022	4
	Ther		NIT- IV mics and	Corrosio	n		
1	Hard soft acids and base concept	CO4	R4	T2	19.12.2022	22.12.2022	1
1	Application of hard soft acids and base	CO4	R4	T2	20.12.2022	23.12.2022	3
1	Introduction of thermodynamic functions energy, entropy and free energy	CO4	R4	T2	21.12.2022	26.12.2022	2
1	Applications of Energy, Entropy and free energy	CO4	R4	T1	22.12.2022	27.12.2022	3
2	EMF Cell potentials	CO6	R4	T2	26.12.2022	29.12.2022	3
1	Nernst equation	CO6	R4	T2	27.12.2022	30.12.2022	3
1	Oxidation reduction solubility equilibria	CO4	R4	T2	28.12.2022	02.01.2023	2

1	solubility equilibria in water	CO4	R4	T2	29.12.2022	03.01.2023	2
2	Water Chemistry	CO4	R4	T2	02.01.2023	04.01.2023 & 05.01.2023	3
1	Introduction to Corrosion	CO4	R4	T2	03.01.2023	06.01.2023	2
1	Corrosion and its types	CO4	R4	T2	04.01.2023	09.01.2023	3
1	Demonstrate the Methods of corrosion control with examples	CO4	R4	T2	05.01.2023	11.01.2023	3
	Synthesis of Organi		NIT –V ounds, Re	actions ar	d Mechanism	8	
1	Discover the Mechanism of substitution reactions (SN1)	CO5	R5	Т3	09.01.2023	12.01.2023	1
1	Discover the Mechanism of substitution reactions (SN2)	CO5	R5	Т3	10.01.2023	17.01.2023	1
1	Discuss the Addition reactions and Elimination reactions (E1)	CO5	R5	T1	11.01.2023	18.01.2023	2
1	Discuss the Addition reactions and Elimination reactions (E2) Mechanism)	CO5	R5	T1	12.01.2023	19.01.2023	2
1	Classify the Oxidation, reduction reactions	CO6	R5	T2	17.01.2023	23.01.2023	3
1	Classify the cyclization and ring opening reactions	CO6	R5	T2	18.01.2023	24.01.2023	2
1	Explain the optical activity, absolute configuration and Conformational analysis	CO5	R5	T2	19.01.2023	25.01.2023	2
1	Discuss the Structural isomers with examples	CO5	R5	T2	23.01.2023	30.01.2023	3
1	Discuss the Stereoisomers with examples	CO5	R5	T2	24.01.2023	31.01.2023	2
1	Explain the Configurations, symmetry, and chirality	CO5	R5	Т3	25.01.2023	01.02.2023	2
1	Discuss the Enantiomers with examples	CO6	R5	T3	30.01.2023	03.02.2023	2
1	Discuss the diastereomers with examples	CO6	R5	Т3	31.01.2023	06.02.2023	2
2	Represent the Synthesis of commonly used drug molecules with Examples.	CO6	R5	T1	01.02.2023	07.02.2023	3

HOURS	LAB EXPERIMENTS	со	Reference	Teaching Tool	Proposed Date	Completed Date	Blooms Taxonomy Level
2	Determine the hardness (Ca ²⁺) of water using EDTA – Complexometric method Analyze the amount of calcium present in given water sample using titration method	CO2	R6	T4	14.10.2022	13.10.2022	С
2	Estimate the amount of chloride content in a water sample. Analyze the amount of chloride present in given water sample using Argentometric method	CO2	R6	T4	28.10.2022	20.10.2022	С
2	Determine the strength of an acid using pH meter Determine strength of HCl using standard NaOH by measuring the pH changes.	CO4	R6	T4	04.11.2022	27.10.2022	В
2	Determine the strength of an acid by conductometry. Determine strength of HCl acid using standard NaOH by measuring conductometry method.	CO4	R6	T4	11.11.2022	03.11.2022	B
2	Determine the strength of a mixture of acetic and hydrochloric acid by conductometry Find out the strength of a mixture of acid by measuring	CO4	R6	T4	18.11.2022	2 10.11.2022	2 В
2	conductometry method.Determine the ferrous ionusing potassium dichromateby potentiometric titration.		R6	T4	25.11.2022	2 17.11.202	2 C

	2	Find out the ferrous ion present in the given solution by potentiometric titration. Determine the molecular weight of a polymer by viscosity average method Analyze the molecular weight of given polymer solution	CO4	R6	T4	02.12.2022	24.11.2022	В
	2	Determine adsorption of oxalic/acetic acid from aqueous solution by activated carbon Find out the adsorption of acids in aqueous solution by activated carbon	CO4	R6	T4	09.12.2022	08.12.2022	В
0	2	Determine the rate constant of acid hydrolysis of an ester. Find out the rate constant acid hydrolysis of an ester.	CO4	R6	T4	16.12.2022	15.12.2022	В
	2	Determine the amount of sodium carbonate, sodium hydroxide in a mixture by titration. Find out the mixture of bases in titration method	CO4	R6	T4	23.12.2022	29.12.2022	В

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Bharath Institute of Higher Education and Research (BIHER)

Reference	Description
Code	
R1	Concise Inorganic Chemistry: 5th Edition by J.D. Lee, Wiley, 2008
R2	William Kemp, Organic Spectroscopy, 3 rd Edition., Macmillan, 2009
R3	Inorganic Chemistry: Principles of Structure and Reactivity, 4th Edition,1983
R4	Peter Atkins, Julio de Paula, and James Keeler Atkins Physical Chemistry, 11th Edition,
-	2017.
R5	Morrison R.T. and Boyd R.N., Organic Chemistry, 6th Edition, New York, 1976
R6	Chemistry Laboratory – I & II, Dr. A. P. Srikanth, R. Komalavalli, Shreem
	Bhuvaneswari publications, Ch-44, 2009

4. Dothey

CO-PO MAPPING

×

Ō

r

U

Ę.

INSTITUTE OF HIGHER EDUCATION AND RESEARCH (vide Natification vide restored to -University under eaction a of USC Act. 1956) (vide Natification No. F3-5:200-U.3. Ministry of Human Researcher Devolopment, Govi of India. driad 47 July 2002)

BTECH ELECTRONICS AND ELECTRICAL ENGINEERING

ACADEMIC YEAR 2022-2023 (TERM I) - ENGINEERING CHEMISTRY - U20CYBJ01

PO / PSO DIRECT ATTAINMENT

				_	_		Ē	
PSO3	4	4	3	i.	192			
PSO2	a	ä	36	•	3			
PSO1	ä	1	6	4		•		
P012	1	ä	30 1	38	3	x		C C C C C C C C C C C C C C C C C C C
P011	a	ā	3		a	a.		
P010	2		2		De	2		
PO9		ans	309	: OKS	6	6		
PO8	3	in an	Sac.	in) S	e	të		
PO7	393		N.	i,	2	6		
PO6			(<u>8</u>	120	1	ţ,		
PO5	1	3	Ē	E.	•5	9 3		
P04	3	3	100	3	1	13		
PO3	3		÷	1	3	2		000
PO2	Und.	-10	3	3	3	E		
P01	3	3	0	3	re	r		100
	C01	C02	CO3	C04	CO5	C06		

									d.							
	P01	PO2	PO3	P04	PO5	P06	P07	PO8	P09	6	PO10	P011	P012	PSO1	PSO2	PSO3
C01	95.37		95.37	×	3.	, i	¥.,				95.37				15	
C02	89.39		r	89.39	89.39	÷	8								-0	
CO3	- N.	95.68	-	10		12	ŝ				95.68				11452	
C04	93.08	93.08		93.08		198									- 4	
CO5	101	90.84	t 90.84			20	4									
C06			70.70								97.97					
AVERAGE	92.61	1 93.20	94.73	91.24	88.93		0.00	0.00	0.00	0.00	96.34	00.0	0.00	0 0.00	00 0.00	0 0.00
	P01	PO2	PO3	P04	PO5	PO6	P07	P08		P09	P010	P011	P012	PSO1	PSO2	PSO3
ATTAINME	92.61	1 93.20	0 94.73	91.24	88.93		0.00	0.00	0.00	0.00	96.34	00'0	0.00 0.00	0 0.00	00.0	0 0.00

q.g.Har-

INDIVIDUAL TIME TABLE

Bharath Institute of Higher Education and Research

B.Tech, First Year 2022-2023 – TERM I

Individual Time Table

DEPARTMENT OF CHEMISTRY

Dr. P. KAMARAJ,

SEE – D1, H1, K1 (9 Hours)

Day/ Period	I 9.00 AM - 9.50 AM	11 9.50 AM – 10.40AM		III 10.50 AM – 11.40 AM	IV 11.40 AM 		V 1.30 PM – 2.20 PM	VI 2.20 PM – 3.10 PM	VII 3.10 PM – 4.00 PM	
MON			В			\mathbf{L}				7
TUE		SEE Sec K1	R			U				
WED			E A			N C	SEE Sec H1			
THUR		SEE Sec K1	К	SEE Sec H1		Н				
FRI					SEE Sec H1			SEE Sec K1		

Dr. G. MATHUBALA,

SEE - D, II Year CSE, MECH (12 Hours)

	Day/ Period	I 9.00 AM - 9.50 AM	II 9.50 AM – 10.40AM		111 10.50 AM – 11.40 AM	IV 11.40 AM - 12.30 PM		V 1.30 PM – 2.20 PM	VI 2.20 PM – 3.10 PM	VII 3.10 PM 4.00 PM
	MON			В		SEE M4	L		SEE M3	II Year CSE
J	TUE		Engg. Chemistry Lab Sec S	R E	L	hemistry ab c S	U N		II Year MECH SEE M3	
	WED			A K	II Year MECH SEE M3		C H	SEE Sec D		II Year CSE
	THUR					SEE Sec D			II Year MECH SEE M4	SEE M4
	FRI		SEE Sec D							II Year CSE

Dr. DAISY RANI,

Day/ Period	I 9.00 AM – 9.50 AM	II 9.50 AM – 10.40AM		III 10.50 AM – 11.40 AM	IV 11.40 AM 		V 1.30 PM – 2.20 PM	VI 2.20 PM – 3.10 PM	VII 3.10 PM
MON	Engg. Chemistry Sec T	SEE Sec R	в			L		SEE Sec H	Engg Chemistry Sec S
TUE			R E			U N	Engg. Chemistry Sec T		Engg Chem Sec S
WED	Engg Chem Sec S		A		Engg. Chemistry Sec T	C H	SEE Sec H		Foundation of Chemistry
THUR	SEE Sec H		к	SEE Sec R	Engg Chem Sec S				
FRI		hemistry AB c T		Engg. Chemistry LAB Sec T			Engg. Chemistry Sec T		SEE Sec R

NEW STAFF,

Engg Chem: D, E1; SEE- M – (17 Hours)

Day/ Period	I 9.00 AM –	II 9.50 AM –		III 10.50 AM –	IV 11.40 AM		V 1.30 PM –	VI 2.20 PM –	VII 3.10 PM –
	9.50 AM	10.40AM		11.40 AM	- 12.30 PM		2.20 PM	3.10 PM	4.00 PM
MON	Engg. Cl La Sec	ıb	В	Engg. Chemistry Lab Sec D		L			
TUE			R E			U N			
WED	Engg. Cl La Sec		A K	Engg. Chemistry Lab Sec E1		C H			
THUR									
FRI									

Day/ Period		II 9.50 AM – 10.40AM		III 10.50 AM – 11.40 AM	IV 11.40 AM		V 1.30 PM – 2.20 PM	VI 2.20 PM – 3.10 PM	VII 3.10 PM 4.00 PM
MON	Engg. Chemistry Sec F		р		12.30 PM		Engg. Chemistry		
TUE		SEE Sec K	B R	Engg. Chemistry		L U	Sec G1	Engg. Chemis	stry
WED		SEE Sec K	E A	Sec G1		N C	I	LAB Sec F Engg. Chemis	try
THUR			K	Engg. Chemistry		H		LAB Sec G1 Engg.	
FRI	Engg. Chemistry Sec F			Sec G1 SEE Sec K			Engg. Chemistry Sec F	Chemistry Sec F Engg. Chemistry	

Dr. V. L. CHANDRA BOSS,

Engg Chem - H, J1; SEE- B1 – (17 Hours)

Day/ Period	9.50 AM	П 9.50 AM – 10.40AM		III 10.50 AM 11.40 AM		1	V 1.30 PM – 2.20 PM	VI 2.20 PM – 3.10 PM	VII 3.10 PM 4.00 PM
MON	Engg. Chemistry Sec H		D				En	l 1gg. Chemistr LAB	y/B1
TUE			B	SEE	Г.	L		Sec J1	
			R E	Sec B1	Engg. Chemistry	U		Engg. Chemistry	
WED		Engg. Chemistry Sec H		Engg. Chemistry	Sec H	N C	SEE Sec B1	Sec J1	
THUR	Engg. Chemistry Sec J1		A K	Sec J1 SEE Sec B1		H	E	ngg. Chemistr LAB	y
FRI		Engg.	F			L		Sec H	
		Chemistry Sec H						Engg. Chemistry	

Ś

Day/ Period	I 9.00 AM – 9.50 AM	II 9.50 AM – 10.40AM		III 10.50 AM 11.40 AM	IV 11.40 AM – 12.30 PM Engg.		V 1.30 PM – 2.20 PM	3.10 PM Engg. Chemist	VII 3.10 PM – 4.00 PM
MON			в		Chemistry Sec K	L		LAB Sec L1 Engg. Chemis	try
TUE	SEE Sec F1		R E	Engg. Chemistry Sec L1		U N		LAB Sec K	
WED	Engg. Chemistry Sec L1	SEE Sec F1	A K			C H		Engg.	
THUR	500 11	Engg. Chemistry Sec L1			Engg. Chemistry Sec K			Chemistry Sec K	Engg.
FRI		SEE Sec Fl			Engg. Chemistry Sec K				Chemistr Sec L1

Dr. S. ROSY CHRISTY, Sections: Engg Chem: K, L1; SEE- F1 – (17 Hours)

Dr. G. Nithya, Sections: Engg Chem: P, A1,

SEE – B, F (17 Hours)

Day/ Period	I 9.00 AM – 9.50 AM	П 9.50 AM – 10.40AM		111 10.50 AM 11.40 AM	IV 11.40 AM – 12.30 PM		V 1.30 PM – 2.20 PM	3.10 PM	VII 3.10 PM – 4.00 PM Engg.
MON	Engg. Chemistry			SEE Sec F				SEE Sec B	Chemistry Sec P
	Sec A1		B	SEE		L		Engg.	
TUE			R	Sec F		U N		Chemistry Sec P	
			E	Engg.	Engg.	7			
WED	SEE Sec B		A K	Chemistry Sec P	Chemistry Sec Al	C H			
THUR	Engg. Chemistry Sec A1	Engg. Chemistry LAB		L	Chemistry AB Sec P				
		Sec P			SEE		Engg.	SEE	
FRI		Engg. Chemistry			Sec B		Chemistry Sec P	/ Sec F	

Dr. Senthil Kumar – Sections - D & P1

Day/ Period	I 9.00 AM – 9.50 AM	11 9.50 AM – 10.40AM		III 10.50 AM – 11.40 AM	IV 11.40 AM 12.30 PM		V 1.30 PM – 2.20 PM	VI 2.20 PM – 3.10 PM	VII 3.10 PM – 4.00 PM
MON			В			L			
TUE			R			U			P1
WED			E A			N C	D	P1	
THUR			к	М	D	Η			P1
FRI		D			М				

DR. BALU

Day/ Perio		II 9.50 AM - 10.40AM		HI 10.50 AM – 11.40 AM	IV 11.40 AM 		V 1.30 PM – 2.20 PM	VI 2.20 PM – 3.10 PM	VII 3.10 PM – 4.00 PM
MON	Eng. Chem/P1		в	SEE N1	12.30 FM	L		SEE Sec P	
TUE	Eng. C	hem/P1	R E	Eng. Chem/P1		U N		Engg. Chemistry Sec D	
WED	SEE Sec P		A K		Eng. Chem/P1	C H			Engg. Chemistry Sec D
THUF	SEE N1	Engg. Chemistry Sec D			Eng. Chem/P1			SEE Sec P	
FRI		Eng. Chem/P1		Engg. Chemistry Sec D				SEE N1	

1. 7

DR. MANJULA Sections: Engg Chem: B, C1, E1 SEE-M1 – (21 Hours)

Day/ Period	I 9.00 AM – 9.50 AM	II 9.50 AM – 10.40AM		III 10.50 AM 	IV 11.40 AM – 12.30 PM		2.20 PM	VI 2.20 PM – 3.10 PM	VII 3.10 PM - 4.00 PM
MON		SEE Sec M1	в		Engg. Chemistry Sec C1	L	Engg. Chemistry Sec E1		Engg. Chemistry Sec B
TUE	Engg. Chemistry Sec E1	SEE Sec M1	R E		Engg. Chemistry Sec B	U N		Engg. Chemistry Sec C1	
WED	500 11	Engg. Chemistry Lab	A	L	hemistry ab c C1	C H			Engg. Chemistry Sec B
THUR		Sec C1 Engg.	K		SEE			Engg.	Engg.

Dr. K. Rajendran -

Day/ Period	I 9.00 AM – 9.50 AM	II 9.50 AM 10.40AM		III 10.50 AM - 11.40 AM			V 1.30 PM – 2.20 PM	VI 2.20 PM – 3.10 PM	VII 3.10 PM – 4.00 PM
MON		Engg. Chemistry Lab Sec A1	B R	Engg. Che Sec	mistry Lab Al	L U	Engg. Chemistry Sec M		
TUE			E		Engg. Chemistry Sec M	N C		Engg. Chemistry Sec R	
WED			A K	Engg. Chemistry Sec R		H			Engg. Chemistry Sec M
THUR		Engg. Chemistry Sec R			Engg. Chemistry Sec M		E	Engg. Chemis LAB Sec R	
FRI					Sec R Engg. Chemistry		E	Engg. Chemis LAB Sec M	try

Dr. John Santhosh Kumar: SEE: P & J1 (6 Hrs)

Day/ Period	I 9.00 AM – 9.50 AM	II 9.50 AM – 10.40AM		III 10.50 AM – 11.40 AM	IV 11.40 AM 		V 1.30 PM – 2.20 PM	VI 2.20 PM – 3.10 PM	VII 3.10 PM - 4.00 PM
MON									
TUE			B R	SEE Sec J1		L U			
WED	-		E			N	SEE/ SEC M		
THUR			A K		SEE Sec J1	C H			
FRI					SEE Sec J1				

Cr.Ath

SYLLABUS WITH COURSE OUTCOMES

 \bigcirc

Profile of an Individual Course

Part A- Introduction of the Course

Engineering chemistry course focuses on introduction to the atoms, molecules and their characterisation using spectroscopic techniques, as well as thermodynamic functions and principles involved in corrosion and its control, followed by organic reaction mechanisms, its isomerism, optical activity and synthesis of common drug molecules are discussed.

Course Code	Course Category	Course Title	L	Т	Р	С
U20CYBJ01	Basic Science	ENGINEERING CHEMISTRY	3	1	2	5
Name of the Course Co-ordinator		Dr. G.NITHYA	Pre-requisite +2			
Course Offering Dept/School		Department of Chemistry	Contact Hrs: 90 Hours			rs
			Total Marks: 100			

Course Objective and Summary

The main objective of the course is to understand the concepts of chemistry to lay the groundwork for subsequent studies in the fields such as mechanical, civil, electrical and electronics engineering etc. To develop the interest among the students regarding chemistry and their applications in engineering. They learn the use of fundamental principles and tools used to predictions of molecules. To introduce the students to the principles of optical and electron microscopy, X-ray diffraction and various spectroscopic techniques

	COURSE OUTCOMES(COs)	Bloom's level
CO1	Analyze atomic, molecular orbitals of organic, inorganic molecules to identify structure, bonding, molecular energy levels	4
CO2	Utilize the principles of Spectroscopic technique in analysing and explaining the structure and properties of molecules	3, C
CO3	Rationalize bulk properties using thermodynamic consideration and periodic properties of elements	4
CO4	Utilize the concept of thermodynamics in understanding and executing thermodynamically driven chemical reactions	3, B
CO5	Perceive the importance of stereochemistry in synthesizing organic molecules applied in pharmaceutical industries	2
CO6	Utilize the concepts in chemistry for technological and apply in quantitative analyses and estimations for physical and chemical characteristics	3

Imitation (A), manipulation (B), precision (C), articulate (D), naturalisation (E) -- Psychomotor

					Ma	pping	/ Alig	nmen	t of Co	os witl	n PO 8	PSO				
		([H/M/]	L indi	cates	streng	th of o	correla	ation)	3-Hig	h, 2-N	1ediur	n, 1-L	ow		
1	Cos /PO& PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI	PO1	PO12	PSOI	PSO2	PSO3
2	CO1	3	-	3	-	-	-	-		- 121	2					
	CO2	3	-	-	3	3	-	÷	-		-	-				
	CO3	-	3	ā.			-		-		2	-				
	CO4	3	3	-	3	-		×.	S.	×	-	-				
	CO5	8	3	3		-					~					
	CO6	-	:	2	-	-		5 2	÷		2	-				
3	Category	Basi	ics Sci	ience(BS)]				

(Tick mark or level of correlation: 3-High, 2-Medium, 1-Low)

COURSE CONTENT

UNIT I - Atomic and Molecular structure

Schrodinger equation– Introduction – Derivation – Particle in a box solution – Applications for conjugated molecules – Forms of the hydrogen atom wave functions – Plots of these functions to explore their spatial variations. Molecular orbitals of diatomic molecules-Homonuclear – Heteronuclear diatomic molecules- Equations for atomic orbital – Equation for molecular orbitals – Energy level diagrams of diatomic. Introduction – Explanation – π -molecular orbitals of butadiene – π -molecular orbitals benzene – Aromaticity – Introduction – Explanation – Crystal field theory – Introduction – Explanation – Energy level diagrams for transition metal ions –Magnetic properties of transition compounds.

(Contact Hours - 14)

UNIT II - Fundamentals and Applications of Spectroscopy

Spectroscopy – General introduction and Explanation; Types of Spectroscopy – Basic concepts and Principles of Electronic spectroscopy, Rotational spectroscopy and Vibrational spectroscopy – Applications of rotational and vibrational spectroscopy of diatomic molecules – Selection rules – Nuclear magnetic resonance spectroscopy – Introduction, principle, Instrumentation and applications.

(Contact Hours – 14)

UNIT III - Surface characterization and Ionization Energy

XPS (X-ray Photoelectron Spectroscopy) – Introduction – Explanation – Diffraction and Scattering of solids – Explanation – Ionic, dipolar interaction – Vander waals interaction – Equation of state of real gases – critical phenomena – Effective nuclear charge, penetration of orbitals – Variations of s, p, d and f orbital energies of atoms in the periodic table – Electronic configurations, atomic and ionic sizes – Ionization energies, electron affinity and electronegativity – Polarizability, oxidation states – Coordination numbers and geometries.

(Contact Hours – 14)

UNIT IV – Thermodynamics and Corrosion

Hard soft acids and bases – Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Water chemistry – Corrosion and its control.

(Contact Hours - 14)

UNIT V - Synthesis of Organic compounds, Reactions and Mechanisms

Introduction to type of reactions involving substitution-Addition-Elimination, oxidation and reduction reactions- Cyclization and ring opening reactions. Optical activity, Absolute configurations-Conformational analysis-Isomerism in transition metal complex. Representation of 3 dimensional structures – Structural isomers and stereoisomers – Configurations and symmetry and chirality – Enantiomers, diastereomers. Introduction-Synthesis of commonly used drug molecules-Examples.

(Contact Hours -14)

Chemistry Laboratory (Contact Hours – 20)

List of Experiments

- 1. Determine the hardness (Ca2+) of water using EDTA Complexometric method (CO2).
- 2. Estimate the amount of chloride content in a water sample (CO2).
- 3. Determine the strength of an acid using pH meter (CO4).
- 4. Determine the strength of an acid by conductometry (CO4).
- 5. Determine the strength of a mixture of acetic and hydrochloric acid by conductometry (CO4).
- 6. Determine the ferrous ion using potassium dichromate by potentiometric titration (CO2).
- 7. Determine the molecular weight of a polymer by viscosity average method (CO4).
- 8. Determine adsorption of oxalic/acetic acid from aqueous solution by activated carbon (CO4).
- 9. Determine the rate constant of acid hydrolysis of an ester (CO4).
- 10. Determine the amount of sodium carbonate, sodium hydroxide in a mixture by titration (CO4).

2. Alignment of topics of the courses with Co's – learning outcome U20CYBJ01 - ENGINEERING CHEMISTRY

S.NO.	Summary of the Course Content	Hours (L)	Hours (T)	Alignment to
	UNIT – 1			, I
	ATOMIC AND MOLECULAR STR	RUCTURE		
1.	Remember the atomic and molecular level, quantum	2		CO1
	numbers for derivation of Time dependent and Time			
	Independent Schrodinger equation			
2.	Explain of Particle in a box solution (one dimensional)	2		CO1
	and illustrating the conjugated molecules			
3.	Introduction of Molecular orbitals theory for diatomic	2		CO1
	molecules			
4.	Demonstrate of MOT diagram of homo and hetero	1		CO1
	nuclear diatomic molecules with examples			
5.	Analyse the Energy level diagrams of diatomic	2		CO1
	molecules, Equations for atomic and molecular orbitals			
6.	Explain of π -molecular orbitals of butadiene and	1	1	CO1
	benzene			
7.	Examine the CFT Diagram of Octahedral complex	1		CO1
8.	Explain of CFT Diagram for Tetrahedral Complex	Assignment		CO1
9.	Correlate the Energy level diagrams for transition metal	2		CO1
	ions and Magnetic properties of transition compounds.			
	UNIT II			
	FUNDAMENTALS AND APPLICATIONS OF	SPECTROS	СОРУ	
10.	Introduction and Types of Spectroscopy	1		CO2
11.	Discuss the basic concepts, Principles of UV-Visible	1		C06
	spectroscopy and Electronic Transition Level			
12.	Demonstrate the Instrumentation and working	1		CO6
	procedure of UV-Visible Spectroscopy			
13.	Applications of Electronic spectroscopy	1		CO6
14.	Discuss the basic concepts and Principles of Rotational	2		CO2
14.				
14.				
14.	and Vibrational spectroscopy	2		CO2
	and Vibrational spectroscopy Demonstrate the Instrumentation and working	2		CO2
	and Vibrational spectroscopy Demonstrate the Instrumentation and working procedure of IR Spectroscopy	2		
15.	and Vibrational spectroscopy Demonstrate the Instrumentation and working procedure of IR Spectroscopy Explain of selection rules and Applications of rotational			CO2 CO2
15.	and Vibrational spectroscopy Demonstrate the Instrumentation and working procedure of IR Spectroscopy Explain of selection rules and Applications of rotational and Vibrational spectroscopy of diatomic molecules			CO2
15. 16.	and Vibrational spectroscopy Demonstrate the Instrumentation and working procedure of IR Spectroscopy Explain of selection rules and Applications of rotational	2		
15. 16.	and Vibrational spectroscopy Demonstrate the Instrumentation and working procedure of IR Spectroscopy Explain of selection rules and Applications of rotational and Vibrational spectroscopy of diatomic molecules Introduction and principle of Nuclear magnetic	2	1	CO2

()

	spectroscopy			
	UNIT III SURFACE CHARACTERIZATION AND ION		IEID OT /	
20.	SURFACE CHARACTERIZATION AND ION Introduction of X-ray Photoelectron Spectroscopy		NERGY	
20.	(XPS) & its applications	2		CO3
21.	Instrumentation and application of XRD	A ==:		0.00
22.	Explain of Ionic, dipolar and Vander Waals interaction	Assignment		CO3
23.	Deduce the equation of state of real gases – critical	2		CO3
23.	phenomena	2		CO3
24.	Explain of Effective nuclear charge, penetration of	1		CO3
	orbitals			
25.	Express the electronic configurations, Hund rule	1		CO3
26,	Explain Atomic and Ionic Sizes according to periodic table	1	1	CO3
27.	Express the Ionization energies, Electron affinity, Polarizability and Oxidation states	2		CO3
28.	Analyse the Coordination numbers and geometries	1		CO3
29.	Analyse the geometries in Coordination Compound	1		CO3
	UNIT IV	h, it		
	THERMODYNAMICS AND COR	ROSION		
30.	Remember the Hard soft acids and bases with examples	2		CO4
31.	Explain the thermodynamic terms: system, surroundings and universe	1		CO4
32.	Establish the entropy and free energies	1		CO4
33,	Introduction and Explanation of EMF Cell potentials	1	1	C06
34.	Solve the Nernst equation and applications	1		C06
35.	Explain the Acid base, oxidation reduction and solubility equilibria	2		CO4
36.	Introduction and explanation of water Chemistry	2		CO4
37.	Classify the types of corrosion and its significant	2		CO4
38.	Demonstrate the Methods of corrosion control with examples	1		CO4
	UNIT V			
	SYNTHESIS OF ORGANIC COMPOUNDS, REACTI	IONS AND M	ECHANI	SMS
39.	Discover the Mechanism of substitution reactions (SN1 & SN2)	2		CO5
40.	Discuss the Addition reactions and Elimination reactions (E1 & E2 Mechanism)	2		CO5
41.	Classify the Oxidation, reduction, cyclization and ring opening reactions	2		CO6
42.	Explain the optical activity, absolute configuration and Conformational analysis	1		CO5
43.	Discuss the Isomerism in transition metal complex and Representation of 3 dimensional structures with	Assignment		CO6

	examples			
44.	Distinguish the Structural isomers and Stereoisomers with examples	2		CO5
45.	Explain the Configurations, symmetry, and chirality	1		CO5
46.	Discuss the Enantiomers and diastereomers with examples	2		CO6
47,	Represent the Synthesis of commonly used drug molecules with Examples.	1	1	CO6

Chemistry Laboratory (Contact Hours - 20)

1,	Determine the hardness (Ca^{2+}) of water using EDTA – Complexometric method	2	CO2
	Analyse the amount of calcium present in given water sample using titration method.		
2.	Estimate the amount of chloride content in a water sample. Analyse the amount of chloride present in given water sample using Argentometric method.	2	CO2
3.	Determine the strength of an acid using pH meter	2	0.01
	Determine the strength of HCl using standard NaOH by measuring the pH changes.	2	CO4
4.	Determine the strength of an acid by conductometry. Determine strength of HCl acid using standard NaOH by measuring conductometry method.	2	CO4
5.	Determine the strength of a mixture of acetic and hydrochloric acid by conductometry. Find out the strength of a mixture of acid by measuring conductometry method.	2	CO4
6.	Determine the ferrous ion using potassium dichromate by potentiometric titration. Find out the ferrous ion present in the given solution by potentiometric titration.	2	CO2
7,	Determine the molecular weight of a polymer by viscosity average method Analyse the molecular weight of given polymer solution	2	CO4
8.	Determine adsorption of oxalic/acetic acid from aqueous solution by activated carbon Find out the adsorption of acids in aqueous solution by activated carbon	2	CO4
9.	Determine the rate constant of acid hydrolysis of an ester. Find out the rate constant acid hydrolysis of an ester.	2	CO4
10.	Determine the amount of sodium carbonate, sodium hydroxide in a mixture by titration. Find out the mixture of bases in titration method	2	CO4

Part C- Assessment and Evaluation

Assessment Pattern Theory

There are four Continuous Learning Assessments (CLAs) for theory course Engineering Chemistry.

CLA 1 for 30 marks with unit 1 (full unit) and unit 2 (first half of the unit 2).

CLA 2 for 30 marks with unit 3 (full unit) and unit 2 (second half of the unit 2).

CLA 3 for 30 marks with unit 4 (full unit) and unit 5 (full unit).

CLA 4 for 10 marks (Assignments).

CO's	WEIGHTAGE			
CUS	THEORY	LAB		
CO1	20%	-		
CO2	16%	30%		
CO3	20%			
CO4	16%	70%		
CO5	12%	-		
CO6	16%			

CO WEIGHTAGE

Engineering Chemistry/ U20CYBJ01

CO's	Tests (Mark)							
	CLA 1	CLA 2	CLA 3	CLA 4 Assignments (marks)				
CO1	16 marks			4 marks				
CO2	8 marks	12 marks						
CO3		18 marks		2 marks				
CO4			14 marks					
CO5			10 marks					
CO6	6 marks		6 marks	4 marks				
Total	30 marks	30 marks	30 marks	10 marks				

Assessment Pattern for LAB

There are four Continuous Learning Assessments (CLAs) for the lab course Engineering Chemistry.

CLA 1 for 30 marks with experiments 1 to 3.

CLA 2 for 30 marks with experiments 4 to 6.

CLA 3 for 30 marks with experiments 7 to 10.

CLA 4 for 10 marks (observation & viva-voce).

	Tests (Marks)						
CO's	CLA 1	CLA 2	CI 4 2	Observations & Viva Voce			
	CLAI	CLA 2	CLA 3	CLA 4			
CO2	20 marks	10 marks		5 marks			
CO4	10 marks	20 marks	30 marks	5 marks			
Total	30 marks	30 marks	30 marks	10 marks			

Engineering Chemistry Laboratory/ U20CYBJ01

Final Examination – Weightage 50%

THEORY

CO's	100 MARKS
CO1	20 marks
CO2	12 marks
CO3	20 marks
CO4	18 marks
CO5	14 marks
CO6	16 marks

LAB

CO's	100 MARKS				
cos	EXPERIMENTS	RECORD & VIVAVOICE			
CO2 &CO4	70 marks	30 marks			
Total	70 marks 30 marks				

Part D-Learning Resources

6. Text Books

- 1. Concise Inorganic chemistry: 5th Edition by J.D. Lee, Wiley, 2008.
- 2. William Kemp, Organic Chemistry, 3rd Edition. Mac Millan, 2009.
- Introduction to Chemical Engineering Thermodynamics, J.M. Smith, H.C. Ness, M. Abbott, B Bhatt, 2009.
- 4. Morrison R.T and Boyd R.N., Organic Chemistry, 6th Edition, New York, 1976.

7. Reference Books

- Inorganic Chemistry: Principles of Structure and Reactivity, 4th Edition, By James E. Huheey, Medhi 1983.
- Peter Atkins, Julio de Paula, and James keeler Atkins Physical Chemistry, 11th Edition, 2017.
- 3. Chemistry Laboratory I & II, Dr. A. P. Srikanth, R. Komalavalli, Shreem Bhuvaneswari publications, Ch-44, 2009

8. Other Resources (Online Resources or others)

- i) <u>https://nptel.ac.in/courses/122/101/122101001/</u> Atomic Structure, Structural Chemistry
- ii) https://nptel.ac.in/courses/122/101/122101001/_Titrations : Acid-Base, Redox and Complexometric

O LECTURE NOTES (FOR ALL UNITS,

FROMERING CHEMISTRY SYLLABUS	UNT - ATOMIC AND WOLFCULAR STRUCTURE	Structure of Atom – Introduction- Schrodinger equation - Derivation – Particle in a box solution – Plots of these functions to explore their spatial variations - Forms of the hydrogen atom wave functions. Orbitals and Quantum Numbers.	Atomic orbital – Equation for molecular orbitals – Energy level diagrams of diatomic molecular orbital. Molecular orbitals of diatomic molecules- Homonuclear – Heteronuclear diatomic molecules.	Introduction – Explanation – π -molecular orbitals of butadiene- Applications for conjugated molecules . Aromaticity – π -molecular orbitals benzene.	Crystal field theory – Introduction – Explanation – Energy level diagrams for transition metal ions – Magnetic properties of transition compounds.
------------------------------	--------------------------------------	--	--	--	---

Ó

U

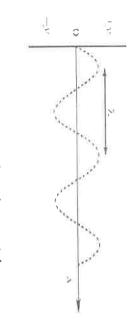
SCHRÖDINGER WAVE EQUATION

into account wave nature of the electron inside an atom. equation is a mathematical expression describing the energy and position of the electron in space and time, taking legendary equation by making the use of wave-particle duality and classical wave equation. Schrödinger wave Heisenberg & Louis de Broglie dual behaviour of electron, an Austrian physicist Erwin Schrödinger developed his

$$\hat{H}\psi = E\psi \qquad \hat{H} = -\frac{h^2}{8\pi^2 m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + V \qquad \hat{H} = -\frac{h^2}{8\pi^2 m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + V \qquad \hat{H} = E\psi$$

$$\frac{-h^2}{8\pi^2 m} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}\right) + V\psi = E\psi$$

$$\frac{-h^2}{8\pi^2 m} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}\right) + V\psi - E\psi = 0$$


$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V)\psi = 0$$
the Nobel Prize for Physics with P.A.M. Dirac in 1933

Schrödinger shared the

APARTOLIN SOX	ψ = Asin kx + B cos kx. where A and B are constants. When x = 0, sin kx = 0 & cos kx = 1; hence, ψ = B when x = 0. However, the boundary condition stated that ψ = 0 when x = 0, and this is only true if B = 0. Rewriting the above equation: ψ = Asin kx; ψ = 0.	Since the probability, ψ^2 , that the particle will be at points between x = 0 and x = a; a cannot be zero. The particle must be somewhere inside the box, the last equation is only valid if: Ka = n π ; where n = 1, 2, 3; n cannot be zero as this would make the probability, ψ^2 , zero meaning that the particle would no longer be in the box. Combining the last two equations gives:	$E = \frac{k^2 h^2}{8\pi^2 m} = \frac{n^2 h^2}{8ma^2}$	where $n = 1, 2, 3 \dots; n$ is the quantum number determining the energy of a particle of mass m confined within an one dimensional box of width a. So, the limitations placed on the value of ψ have led to quantized energy levels, the spacing of which is determined by m and a.
SCHRÖDINGER WAVE FOUNTION PARTICLE	ψ = Asin kx + B cos kx. where A and B are constants. When x = 0, sin kx = 0 & cos kx = 1; henc = 0. However, the boundary condition stated that ψ = 0 when x = 0, and this is only true if B = 0. Rewriting the above equation: ψ = Asin kx; ψ = 0.	Since the probability, ψ^2 , that the particle will be at points be particle must be somewhere inside the box, the last equation cannot be zero as this would make the probability, ψ^2 , zero r box. Combining the last two equations gives:	$\psi = A \sin \frac{n\pi x}{a} \qquad k^2 = \frac{k \pi^2 m E}{k^2}$	where n = 1, 2, 3; n is the quantum number determining within an one dimensional box of width a. So, the limitations penergy levels, the spacing of which is determined by m and a.
	ψ = Asin kx = 0. Howev	particle mus cannot be za box. Combir	r	where n = 1 within an on energy levels

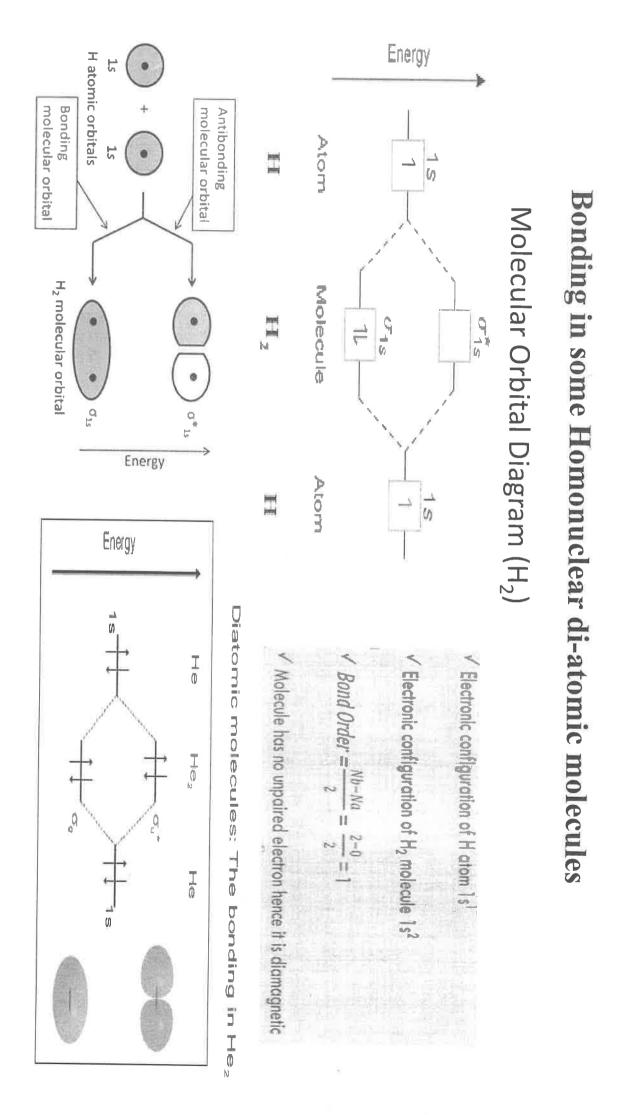
SCHRODINGER WAVE EQUATION: ONE DIMENTIONAL BOX

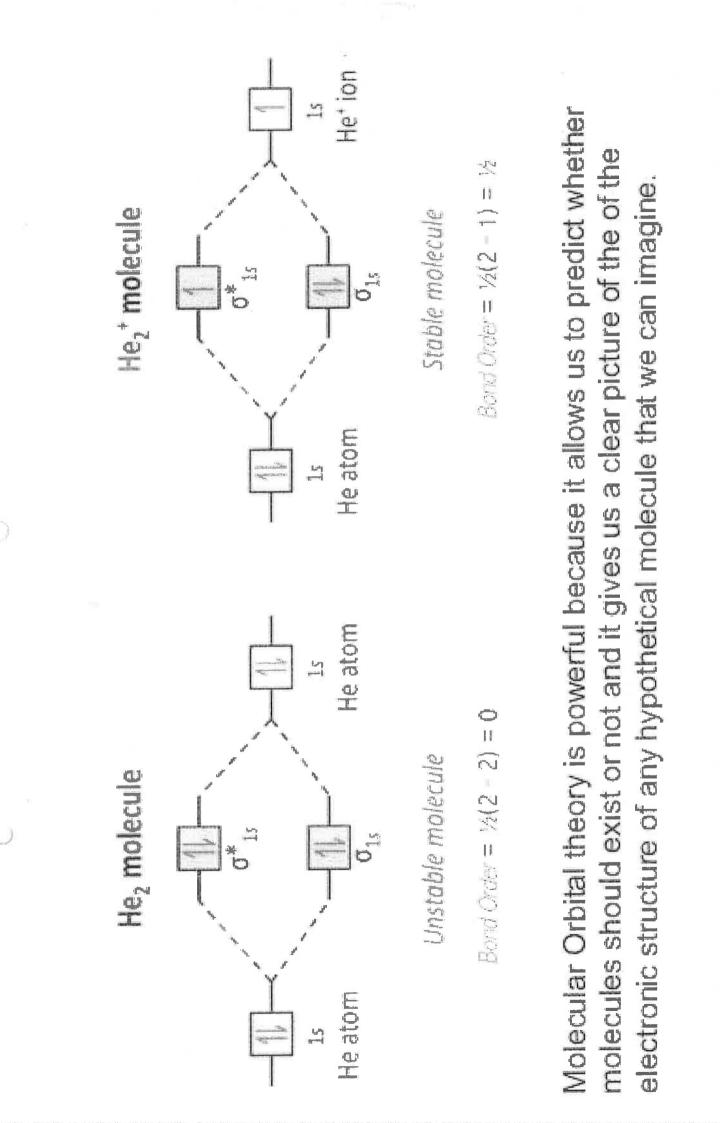
concept involved, consider a wave traveling in a string along the x-axis with velocity v and it examines wave equation that is appropriate for motion in the x direction: its application to the motion of a particle in a one-dimensional box gives the form of the Schrödinger The Schrödinger wave equation may be represented in several forms, in order to understand the

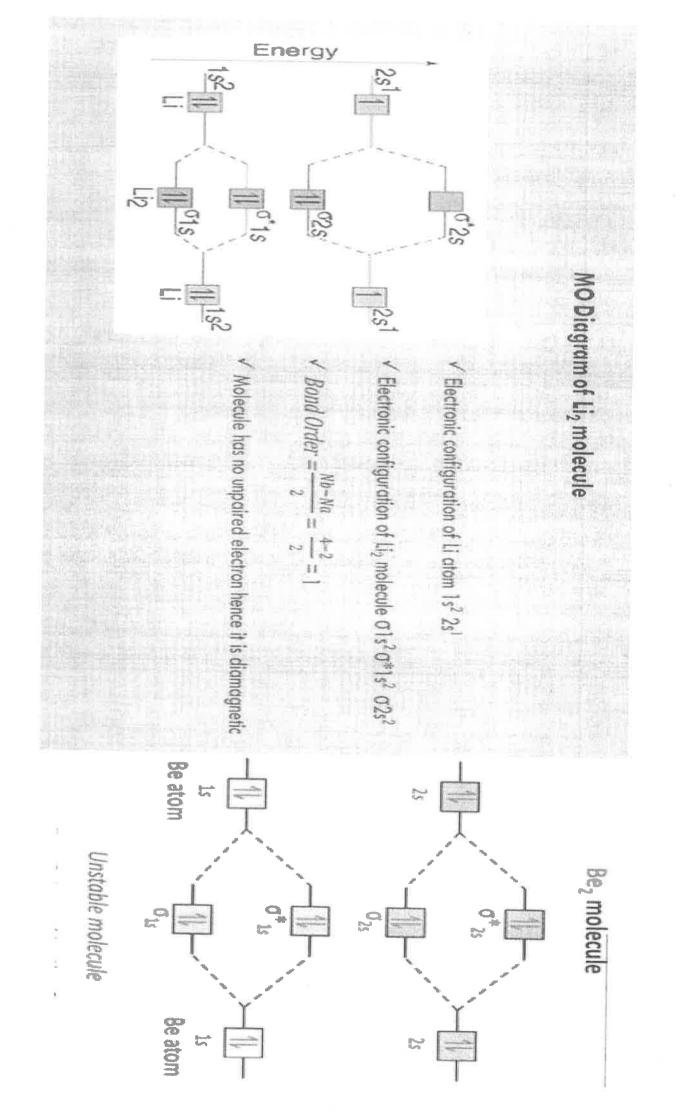
$$\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + \frac{8\pi^2 m}{\hbar^2} (E - V)\psi = 0$$

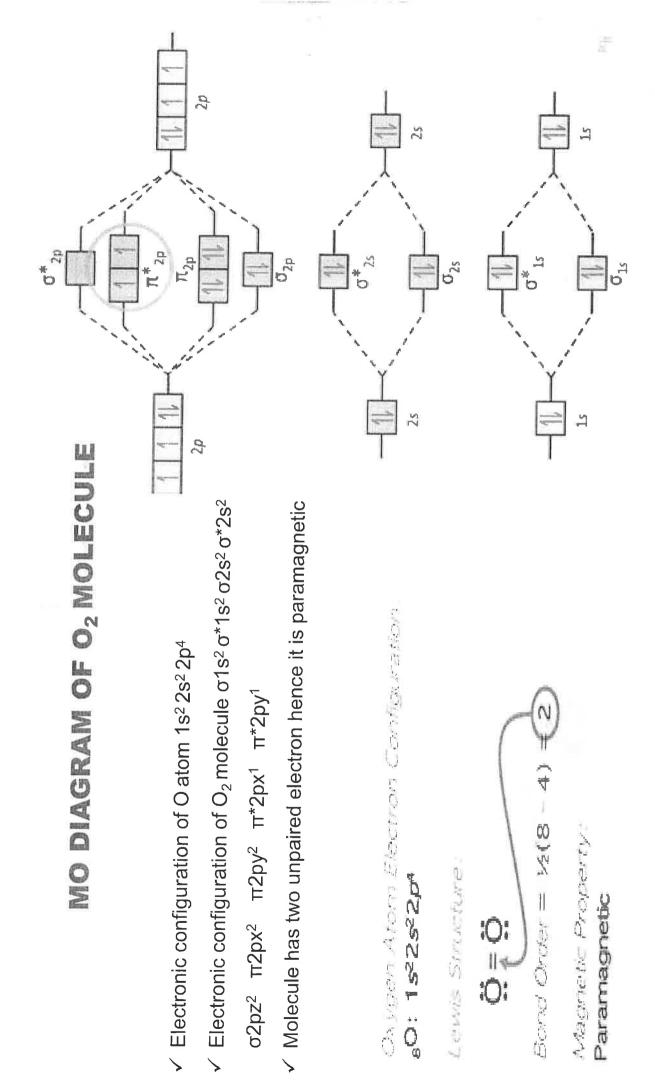
where m = mass, E = total energy and V = potential energy of the particle.

The wave motion in a string.

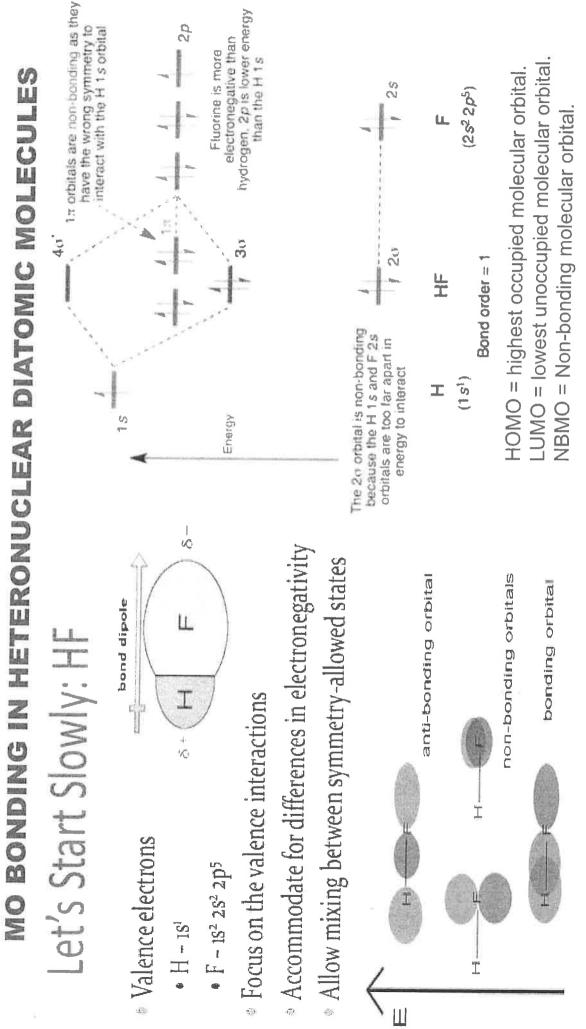

where V = 0Now let us rewrite the Schrödinger equation for the specific case of the particle in the one-dimensional box

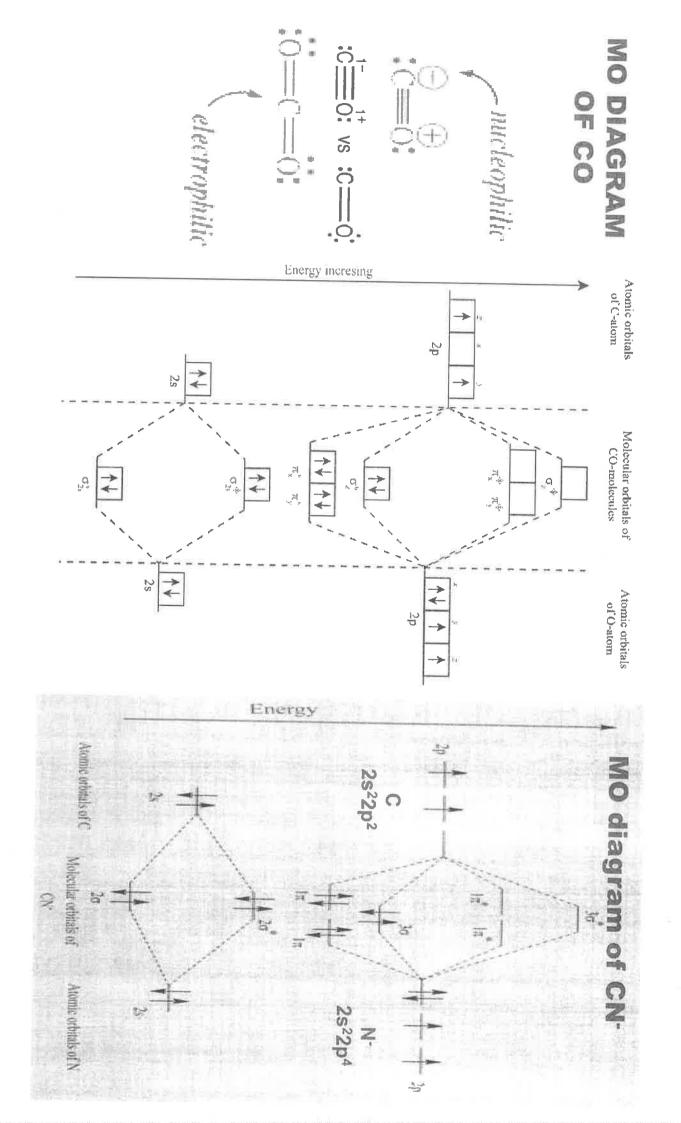

$$\frac{d^2\psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E - V)\psi = 0 \quad \frac{d^2\psi}{dx^2} = -\frac{8\pi^2 mE}{h^2}\psi \quad \frac{d^2\psi}{dx^2} = -\frac{k^2}{h^2}\psi \quad \text{where} \quad k^2 = \frac{8\pi^2 mE}{h^2}$$


5
principle and the Hund's rule.
 (v) The bonding molecular orbitat has lower energy and greater stability than the corresponding antibonding molecular orbitat. (vi) The electron probability distribution around a nucleus in an atom is given by an atomic orbital, the electron probability distribution around a molecule is given by a molecular orbital. (vii) The molecular orbitats are filled like atomic orbitate in a molecular orbitate.
(iv) The number of molecular orbital formed is equal to the number of combining atomic orbitals. When two atomic orbitals combine, two molecular orbitals are formed. One is known as bonding molecular orbital while the other is called antibonding molecular orbital.
 (ii) The atomic orbitals of comparable energies and proper symmetry combine to form molecular orbitals. (iii) Electron in an atomic orbital is influenced by one nucleus, in a molecular orbital it is influenced by two or more nuclei depending upon the number of atoms in the molecule. Thus, an atomic orbital is monocentric while a molecular orbital is polycentric.
Molecular orbital (MO) theory was developed by F. Hund and R.S. Mulliken in 1932. The salient features of this theory are : (i) The electrons in a molecule are present in the various molecular orbitals as the electrons of atoms are present in the various atomic orbitals.
MOLECULAR ORBITAL THEORY

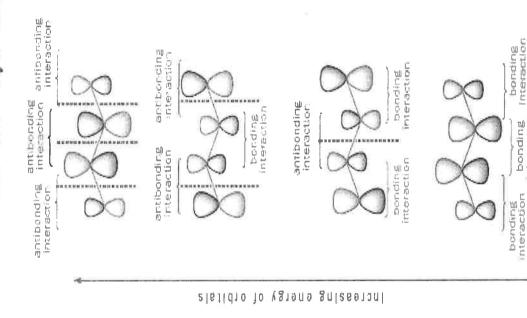

0

J



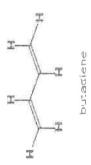


		 magnet. Atoms with paired <u>↑↓</u> electrons are called <i>diamagnetic</i>. Diamagnetic atoms are repelled by a magnet. 	 Atoms with unpaired <u>1</u> electrons are called <i>paramagnetic</i>. Paramagnetic atoms are attracted to a 	Paramagnetism and Diamagnetism
Effect on magnetic field lines	Reaction to magnets	Spin alignment with magnetic field B	Electron pairing	
Field bends slightly away from the material	Very weakly repelled	Anti-parallel	<u>No unpaired electrons</u>	Types of magnetism Diamagnetic
Field bends toward the material	Attracted		<u>At least one</u> unpaired electron	Paramagnetic



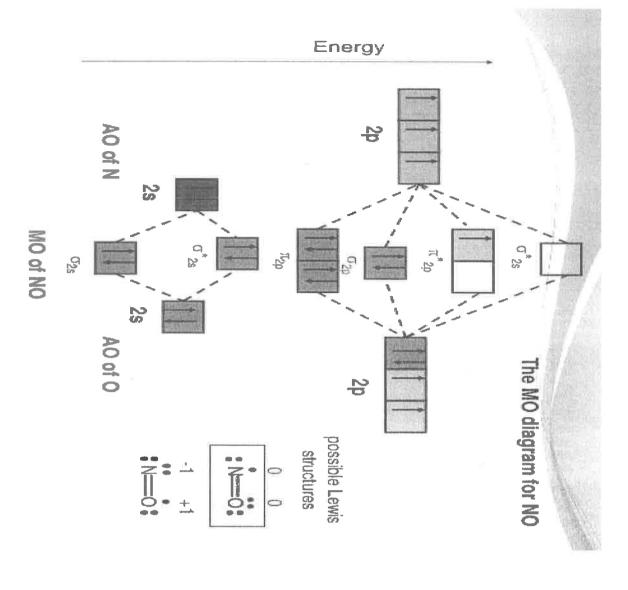
MO DIAGRAM OF 1,3-BUTADIENE

 \bigcirc


₩₄ - 3 nodal planes 0 bonding interactions 3 antibonding interactions overall - antibonding orbital

overal! - antibonding orbital

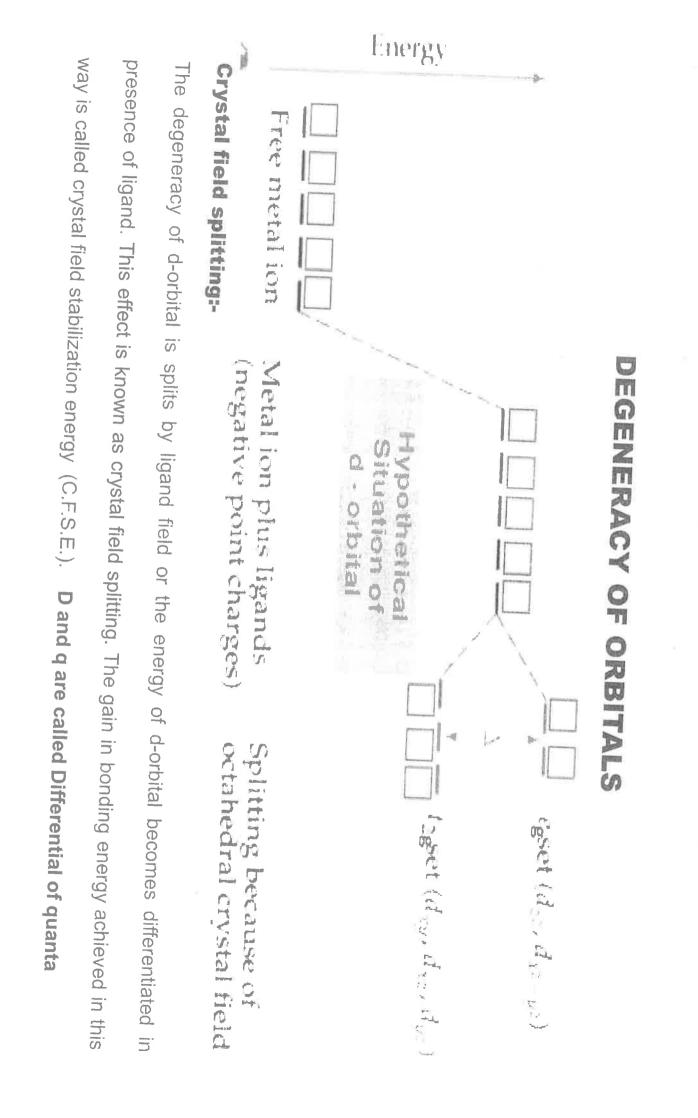
2 antibonding interactions

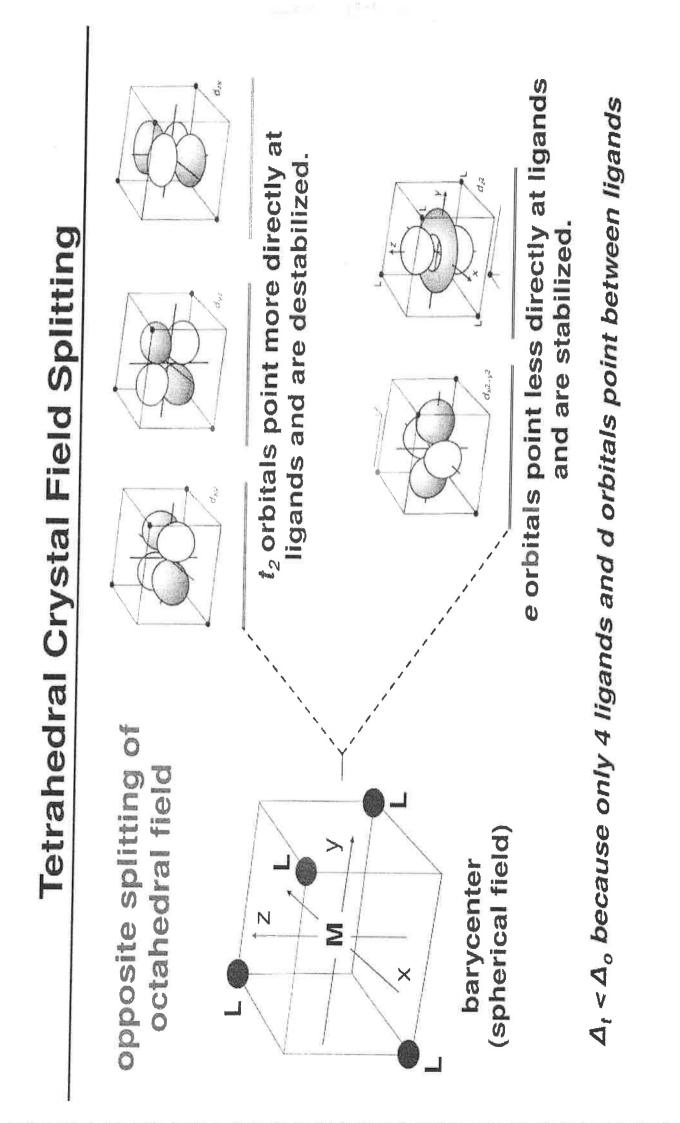

1 bonding interaction Wa - 2 nodal planes

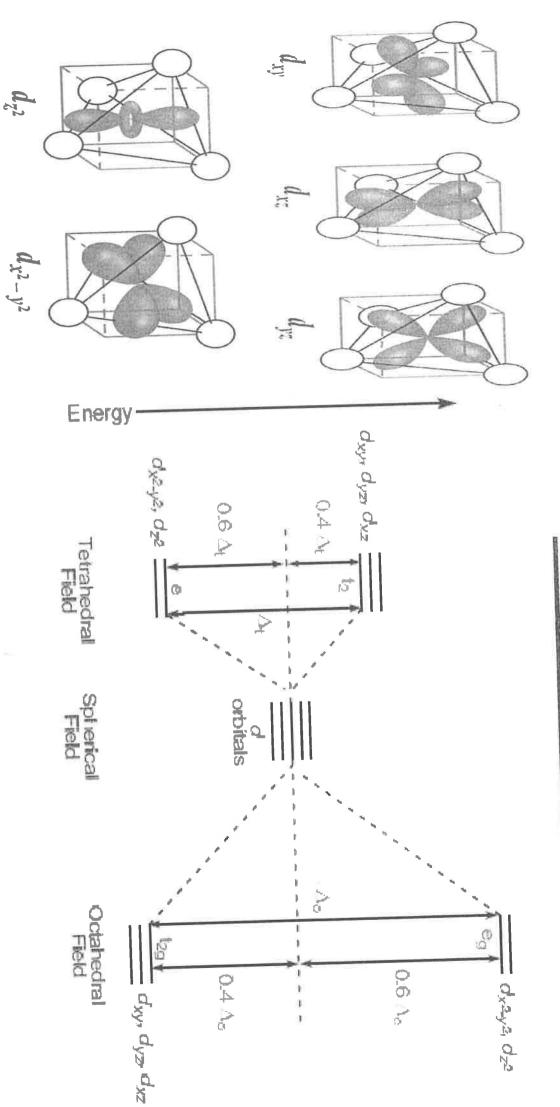
ψ1, - 0 nodal planes
 3 bonding interactions
 0 antibonding interactions
 overall - bonding orbital

bonding

ψ2 - 1 nodal plane
 2 bonding interactions
 1 antibonding interaction
 overall - bonding orbital

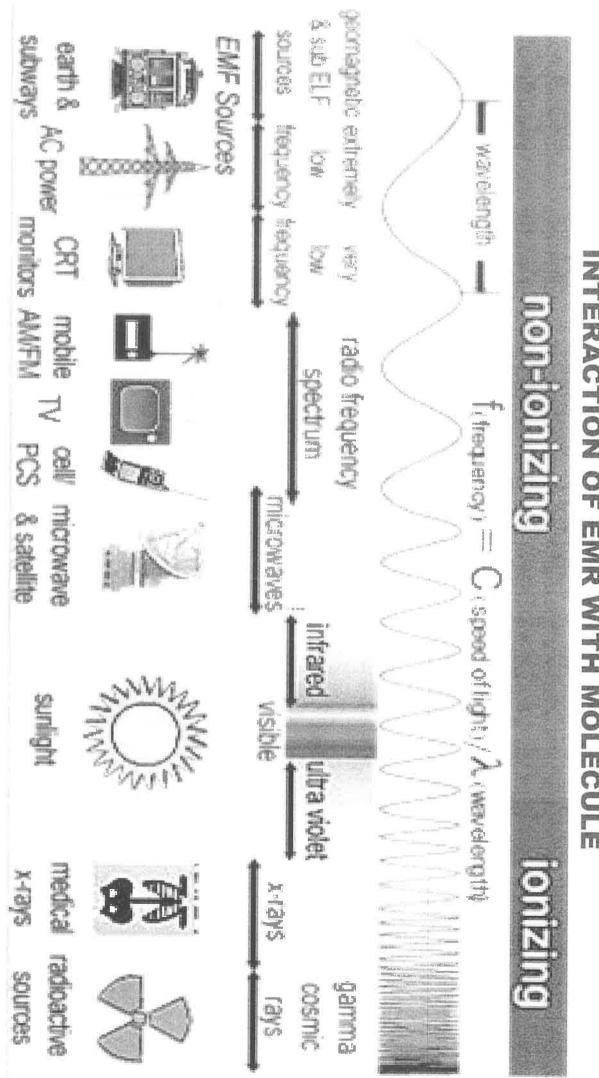



N= $1s^2 2s^2 2p^3$ O= $1s^2 2s^2 2p^4$ Bond Order=2.5 Bond Length= $1.15A^0$


✓ Molecule has one unpaired electron hence it is paramagnetic

Jan 1997	
ASSUMPTIONS	$\begin{array}{cccc} \textbf{Co}^{3+} + \textbf{6:NH}_3 & & & & & & & \\ \textbf{Co}^{3+} + \textbf{6:NH}_3 & & & & & & \\ \textbf{H}_3 \textbf{N} & & \textbf{Co}^{3+} \textbf{-NH}_3 \\ \textbf{metal} & & & & & & \\ \textbf{Igands} & & & & & & \\ \textbf{M}_3 \textbf{N} & & & & & \\ \textbf{NH}_3 & & & & & \\ \textbf{MH}_3 & & & \\ \textbf{MH}_3 & & & & \\ \textbf{MH}_3 & & & \\ \textbf{MH}$
The transition metal ions are placed in the	centre and it is surrounded b
The ligand are either negative	The ligand are either negative (e.g. Cl-, CN-) or neutral molecule (e.g. H_2O , NH_3) are considered as point
charge. If ligand is neutral, th	charge. If ligand is neutral, then negative end of dipole (lone pair) is directed towards metal ion.
There is no interaction betwee	There is no interaction between metal orbitals and ligand orbitals.
The attraction between meta	The attraction between metal ion and ligand is purely electrostatic i.e. 100% ionic band.
The degeneracy of d-orbital of	The degeneracy of d-orbital of free metal ion is removed by ligand when complex is formed.
This theory has been used to	This theory has been used to describe various spectroscopies of transition metal coordination complexes, in
particular optical spectra (colours).	ours).
CFT successfully accounts for some	for some magnetic properties, colours, hydration enthalpies, and spinel
structures of transition metal complexes.	complexes.
CFT was subsequently comb	CFT was subsequently combined with molecular orbital theory to form the more realistic and complex ligand
field theory (LFT), which delive	field theory (LFT), which delivers insight into the process of chemical bonding in transition metal complexes.

Ô



Octahedral Vs Tetrahedral

UNIT II FUNDAMENTALS AND APPLICATIONS OF SPECTROSCOPY	 Spectroscopy – General introduction and Explanation; 	* Types of Spectroscopy – Basic concepts and Principles of Electronic spectroscopy, Rotational	spectroscopy and Vibrational spectroscopy.	Applications of rotational and vibrational spectroscopy of diatomic molecules – Selection rules.	Nuclear magnetic resonance spectroscopy – Introduction, principle, Instrumentation and applications.	sector detector

INTERACTION OF EMR WITH MOLECULE

PRINCIPLES OF UV ABSORPTION SPECTROSCOPY

□ The UV radiation region extends from 10 nm to 400 nm.

□ Near UV Region: 200 nm to 400 nm.

□ Far UV Region: below 200 nm to 10 nm.

□ Far UV spectroscopy is studied under vacuum condition.

□ The visible radiation region extends from 400 nm to 800 nm.

□ In UV spectroscopy, the sample is irradiated with the broad spectrum of the UV radiation.

1 Junior

□ If a particular electronic transition matches with the energy of a certain band of UV, it will be absorbed and

the remaining UV light passes through the sample and is observed.

□ From this residual radiation a spectrum is obtained with "gaps" at these discrete energies – this is called an

absorption spectrum.

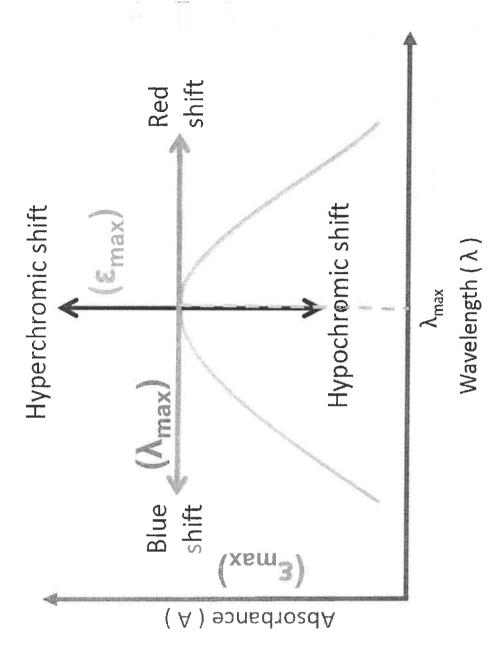
THE POSSIBLE TYPE OF ELECTRONIC TRANSITIONS

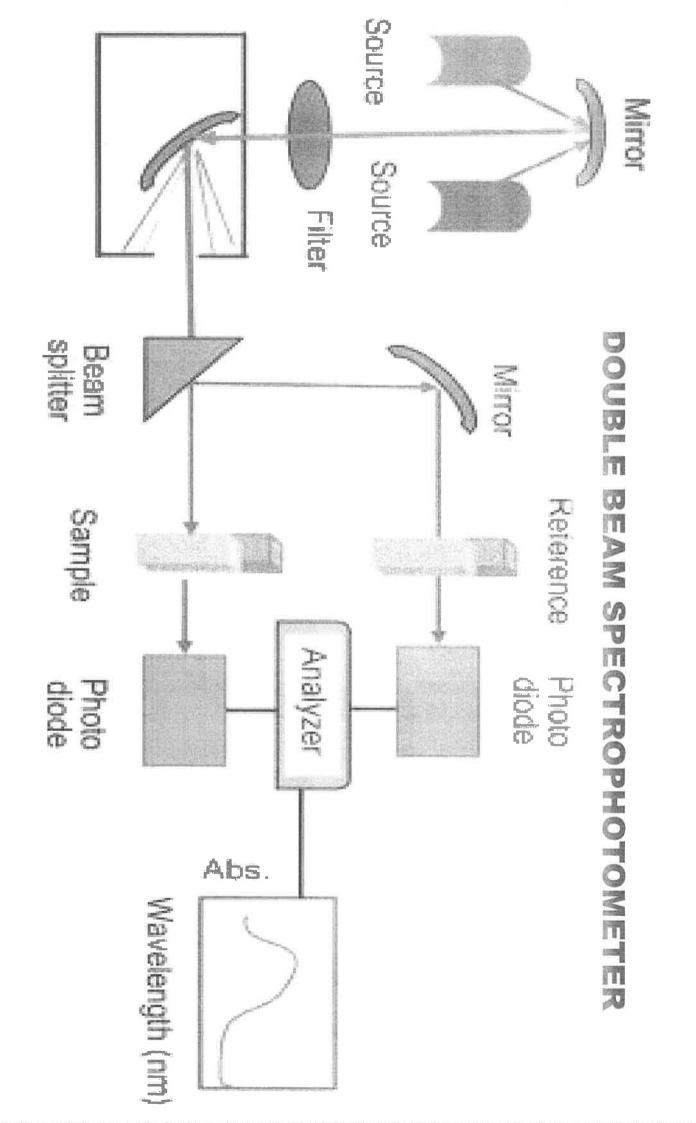
In UV-Vis spectroscopy the elections undergo transitions involving σ , π and n elections. There are six type of Far UV

transitions are possible. They are

4 ယ N Ś $\sigma \rightarrow \sigma^*$ transition, In alkanes & single bond unsaturated compounds, B₂, C₂, CO, CN. n → o* transition, In oxygen, Nitrogen, Sulfur, compounds like H_2 , Li_2 , CH_4 . n → π* transition, Carbonyls, Nitriles like oxygen, $\pi \rightarrow \pi^*$ transition, In alkenes, alkynes, carbonyl like $\pi \rightarrow \sigma^*$ transition, **σ**→ **π*** transition, Carbonyls compounds Nitrogen, Sulfur containing double bond (unsaturated) halogen containing single bond compounds ENERGY n ‡‡n × ਸ ∔ ਸ_* ⊃ ↓ ¶ ∃ + σ* (1<190,nm σ-+π * α +α * n (non-banding) — π (bonding) π^* (anti-bonding) σ[°] (anti-bonding)

·σ (bonding)


1. Bathochromic Shift (Red Shift): When Shifts and Effects


absorption maxima (λ_{max}) of a compound shifts to longer wavelength, it is known as bathochromic shift or red shift.

2. Hypsochromic Shift (Blue Shift):

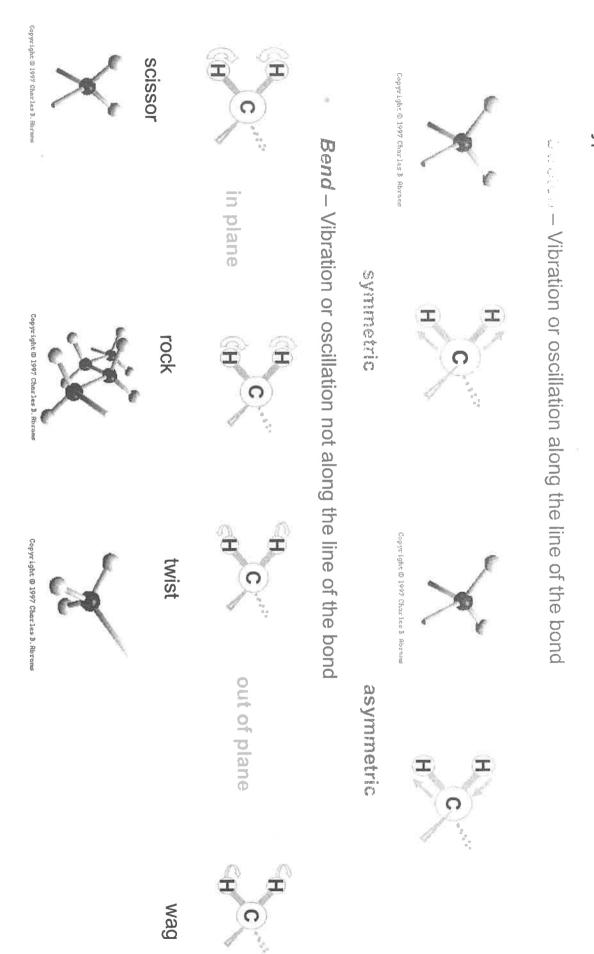
When absorption maxima (λ_{max}) of a compound shifts to shorter wavelength, it is known as hypsochromic shift or blue shift.

- **3. Hyperchromic Effect:** When absorption intensity (ϵ_{max}) of a compound is increased, it is known as hyperchromic shift.
- **4. Hypochromic Effect:** When absorption intensity (ϵ_{max}) of a compound is decreased, it is known as hypochromic shift.

NTRODUCTION

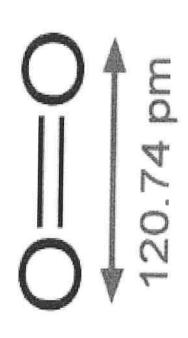
0

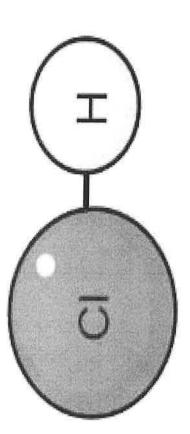
The IR Spectroscopic Process

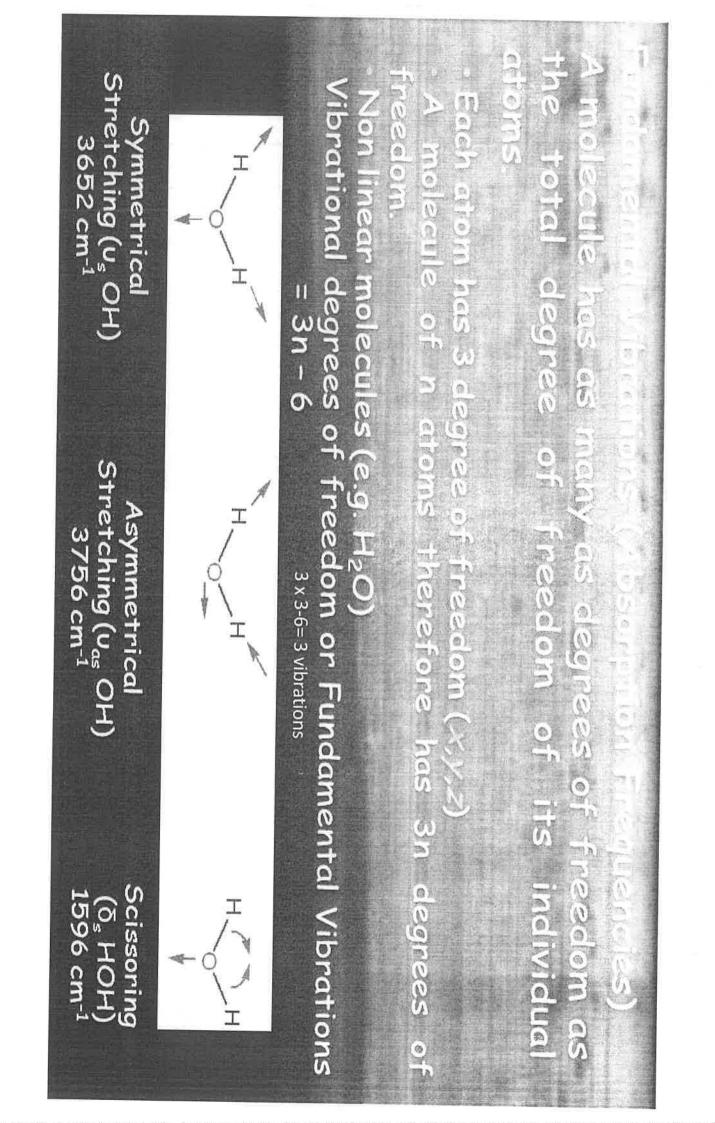

- 1. The quantum mechanical energy levels observed in IR spectroscopy are those of molecular vibration
- 2. We perceive this vibration as heat
- When we say a covariant bond between two atoms is of a certain length, we are citing an average ю.

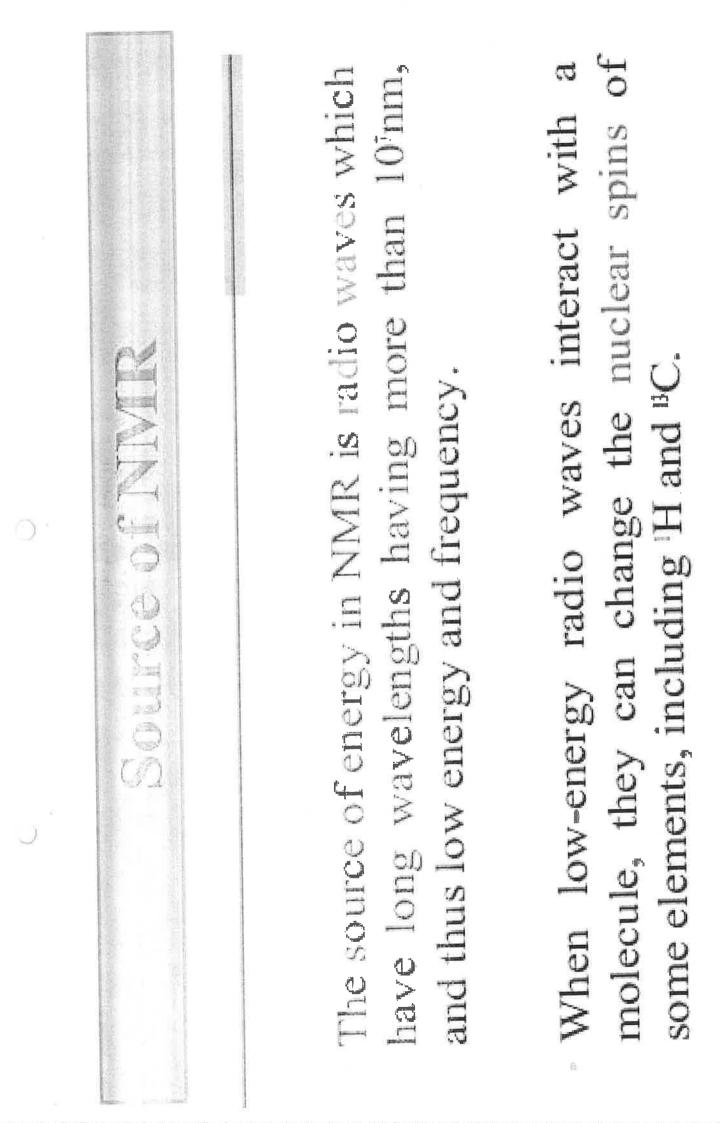
because the bond behaves as if it were a vibrating spring connecting the two atoms

4. For a simple diatomic molecule, this model is easy to visualize:

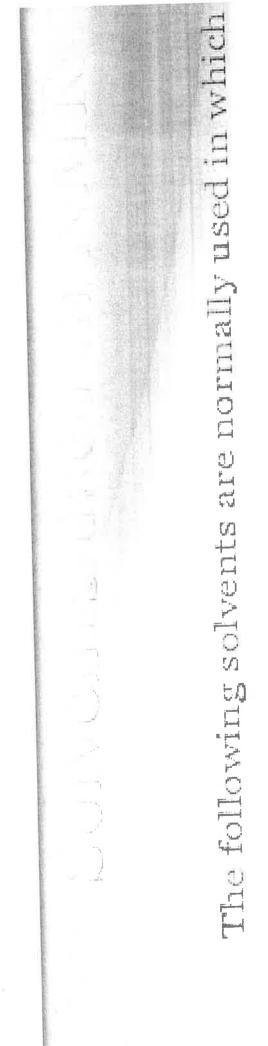

Vibration of a Diatomic Molecule Approximates an Oscillating Spring




5. There are two types of bond vibration:

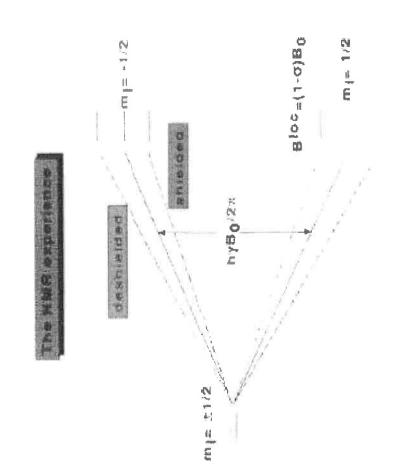

<u>Condition for molecules to be IR active</u> : The change in vibrational movements should produce a net dipole moment.	
--	--

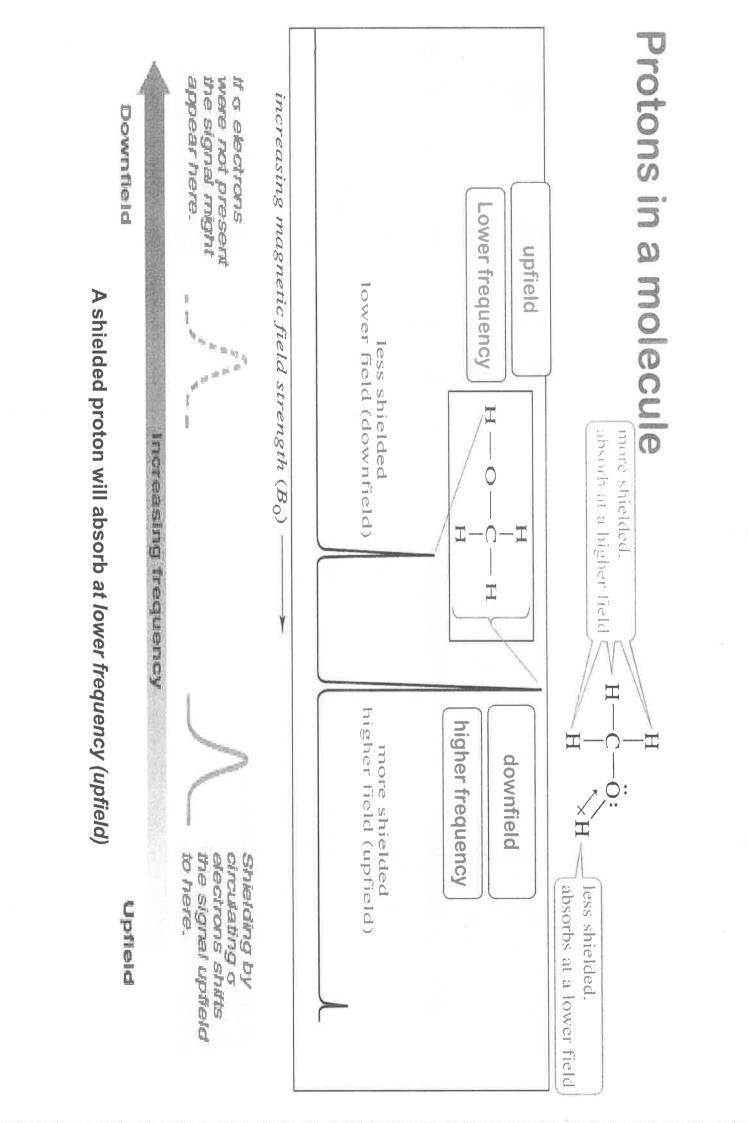
- Homonuclear atoms containing molecules are <u>IR inactive</u>.
- Heteronuclear atoms are <u>IR active</u> if their vibrations result in net dipole moment.

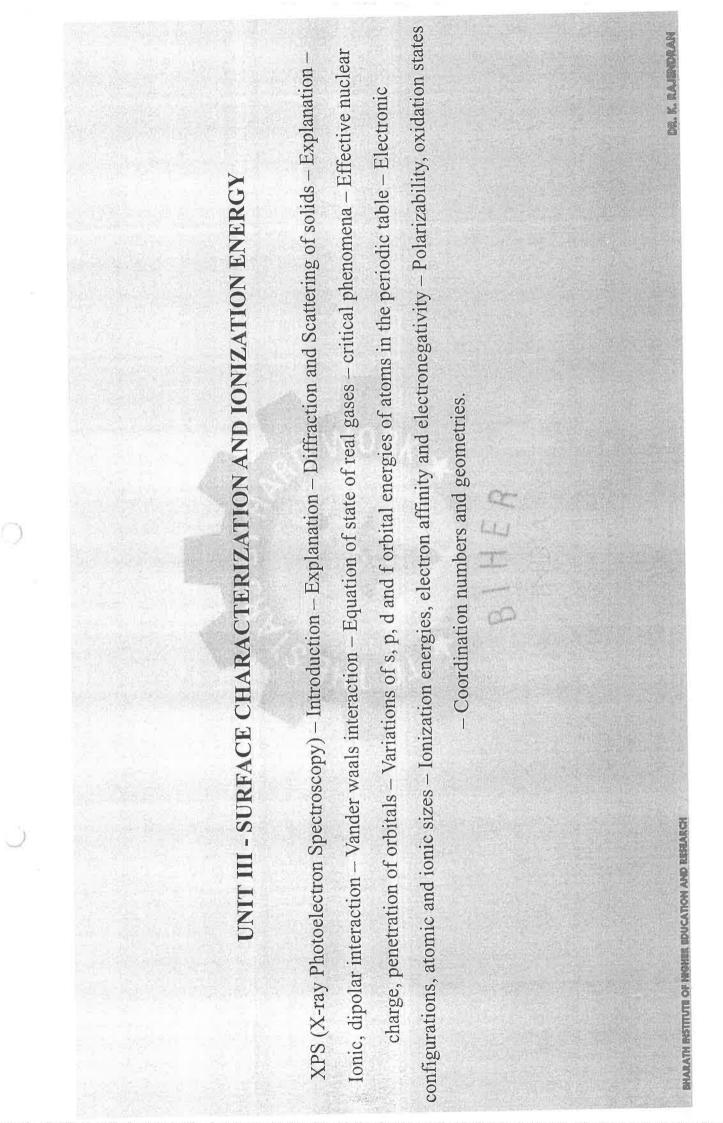


Mass	Atomic	Spin number I	
	Odd or even	integer	¹ H, ¹³ C, ¹⁵ N, ¹⁹ F, ³¹ P ¹¹ B, ³⁵ Cl, ³⁷ Cl, ⁷⁹ Bf, ⁸¹ Bf
Even	Even	no spin Half	¹²⁷ 1, ¹⁷ 0 ¹² C, ¹⁶ 0, ³² S, ³⁴ S
Even	Odd	(no spin)	¹⁴ N, ² H (or D)
		Junte	IOB

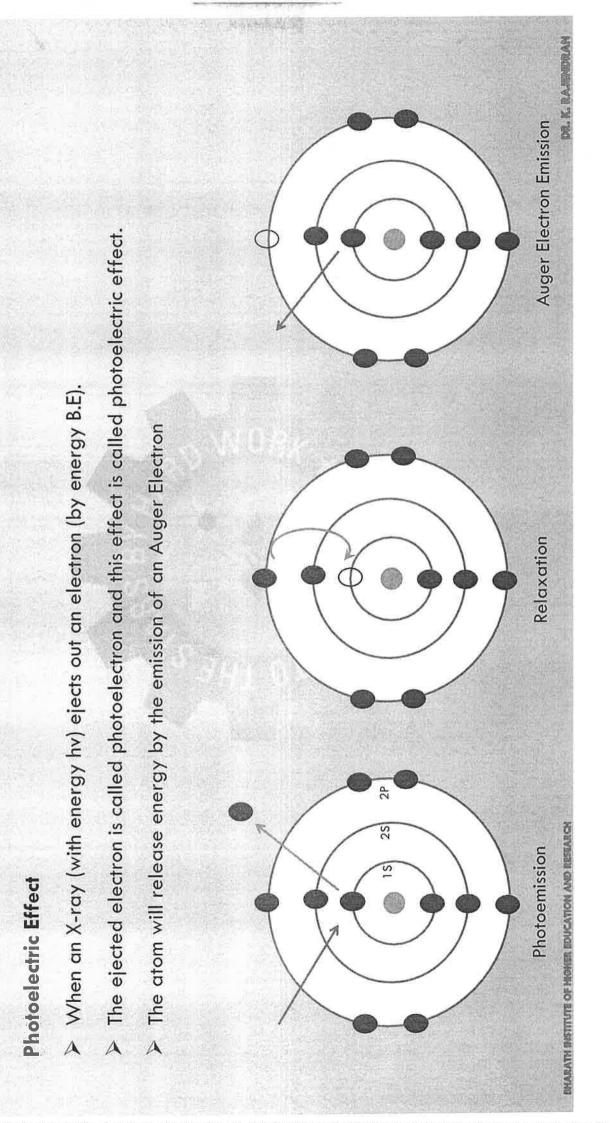
hydrogen replaced by deuterium.


ccl4 - carbon tetrachloride


- CS2 carbon disulfide
- CDCl3 Deuteriochloroform
- C6D6 Hexa deuteriobenzene
- D₂O Deuterium oxide


Chemical shift, $\vartheta = \frac{\text{frequency of signal - frequency of reference}}{\text{spectrometer frequency}} \times 10^{6}$	TMS is the most common reference compound in NMR, it is set at $\delta = 0$ ppm	per million (ppm) between the resonance frequency of the observed proton and tetramethylsilane (TMS) hydrogens.	A chemical shift is defined as the difference in parts	Chemical shift
---	--	---	--	----------------

Shielding and Deshielding


A nucleus is said to be shielded when electrons around the nucleus circulates in a magnetic field and create a secondary induced magnetic field which opposes the applied field . Trends in chemical shift are explained based on the degree of shielding or deshielding , e.g. of deshielding effect

EMARATH SHATTITUTE OF MONES, IDUCATION AND RESEARCH V Principle ➤ The working principle of XPS is ejection of electron from the surface of sample in UHV condition when it is V Intensities of photoelectron provide information about concentration of element in a sample. The electrons emitted from atoms near the sample surface (10-100 Angstroms) can escape the sample surface. Elements present in sample can be identified on the basis of kinetic energies and binding energies of their photoelectrons. expose to the soft x-rays. This depth is about twenty atomic layers BIHER

RAN

Bragg's law

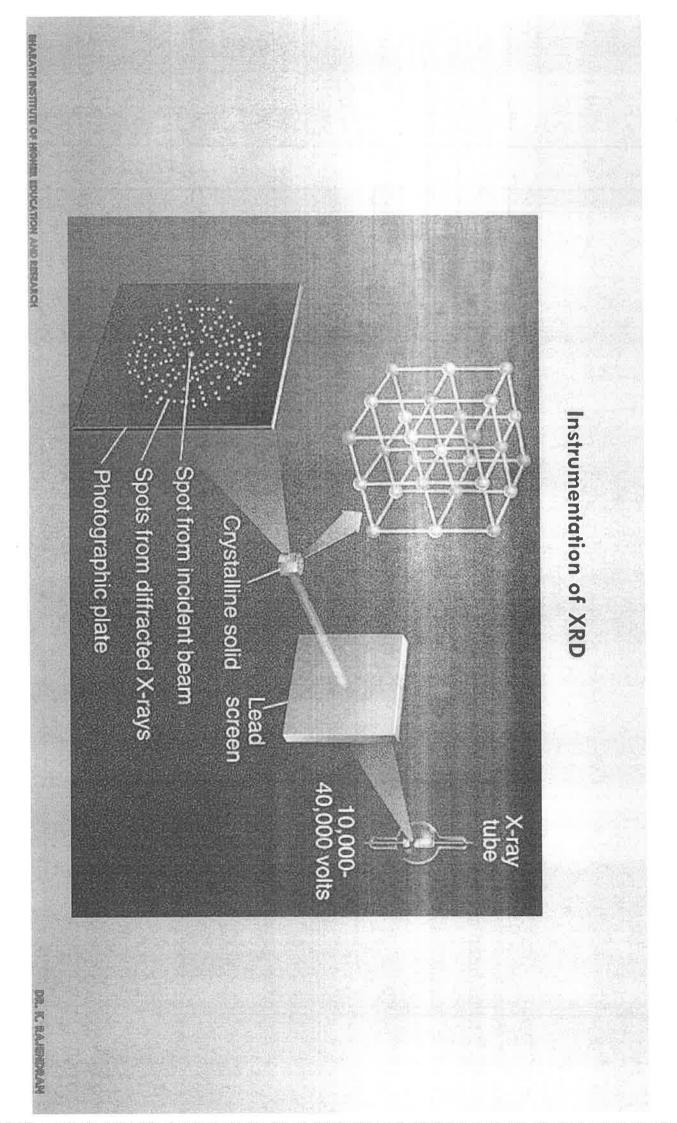
- ➤ Bragg's law was used to explain the interference pattern of X-rays scattered by crystals, diffraction has been developed to study the structure of all states of matter with anybeam.
- > Bragg carried out a series of experiments, the result of which he published the Bragg equation

$n \lambda = 2 d sin\theta$

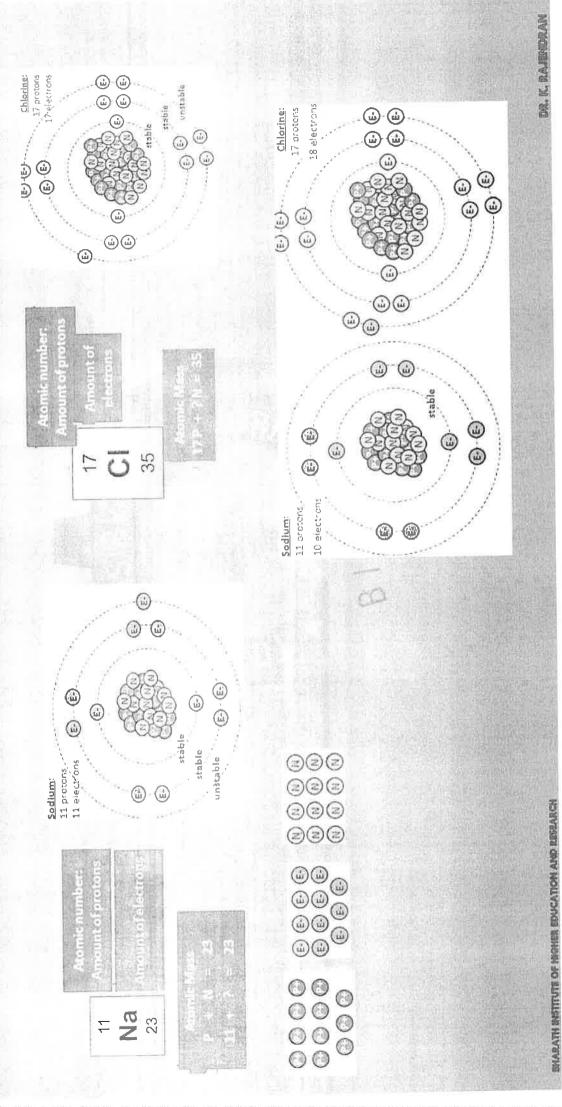
where,

assume n = 1 for the first order reflection

 $\lambda = wavelength$

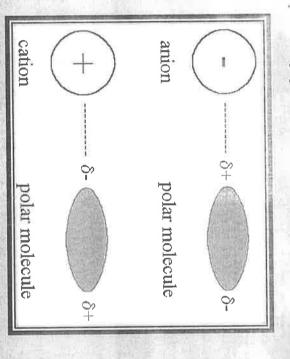

 $\theta = X$ -ray incidence angle

BIHER


d = distance between atomic layer

INARATH INSTITUTE OF MOVIES SDUCATION AND RESEARCH

DR. K. RAMNDRAN



➤ An ion-dipole force is an attractive force that results from the electrostatic attraction between an ion and a neutral

molecule that has a dipole. Most commonly found in solutions.

- V A positive ion (cation) attracts the partially negative end of a neutral polar molecule.
- V A negative ion (anion) attracts the partially positive end of a neutral polar molecule

- V V Ion-dipole forces are generated between polar water molecules and a sodium ion These intermolecular ion-dipole forces are much weaker than covalent or ionic bonds.
- ENARATH BUSTITUTE OF MIGHER BOUCATION AND RESILATON

同時の一個の間

UNIT IV - THERMODYNAMICS AND CORROSION

0

- Thermodynamic functions: energy, entropy and free energy
- Estimations of entropy and free energies 6.4
- Free chergy and and. Cell potentials, the Nernst equation and di.

a pp i cations

And soft acids and bases

- Acid base, oxidation reduction and solubility equilibria
- * Water chemistry
- Corrosion and its control

0
u pesei Junai
57
5
0
[r]
+
5
Family
-
0
Party of the second sec

Consider the following redox reaction

$$M^{n} + ne^{-} \leftrightarrow M$$

Reduction reaction
$$M^{n^{+} + ne^{-}} \rightarrow M$$

For such a redox reversible reaction, the free energy change (ΔG) and its

 $\Delta G =$ equilibrium constant (K) are inter related as

$$- RTln K + RTln \frac{[Product]}{[Reactant]}$$

$$\Delta G = \Delta G^o + RTln \frac{[Product]}{[Reactant]}$$
.....(1) is know as *Van't Hoff isotherm*

The above equation (1) The decrease in free energy (ΔG) in the above reaction $\Delta Go = Standard free energy chance$ Where

will provide electrical energy. In the cell, if the reaction involves transfer of "n"

cell, then the total electrical energy (nFE) produced in the cell

$$-\Delta G = nFE$$
 (or)

$$-\Delta Go = nFE^o \qquad (2)$$

Where

$$-\Delta G = decrease$$
 in free energy change

 $-\Delta Go = dccrease$ in Standard free energy change

Comparing equation 1 and 2. it becomes

$$\Delta G = \Delta Go + RT ln \frac{[Product]}{2}$$

$$-nEF = -nFE^{o} + RTln \frac{[M]}{[Mn]}$$
(3)

$$-nEF = -nFE^{o} + RTln \frac{[M]}{[Mn]}$$

Dividing the above equ

 $-\eta FE$

]]

-nF

 $\frac{RT}{nF} ln \frac{[M]}{[Mn]}$

$$-nEF = -nFE^{o} + RTin \frac{1}{[Mn]}$$
e above equation (3) by $-nF$

Therefore the activity of solid
metal [M] = 1

$$E = Eo - \frac{RT}{nF} ln \frac{[M]}{[Mn^{+1}]}$$

 $E = Eo - \frac{RT}{nF} ln \frac{[M]}{[Mn^{+1}]}$
 $E = Eo - \frac{RT}{nF} ln \frac{[1]}{[Mn^{+1}]}$
 $E = Eo + \frac{RT}{nF} ln [Mn^{+1}]$
 $E = Eo + \frac{2.303RT}{nF} log [Mn^{+1}]$
 $E = Eo + \frac{2.303RT}{nF} log [Mn^{+1}]$

0

J

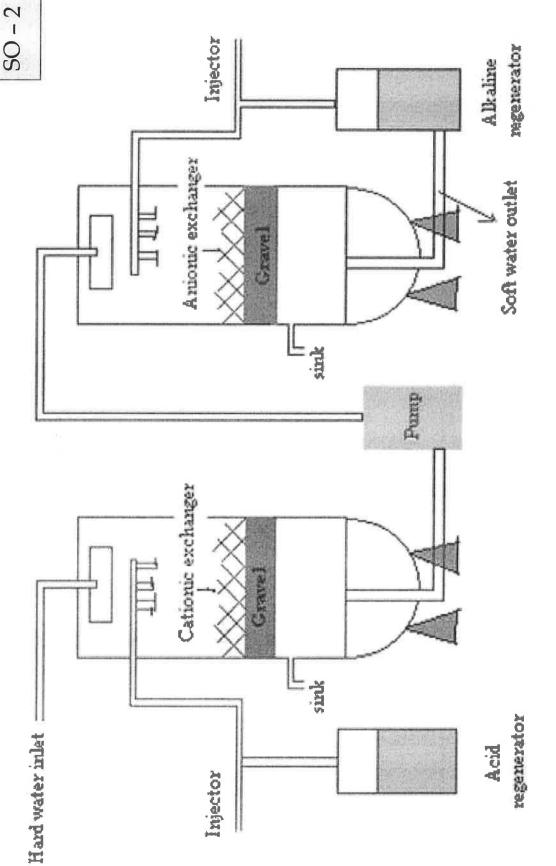
Poids & Bases

*acids are sour tasting

the state of the second of the second s

nationaly in the state of the s

ion (H₃O*)


Second and and A proton donor

*Lewis acid: An electron acceptor

Dases are bitter tasting and slippery

Arrhenius base: Any substance that, when dissolved ion (OH-) in water, increases the concentration of hydroxide

Stonsted-Lowery base: A proton acceptor

Temporarily stored in the pores of the resin

• Ca²⁺, Mg²⁺, Fe²⁺ or Mn²⁺ ions \rightarrow exchanged by H⁺ / OH⁻

Demineralization process

Ō

External Conditioning

Done by Ion-exchange process (or) Demineralization

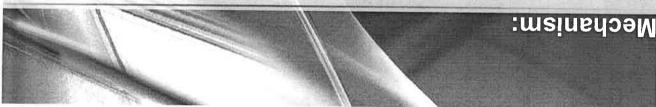
Ion-Exchange process:

harness producing Ca²⁺ and Mg²⁺ ions, but it may contain other ions like Na⁺, K⁺, SO₄²⁻, Cl⁻ etc. The soft water obtained by zeolite process does not contain

the chains are responsible for the ion exchanging properties. cations and anions. The functional groups (-COOH, -SO₃H)attached to organic polymers with a microporous structure which can absorb Ion exchange resins are insoluble, cross-linked, long chain

1. OXIDATION CORROSION	>Direct attack of oxygen at low or high temperature on metal surfaces in the absence of moisture.	Alkali metals –(Na, Li, K etc) and alkaline metals(Mg, Ca, Sn etc) are rapidly oxidised at low temperature.	 At high temperature, almost all metals (except Ag, Au and Pt) are oxidized. 	

 \bigcirc


X DA TON CORROS ON

temperature on metal surfaces absence of moisture. >Direct attack of oxygen at low in the or high

> Alkali metals -(Na, Li, K etc..) and rapidly oxidised at low temperature alkaline metals(Mg, Ca, Sn etc..) are

At high temperature, almost all metals (except Ag, Au and Pt) are oxidized

(i) Oxidation takes place at the surface of the metal forming metal ions(M²⁺)

$$M \rightarrow M^{2+} + 2e^{-}$$

(ii) Oxygen is converted to oxide ion (O²⁻) due to the transfer of electrons from metal.

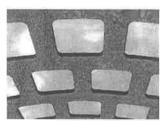
$$1/5 \text{ O}^{5} + 5^{-} \rightarrow \text{O}_{5^{-}}$$

(iii) oxide ion reacts with the metal ions to form metal oxide film. $M + 1/2 O_2 \rightarrow M^{2+} + O^{2-}$ (Metal -oxide film)

The Nature of the Oxide formed plays an important part in oxidation corrosion process.

Metal + Oxygen -> Metal oxide (corrosion product)

mobaddi


 \bigcirc

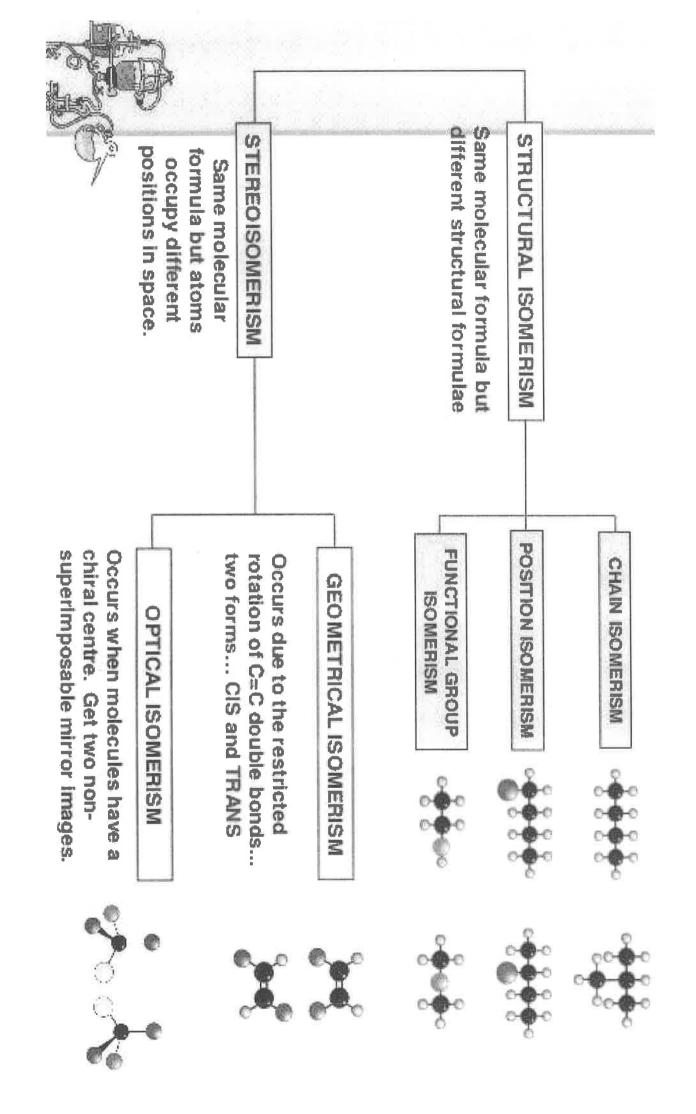
NOISORROSION

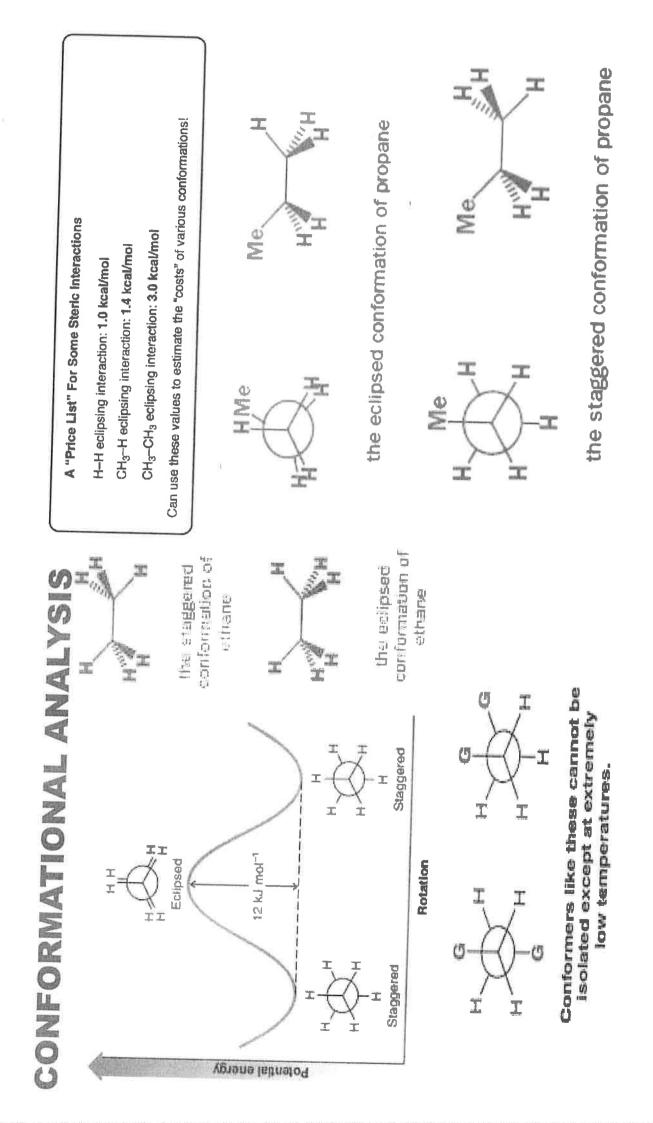
Direct attack of oxygen at low or high temperature on metal surfaces in the absence of moisture.

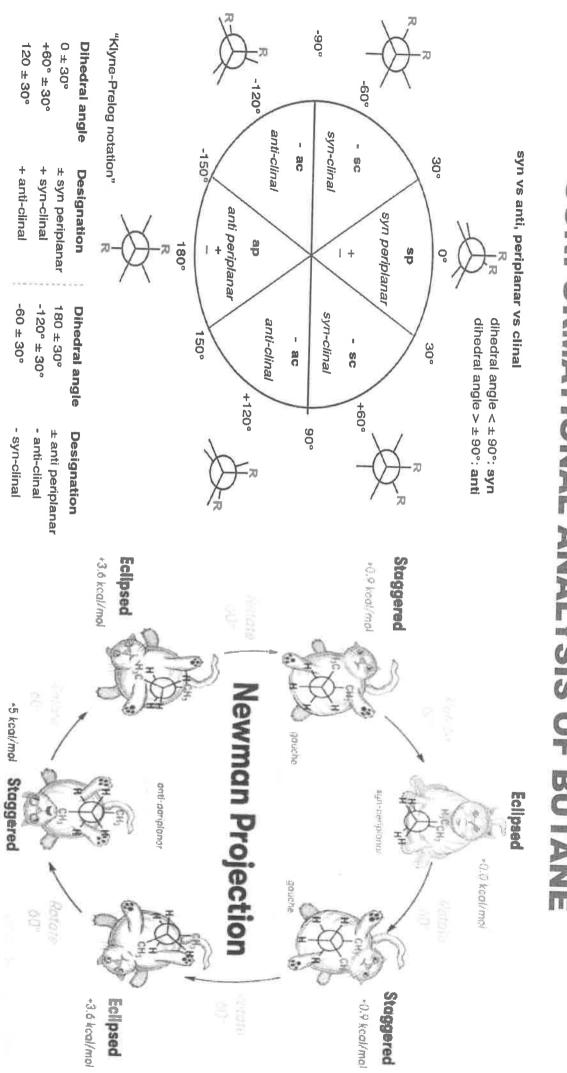
> Alkali metals –(Na, Li, K etc..) and alkaline metals(Mg, Ca, Sn etc..) are rapidly oxidised at low temperature.

At high temperature, almost all metals (except Ag, Au and Pt) are oxidized.

UNIT V - ORGANIC REACTION AND MECHANISMS

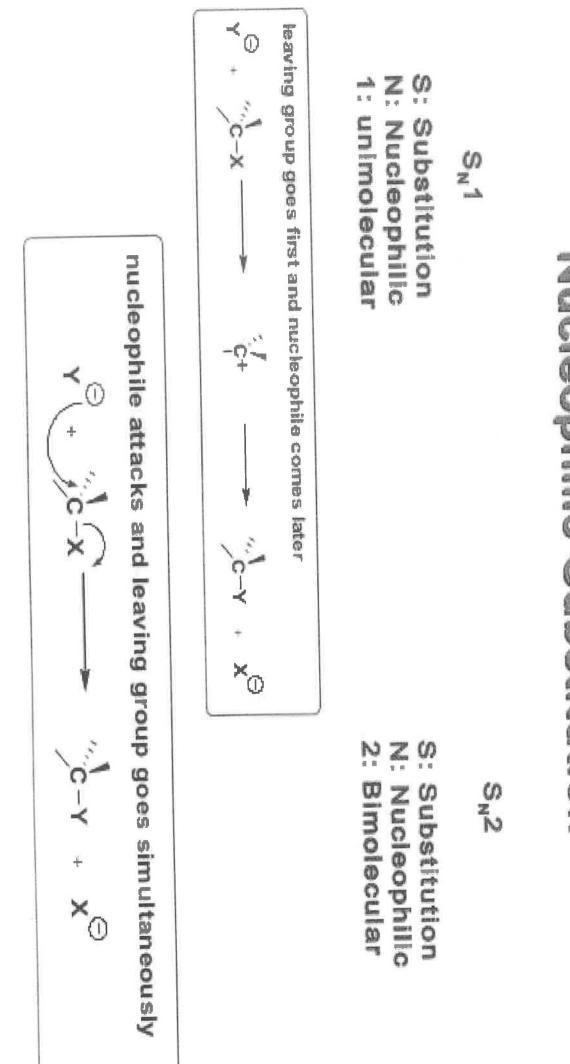

 \bigcirc


& SYNTHESIS OF COMMON DRUGS


- Introduction to type of reactions involving substitution-Addition-Elimination.
- Oxidation and reduction reactions.
- Cyclization and ring opening reactions.
- Optical activity, Absolute configurations-Conformational analysis.
- Isomerism in transition metal complex & representation of 3 dimensional structures.
- Structural isomers and stereoisomers Configurations and symmetry and chirality Enantiomers,

diastereomers.

Introduction-Synthesis of commonly used drug molecules-Examples.

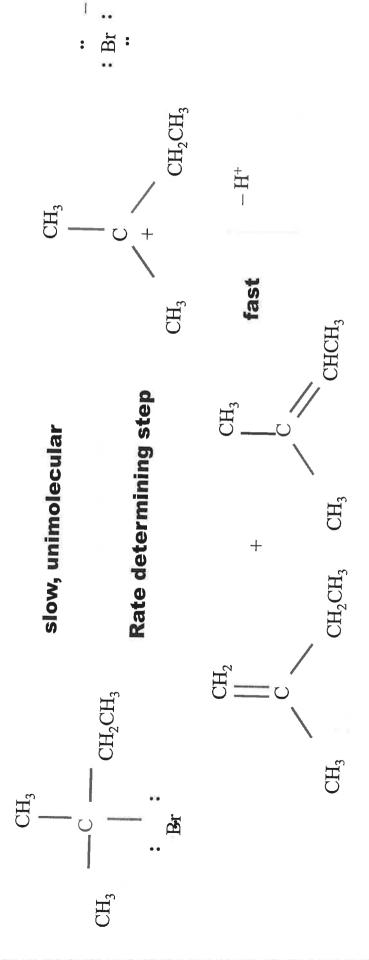


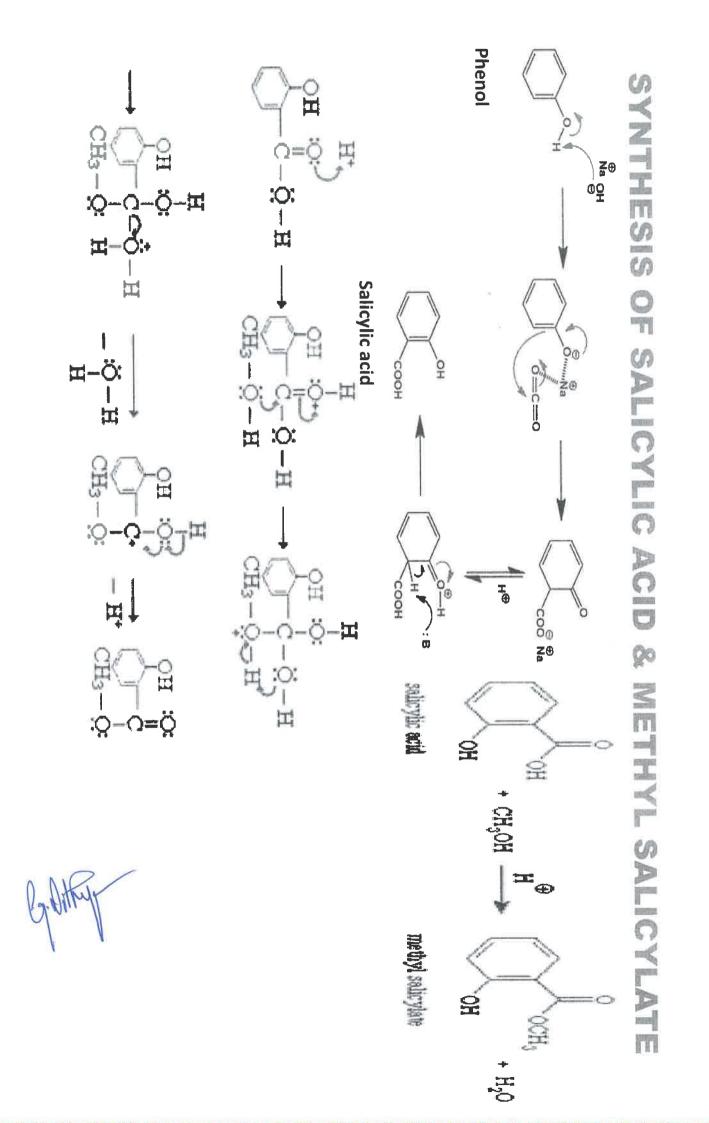
CONFORMATIONAL ANALYSIS OF BUTANE

NUCL	NUCLEOPHILC SUBSTITUTION REACTION
Content	Nucleophilic Substitution -
	 Nuccophile (non bonding electron) attack the partial positive charge carbon (nucleus)
- SN1 Keaction	Chloride (halogen) - leaving group and substituted by nucleophile
	 Nucleophile replace/substitute the halogen
	Leaving gp R, Nucleophilic R.
	wuceopnie attack

Ő

J




Nucleophilic Substitution

The E₁ Mechanism

2)

- Alkyl halides can undergo elimination in absence of base.
- Carbocation is intermediate
- Rate-determining step is unimolecular ionization of alkyl halide

CLA I - QUESTION PAPER & ANSWER KEY

Ó

solution (Article States)

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Chemistry

CONTINUOUS LEARNING ASSESSMENT -I

U20CYBJ01 – ENGINEERING CHEMISTRY

ACADEMIC YEAR/SEM : 2022-2023/ Term 1

TIME : 1 hour 30 mins

MARKS: 30 Marks

INSTRUCTIONS: Answer all the Questions (COMMON TO ALL BRANCHES)

Q. No	Part – A Answer all the Questions (5 x $2 = 10$)	Weightage	СО	Blooms level
1	Define chromophore.	2	CO6	2
2	Define Spectroscopy.	2	CO2	2
3	What is the selection rule for IR?	2	CO2	3
4	Why homo diatomic molecules are IR inactive?	2	CO2	3
5	What are the regions of UV spectroscopy?	2	CO2	3
	PART-B Answer all the Questions (2 x 4	= 8)		
6	 a) Analyze the MO diagram of 1, 3- Butadiene and predict their HOMO & LUMO orbital. OR b) Analyze the Crystal field splitting energy of d⁵ to d¹⁰ electronic configuration in week field tetrahedral complexes. 	4	CO1	3
7	 a) Examine the possible shifts in UV spectroscopy? OR b) Examine any four possible transitions state in UV spectroscopy 	4	CO6	3
	PART-C Answer all the Questions (1 x 12 =	12)		
8	 a) Analyze the molecular orbital diagram of following molecules and predict their magnetic properties? 1. O₂ 2. NO OR b) Draw and give details about the crystal field theory for 	12	CO1	4
	b) Draw and give details about the crystal field theory for octahedral geometry with an example.			

CO	WEIGHTAGE	
CO1	16	
CO2	8	
CO3		
CO4	<u>i</u>	
CO5		
CO6	6	
TOTAL	30	

Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Chemistry

CONTINUOUS LEARNING ASSESSMENT -I

U20CYBJ01 – ENGINEERING CHEMISTRY

ACADEMIC YEAR/SEM : 2022-2023/ Term 1 .

TIME : 1 hour 30 mins

DATE: 26/04/2023

MARKS: 30 Marks

INSTRUCTIONS: Answer all the Questions (COMMON TO ALL BRANCHES)

Q. No	Part – A Answer all the Questions (5 x $2 = 10$)	Weightage	СО	Blooms level
1	What is the selection rule for UV visible spectroscopy?	2	CO6	2
2	Define spectrum.	2	CO2	2
3	What are the regions of IR spectroscopy?	2	CO2	2
4	Explain the selection rule in IR linear and non-linear molecules.	2	CO2	3
5	Mention the Ionizing & Non-ionizing rays in spectroscopy.	2	CO2	3
	PART-B Answer all the Questions (2 x 4	= 8)		
6	 a) Sketch the MO diagram of benzene and analyze the HOMO & LUMO orbital. OR a) Explain the crystal field splitting pattern of [Fe(CN)₆]⁴⁻ & [Fe(H₂O)₆]²⁺ complexes. 	4	CO1	3
7	 a) Examine the term chromophore and Auxochrome with suitable example? OR b) Examine any four possible effects state in UV spectroscopy? 	4	CO6	3
	PART-C Answer all the Questions (1 x 12 =	12)		
8	 a) Analyze the molecular orbital diagram of following molecules and predict their magnetic properties? F₂ CN b) Draw and give details about the crystal field theory for tetrahedral geometry with an example. 	12	CO1	4

CO	WEIGHTAGE	
CO1	16	
CO2	8	
CO3		
CO4		
CO5		
CO6	6	
TOTAL	30	

Cristing

Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

CONTINUOUS LEARNING ASSESSMENT –I

U20CYBJ01-ENGINEERING CHEMISTRY ACADEMIC YEAR/SEM: 2022-2023/ Term

SET-A

Part - A Answer all the Questions (5 x 2 = 10)

1. Define chromophore.

Ans. The part of a molecule responsible for imparting colour, are called as chromospheres, i.e., the functional groups, C=N etc.

2. Define Spectroscopy.

Ans: It is a technique that uses the interaction of energy with a sample to perform an analysis.

3. What is the selection rule for IR?

Ans: The selection rule says, that vibrations are only IR active (or allowed), if the molecular dipole moment changes during the vibration.

4. Why homo diatomic molecules are IR inactive?

HCI, CO and NO are IR active. While H₂, O₂, Cl₂ are IR

Ans:

inactive.

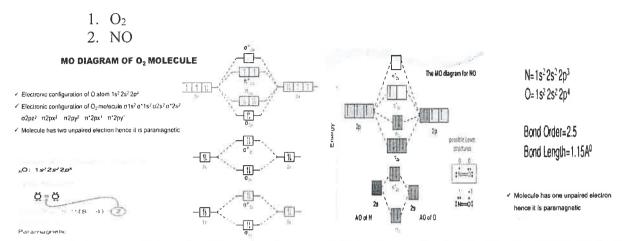
5. What are the regions of UV spectroscopy?

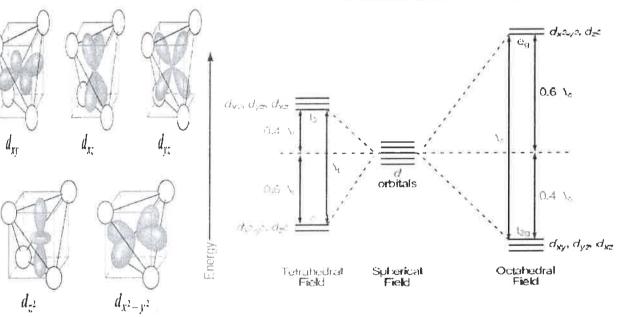
L The UV radiation region extends from 10 nm to 400 nm.

C Near UV Region: 200 nm to 400 nm.

Ans: LI Far UV Region: below 200 nm to 10 nm.

PART-B Answer all the Questions $(2 \times 4 = 8)$


6. a). Analyze the MO diagram of 1, 3- Butadiene and predict their HOMO & LUMO orbital.


b). Analyze the Crystal field splitting energy of d^5 to d^{10} electronic configuration in week field tetrahedral complexes.

PART-C Answer all the Questions $(1 \times 12 = 12)$

8. a). Analyze the molecular orbital diagram of following molecules and predict their magnetic properties?

b) Draw and give details about the crystal field theory for octahedral geometry with an example.

Octahedral Vs Tetrahedral

CLA I – SAMPLE ANSWER SHEETS

()

CLA II - QUESTION PAPER & ANSWER KEY

Ö

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Chemistry

CONTINUOUS LEARNING ASSESSMENT -II

U20CYBJ01 – ENGINEERING CHEMISTRY

ACADEMIC YEAR/SEM : 2022-2023/ Term 1

TIME : 1 hour 30 mins

MARKS: 30 Marks

SET - A

DATE:

INSTRUCTIONS: Answer all the Questions (COMMON TO ALL BRANCHES)

Q. No	Part – A Answer all the Questions (5 x $2 = 10$)	Weightage	СО	Blooms level
1	Why TMS is used as a standard in NMR?	2	CO2	2
2	Mention the NMR active and inactive nuclei. 6C ¹² , 6C ¹³ , 7N ¹⁴ , 7N ¹⁵ , 8O ¹⁶ , 8O ¹⁷	2	CO2	2
3	Define upfield and downfield.	2	CO2	2
4	Write the NMR splitting pattern for CH ₃ COCH ₂ CH ₃	2	CO2	2
5	Is it possible to detect all elements in XPS? Give reason.	2	CO3	2
	PART-B Answer all the Questions (2 x 4 =	= 8)		
6	 a) Examine the chemical shift in 1H NMR of following molecules and arrange them in increasing order of chemical shift. i) CH₃F, CH₃Br, CH₃I, CH₃Cl ii) CH₃OH, CH₃Br, (CH₃)₄Si OR b) Explain the UV instrumentation method with the help of a neat block diagram. 	4	CO2	3
7	 a) Derive the Bragg's equation for XRD with pictorial representation analyze how it used to find out the crystal lattice? OR b) Explain about polarization and how the trend various in periodic table. 	4	CO3	4
	PART-C Answer all the Questions $(1 \times 12 = 1)$	2)		
8	 a) Explain the energy level of orbital arrangement using Pauli, Hund's and Aufbaf rule. OR a. Explain the following terms and write their periodic trends	12	CO3	4

	CO	WEIGHTAGE
	CO1	19 - C
	CO2	12
Arthur	CO3	18
Dillow	CO4	
$\lambda = 1$	CO5	
<i>x</i>	CO6	2 .
	TOTAL	30

Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Chemistry

CONTINUOUS LEARNING ASSESSMENT -II

U20CYBJ01 – ENGINEERING CHEMISTRY

ACADEMIC YEAR/SEM : 2022-2023/ Term 1

TIME : 1 hour 30 mins

MARKS: 30 Marks

DATE:

SET - B

INSTRUCTIONS: Answer all the Questions (COMMON TO ALL BRANCHES)

Q. No	Part – A Answer all the Questions (5 x $2 = 10$)	Weightage	СО	Bloom: level
	Define Chemical shift.	2	CO2	2
-	Mention the NMR active and inactive nuclei. H ¹ , $_1D^2$, $_8O^{16}$, $_9F^{19}$, $_8O^{16}$, $_{15}P^{31}$	2	CO2	2
3	Define shielding and deshielding of protons.	2	CO2	2
2	Write the NMR splitting pattern for CH ₃ CH ₂ COOH	2	CO2	2
	Define binding energy?	2	CO3	2
	PART-B Answer all the Questions (2 x 4 =	= 8)		
6	 a) Examine the chemical shift in 1H NMR of following molecules and arrange them in increasing order of chemical shift. CH₃Cl, CHCl₃, CH₂Cl₂, CH₄ CH₃F, CH₃I, (CH₃)₄Si b) Explain the IR instrumentation method with the help of a neat block diagram. 	4	CO2	3
7	 a) Analyze the applications of XRD and how it used in annealing of metal alloys? OR b) Explain the principle of XPS and how binding energy helps to find out the XPS spectra? 	4	CO3	4
	PART-C Answer all the Questions $(1 \times 12 = 1)$	12)		1
8	 a. Find out oxidation number K₃[Fe(CN)₆], Ni[CO₄], KClO₄, [Cu(NH₃)₆]Br₂, [Fe(H₂O)₆]Cl₂, K₂CrO₄ OR a. Explain the following terms and their periodic trends i) Atomic Radii ii) Ionic Radii iii) Electron affinity 	12	CO3	4

	CO	WEIGHTAGE
0/	CO1	<u> </u>
thit	CO2	12
tor. A	CO3	18
	CO4	
	CO5	
	CO6	5 2
	TOTAL	30

Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

CONTINUOUS LEARNING ASSESSMENT -II

U20CYBJ01-ENGINEERING CHEMISTRY ACADEMIC YEAR/SEM: 2022-2023/ Term

SET-A

Part – A Answer all the Questions $(5 \times 2 = 10)$

1. Why TMS is used as a standard in NMR?

Ans: Tetramethylsilane became the established internal reference compound for ¹H NMR because it has a strong, sharp resonance line from its 12 protons.

2. Mention the NMR active and inactive nuclei.

Ans: NMR active, ${}_{6}C^{13}$, ${}_{7}N^{15}$, ${}_{8}0^{17}$ and Inactive ${}_{6}C^{12}$, ${}_{7}N^{14}$, ${}_{8}0^{16}$

3 Define upfield and downfield.

Ans: Nuclei that absorb on upfield side are strongly shielded, whereas nuclei that absorb on the downfield side are weakly shielded

4. Write the NMR splitting pattern for CH3COCH2CH3

Ans: CH₃ Singlet, CH₂ quartet, CH₃ triplet

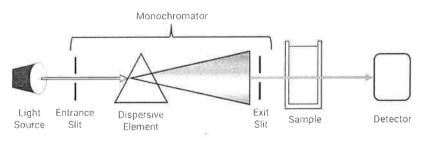
5. Is it possible to detect all elements in XPS? Give reason.

Ans: XPS has become the most widely used for identified on sample surfaces from the binding energies of photoelectrons emitted during X-ray excitation.

PART-B Answer all the Questions $(2 \times 4 = 8)$

6. a) Examine the chemical shift in 1H NMR of following molecules and arrange them in increasing order of chemical shift.

i) CHF, CH3Br, CH3I, CHCI

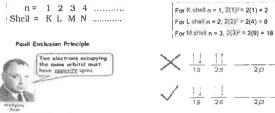

ii) CH2OH, CH3Br, (CH1)4Si

Ans: CH₃I, CH₃Br, CH₃Cl, CHF,

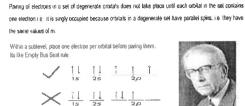
(CH1)₄Si, CH₃Br, CH₂OH

OR

b) Explain the UV instrumentation method with the help of a neat block diagram. Ans:



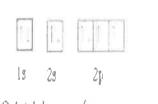
Ans:


FILLING OF ORBITALS: HUND'S RULE

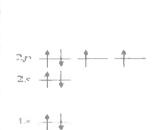
FILLING OF ORBITALS: PAULI EXCLUSION PRINCIPLE This rule deals with filing of electrons in the orbitals belonging to the same substited of the equal energy

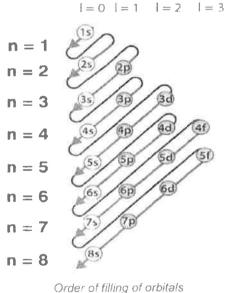
No two electrons in an atom may have the same set of four quantum numbers (n, i, m, and m), it (ollows that called as degenerate orbitals each orbital can accommodate a maximum of two electrons with different mixeliums (different spins-spinpaired). The maximum number of electrons in the shell with principal quantum number n is equal to $2n^2$. Paring of electrons in a set of

This rule deals with filling of electrons in the orbital's belonging to the same subshell of the equal energicalled as degenerate orbitals.


Robert S. Muüken, who was awarded the 1966 Nobel Prize in chemistry he would have gladly share the Nobel once with Hund

FILLING OF ORBITALS: AUFBAU PRINCIPLE


The filling of electrons into the orbitals of different atoms takes place according to the *aufbau* principle which is based on the Hund's rule of maximum multiplicity, the Pauli's exclusion principle, and the relative energies of the orbitals. The word '*aufbau*' in German means 'building up'.


Orbitals are filled in order of energy, the lowest energy orbitals being filled first.

DCL

Orbital diagram for oxygen

OR

b. Explain the following terms and write their periodic trends

- i. Atomic radii
- ii. Ionization Energy
- iii. Electronegativity

Ans:

Ionisation Energy

The ionisation energy is the energy required to remove one mole of electrons from one mole of atoms in the gaseous state.

The first ionisation energy of magnesium:

AI: 1s²2s²2p⁶3s²3p¹

CONTINUOUS LEARNING ASSESSMENT -II

U20CYBJ01-ENGINEERING CHEMISTRY ACADEMIC YEAR/SEM: 2022-2023/ Term

SET-A

Part – B

Answer all the Questions $(5 \times 2 = 10)$

1. Define Chemical shift.

Ans:

A chemical shift is defined as the difference in parts per millions (ppm) between the resonance frequency of the observed proton and tetramethylsilane (TMS) 12 hydrogens. TMS is the most common reference compound in NMR, it is set at delta = 0 ppm.

Chemical shift, $\delta = \frac{\text{frequency of signal} - \text{frequency of reference}}{\text{spectrometer frequency}} \times 10^{6}$

2. Mention the NMR active and inactive nuclei.

 $_{1}H^{1\prime} _{1}D^{2}, 80^{16}, 9F^{19}, 80^{16}, 15P^{31}$

Ans: NMR active ${}_{1}H^{1'} {}_{1}D^{2}$, ${}_{9}F^{19}$, ${}_{15}P^{31}$ and Inactive ${}_{8}0^{16}$, ${}_{8}0^{16}$

3. Define shielding and deshielding of protons.

Ans:

Shielding of proton: High electron density is high around the nucleus shielding the nucleus from the external magnetic field and the signal are upfield in the NMR spectrum.

Deshielding: Low electron density falls around the nucleus, deshields nucleus and the signal are downfield in the NMR

spectrum.

4. Write the NMR splitting pattern for CH3 CH2COOH

Ans:

CH3-triplet, CH2- quartet, COOH-singlet

5. Define binding energy?

Ans:

Binding energy is especially applicable to subatomic particles in atomic nuclei, to electrons bound to nuclei in atoms, and to atoms and ions bound together in crystals.

PART-B Answer all the Questions $(2 \times 4 = 8)$

6. a) Examine the chemical shift in 1H NMR of following molecules and arrange them in increasing order of chemical shift.

Ans:

Principle

The working principle of XPS is ejection of electron from the surface of sample in UHV condition when it is expose to the soft x-rays.

Elements present in sample can be identified on the basis of kinetic energies and binding energies of their photoelectrons.

Intensities of photoelectron provide information about concentration of element in a sample.

The electrons emitted from atoms near the sample surface (10-100 Angstroms) can escape the sample surface. This depth is about twenty atomic layers.

KE=h*v*-BE-Ø

KE ----- Kinetic Energy (measure in the XPS spectrometer)

 $\emptyset \longrightarrow$ spectrometer work function. It is a few eV, it gets more complicated because the materials in the instrument will affect it. Found by calibration.

BE ____ is the unknown variable

PART-C Answer all the Questions $(1 \times 12 = 12)$

8. a. Find out oxidation number

K3[Fe(CN)6], Ni[CO4], KCIO4, [Cu(NH3)6]Br2, [Fe(H2O)6]Cl2, K2CrCO4

Ans:

Solution: $K_3 [Fe(CN)_6]$ Oxidation number of potassium $(K) = \pm 1$ Oxidation number of cyanide ion $(CN_-) = -1$ Let oxidation number of Fe be x.

As we know that sum of oxidation state of II the atoms in a compound is equal to the overall charge on that compound.

$$\therefore 3 (+1) + x + 6 (-1) = 0$$

$$\Rightarrow 2 + x - 6 = 0$$

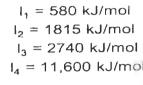
$$\Rightarrow x = 6 - 3$$

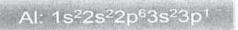
$$\Rightarrow x = +3$$

Hence the oxidation state of Fe in $K_3 [Fc(CN)_6]$ is $+3$.

COVALENT NACIUS Cereira, byf lini length from ona nudial in anolfar alom s nuclei honaet cere annth,	e 2
NETALLIQ RADIUS Levi-tos half of the detamon between the two adjucters model atoms is the	0)0)6 0)0)0
medalis Latica VANDER WAALAI RADINIS	•••
Defector - built the distance netwoon two resplicturing worms which are not creatingably banded in sol of state - Appear was focularly line all receive lines.	unia . *

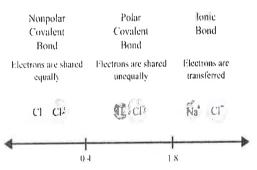
Ionisation Energy


The ionisation energy is the energy required to remove one mole of electrons from one mole of atoms in the gaseous state.


The first ionisation energy of magnesium:

744 kJmol 1 Mg (g) → Mg⁺ (g) + e

Ionization Energy


 $AI(g) \rightarrow AI^+(g) + e^ AI^+(g) \rightarrow AI^{2+}(g) + e^ I_2 = 1815 \text{ kJ/mol}$ $A|^{2+}(q) \rightarrow A|^{3+}(q) + e^{-1}$ $I_3 = 2740 \text{ kJ/mol}$ $AI^{3+}(g) \rightarrow AI^{4+}(g) + e^{-1} I_4 = 11,600 \text{ kJ/mol}$

Electronegativity Fluorine most electronegative element = 4.0 Paulings

ELECTRONEGATIVITY

G-Nith

CLA III - QUESTION PAPER & CLA III - KEY

0

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Chemistry

CONTINUOUS LEARNING ASSESSMENT -III

U20CYBJ01 – ENGINEERING CHEMISTRY

ACADEMIC YEAR/SEM : 2022-2023/ Term 1

SET - A

DATE: 01:07:2023

TIME : 1 hour 30 mins

MARKS: 30 Marks

INSTRUCTIONS: Answer all the Questions (COMMON TO ALL BRANCHES)

Q. No	Part – A Answer all the Questions (5 x $2 = 10$)	Weightage	СО	Blooms level
1	Define corrosion.	2	CO4	2
2	Define substitution reaction.	2	CO5	2
3	Write any four reducing agents.	2	CO5	2
4	Draw the staggered form of butane.	2	CO5	2
5	Alloying of metals is preferable. Give reason.	2	CO6	2
3	PART-B Answer all the Questions (2 x 4 =	8)		-
6	a) Draw the constitutional isomers of butanol or	4	CO5	2
7	 a) Discuss the ring opening reaction with an example. a) Draw the cis trans isomer and write the IUPAC name for the molecule ClCH=CHCl and CH₃C₂H₅C=CCH₃C₂H₅ b) Derive Nernst equation for reduction reaction and write the Nernst equation for the reaction Fe²⁺+2e⁻ → Fe 	4	CO6	3
	PART-C Answer all the Questions $(1 \times 12 = 1)$	12)	1	
8	 a) Mention and elaborate the appropriate methods that has to be followed to treat the municipal water. OR b) Explain in detail how corrosion occurs in presence of oxygen and hydrogen in dry environment. 	12	CO4	3

CO	WEIGHTAGE
CO1	•
CO2	
CO3	÷
CO4	14
CO5	10
CO6	6
TOTAL	30

by Arthu

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Chemistry

CONTINUOUS LEARNING ASSESSMENT -III

U20CYBJ01 – ENGINEERING CHEMISTRY

ACADEMIC YEAR/SEM : 2022-2023/ Term 1

TIME : 1 hour 30 mins

MARKS: 30 Marks

SET - A

DATE:01:07:2023

INSTRUCTIONS: Answer all the Questions (COMMON TO ALL BRANCHES)

Q. No	Part – A Answer all the Questions (5 x $2 = 10$)	Weightage	СО	Blooms level
1	Define Diene and Dienophile with example.		CO4	2
2	What is meant by addition reaction?	2	CO5	2
3	Define chiral molecule.	2	CO5	2
4	Write any four oxidising agents.	2	CO5	2
5	What is HSAB?	2	CO6	2
	PART-B Answer all the Questions (2 x 4 =	= 8)		
6	 a) Draw the different stereochemical forms of tartaric acid. or b) Write the constitutional isomers of pentane. 	4	CO5	2
7	 a) Explain in detail about enantiomer and diasteromer taking place in organic molecule with suitable example. or b) Derive Nernst equation for oxidation reaction and write the Nernst equation for the reaction Fe→Fe²⁺+2e⁻ 	4	CO6	3
	PART-C Answer all the Questions $(1 \times 12 = 1)$	(2)		
8	 a) Explain the approriate methods that could be used to control the corrosion by modifying the metal. or b) Sketch the ion-exchanger method and explain how it is used for removing cations and anions present in water. 	12	CO4	3

CO	WEIGHTAGE
CO1	
CO2	
CO3	
CO4	14
CO5	10
CO6	6
TOTAL	30

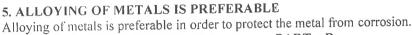
Gratting

CONTINUOUS LEARNING ASSESSMENT TEST – III **U20CYBJ01 - ENGINEERING CHEMISTRY** ANSWER KEY FOR SET - A ACADEMIC YEAR : 2022-2023 / I DATE: 01.07.2023 & FN PART – A

1. CORROSION

The destruction of a metal or alloy by chemical or electrochemical reaction with its environment is known as corrosion.Eg.Rusting of iron.

2. SUBSTITUTION REACTION


The substitution reaction is defined as a reaction in which the functional group of one chemical compound is substituted by another group

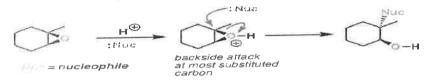
3. FOUR REDUCING AGENTS

LiAlH4, NaBH4, H2/Pt, Na/liquid NH3

4. STAGGERED FORM OF BUTANE

PART - B

6.(a) CONSTITUTIONAL ISOMERS OF BUTANOL There are four constitutional forms of butanol.



6.(b) RING OPENING REACTION

Opening of epoxides under acidic conditions occurs in two key steps First, the epoxide is protonated
 Second, the nucleophile attacks at the most substituted position

The result is that the two groups (nucleophile and OH) are oriented trans to one another

7.(a) Cis - trans isomer

7.(b) Nernst equation

Mⁿ⁺ + ne-≧ м

For this equilibrium, the free energy change (ΔG) and standard free energy change (ΔG°) are related by van't Hoff isotherm:

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{[Product]}{[Reactant]} -\Delta G = nFE \quad \text{Or} \quad -\Delta G^{\circ} = nFE^{\circ} \text{ Substituting this in equation (1)} -nFE = -nFE^{\circ} + RT \ln \frac{[Pr oduct]}{[Re ac \tan t]} = E = E^{\circ} - \frac{RT}{nF} \ln \frac{[M]}{[M^{n+}]}$$

CONTINUOUS LEARNING ASSESSMENT TEST – III U20CYBJ01 - ENGINEERING CHEMISTRY ANSWER KEY FOR SET – B ACADEMIC YEAR : 2022-2023 / I

DATE: 01.07.2023 & FN

PART – A

1. DIENE AND DIENOPHILE

A diene is an organic compound particularly a hydrocarbon, containing two double bonds Eg. 1,3-butadiene. Dienophile is a compound which readily reacts with a diene; in general an alkene in the diels-alder reaction Eg. Ethene 2. ADDITION REACTION

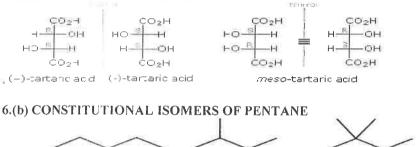
An addition reaction is an organic reaction in which two or more molecules combine to generate a bigger one (the adduct).

3. CHIRAL MOLECULE

Molecules that are non-superimposable mirror images of each other are said to be chiral.

4. FOUR OXIDISING AGENTS

CrO₃, H₂O₂, MnO₂, KMnO₄, Na₂Cr₂O₇


5. HSAB

HSAB means Hard Acid Soft Base Theory. This theory works on the principle that soft acid reacts with the soft base while hard acid reacts with the hard base.

PART – B

There are 3 forms of tartaric acid

pentane 2-methylbutane 2,2-dimethylpropane (isopentane) (neopentane) 7.(a) ENANTIOMER AND DIASTEROMER

I & II; III & IV are called Enantiomers

I & III; II & III ; I & IV; II & IV are called Diasteromers

7.(b) Nernst equation

M"' + ne _____ M

(+)-tartare and (-)-tartaric acid

For this equilibrium, the free energy change (ΔG) and standard free energy change (ΔG°) are related by van't Hoff isotherm[.]

 $\Delta G = \Delta G^{\circ} + RT \ln \frac{[Product]}{[Reactant]}$ (1) $-\Delta G = nFE$ Or $-\Delta G^{\circ} = nFE^{\circ}$ Substituting this in equation (1) $-nFE = -nFE^{0} + RT \ln \frac{[Pr \ oduct]}{[Re \ ac \ tan \ t]}$

 $E = E^{0} - \frac{RT}{nF} \ln \frac{[M]}{[M^{n+1}]}$

since [M]=1 $\therefore E = E^0 + \frac{RT}{nF} \ln[M^{n+}]$ Or $E = E^0 + 2.303 \frac{RT}{nF} \log[M^{n+}]$

When T = 298K; $R = 8.314 \text{ JK}^{-1}\text{mol}^{-1}$; F = 96500 coulomb, the equation becomes,

$$E = E^{0} + \frac{0.0591}{n} \log[M^{n+}]$$

CLA III - SAMPLE ANSWER SHEETS

ASSIGNMENT QUESTIONS

 \bigcirc

SAMPLE ASSIGNMENTS

Assignment -1 Marge + B. Vijay mohan reddy Reg. NO :- U22 EC071 section !- Fr Topic: (a) CFF diagram For tetrahedral and Savore planca compien (b) Application of XRD.

Crystal field splitting in tetrahedral complexes or splitting of d orbital in tetrahedral com -plexes. * In a tetrahedral complex. the metal ion is at the center of the regular tetrahedron and ligends one of the Four alternate corners of the Eetrahedran. * In Free metal ions. all the Fire d-orbitals have the same energy they are degenerate (State-1) As the ligands approch the central metal ion repulsion. with take place blue metal electron and the negative electric field of ligands. This repulsion will raise the energy or the orbital. * Because of different properties the fire d-orbitals will be repealed to different Extents there for their Energies no longer of orbitals called e and to the orbitals include duzy2 and dz2 orbitals while "t'

* The angle between the e orbatial the ecritral metal and the ligands is 540.44 which is half metal and the ligands is 540. The angle between the tz orbital. The central metal and the ligands is 350 -16.

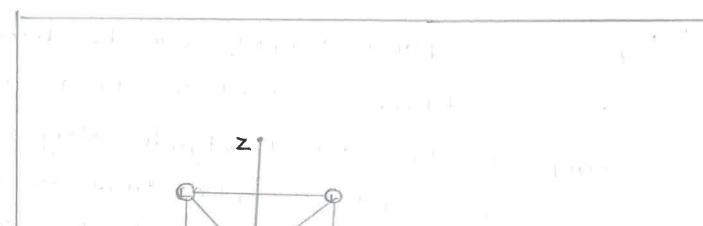
* The difference in energy between the two sets of d-orbitals is denoted by 10 Aq or AL and is called crystal field splitting energy is tetrahedrol Compleness * It is Found that Athen to value is alway

less than is do

Netra hedral complexes - High Spin Complexes: most of the tetrahedral complex one high - Spin complexs. Jn tetrahedral complexs, the fire degene -rate metal d-orbital spirit into two

Crystal Field spitting in square planer complexes. * In an octahedral complex all ligans one at an equal distance from the central metal JF two transligands lying along 2-auis are slightly moved away from the central metal then the distance between the central metal and terms ligands becomes more that between the metal and the other ligands on Nyplane this will result in a tetragonally ligards lying alone 2-ands are slightly distroted of octal hedral streetwe. * In the tetra stracture the metal d-Orbitals dz, dxz, dyz with z componed will Enperience less repulsions and the other two d-orbital duz- gz, duy will Experence more repulsion from the ligands that they do in an octahedral Eeriron -ment. there fore under the influence of

orbital split into two energy levels. the the upper to and the nower elevel the energy gap between eard to is denoted by Ato


At value is much small composed to Δa ie, $\Delta t = \frac{4}{9} \Delta a$

1009 or AL

Sin At is much smaller compared to Ao and At 2 pairing energy (P). the electron prefers to orbitalely rathers that Paring up in e orbital in tetrahedral Complexes. Hence most of the tetrahedral Complex are high spin complexes.

* A square planer complex can be Herived From the tetragonal structure by removing completely the two transligands along 2-anis In a squade plana complate there are only 4-ligands on the XY-plane the loss of two ligands on the z-ants allows the remaining 4 ligands to move closer to the central metal ion destablising the dury? and dry orbital. Hence the d-Gribital OF central metal involving z componets ie, dz2 duzidyz one for ther lowared while the Offer two ie, dut-y2, duy forther raised in Energyo In Square plane complexes the d-orbitals Split into 4 lovels. the energy different be

-tween the lowest degenerate dugidys Pair. Ind the highest duzz is called crystal field Splitting energy and is denoted by DSP the value OF DSP is longer that Do It had been found that DSP is about 12 times Do.

.

Self and the second second

Crystal Field Splitting in Square planer complete -st-

at the second se

Cement :-

the performance characteristics of composition and directly related to its phase composition for example ASTM type allo coment dardops high logger strength and is characterized by having a ASTM type is coment is known as to have a low a much tower mass fraction of alite.

Power of Generation:-

Residual stresses created during the manutad - uring process can lead to stress conscion - craking redistortion failque cracking permature pat failure and instance of over design the nondestructive nature of the k-ky differ - raction (XRD) technique has made of the generation components a useful tool for Process optimation, design improvement, and failure and ysis. Applications of XRD [x - ray Diffraction);-Additive manufactoring:-Ed printing is increasing being used as an alternative nethod of maturing component In paticula replacement pats that were. Manufactored via traditional methods such as casting are new being made using add -itime manfactoring processes. Lohile a printer can producer the same residual stress distribut -ion in the pato

Aerospace:-Rasidual stresses play a tray role in the Rasidual stresses play a tray role in the life of aerospace structure proto provides both measurement Services and n-ray differentian both measurement services and n-ray differentian tesidual stress measurement instruments e nabiling residual stress measurement instruments e nabiling our costomers to obtain residual stress readay aerospace components

Auto motive; * ray distraction has become the industry Standard for residual stress enconcretizations

ASSIGNMENT-142.

Name : - D. Kanthik kumar Reddy Reg no : - U22 ECLOS Section : - F1 Ad. No : - 8118 Department: - ECE ·

a) crystal field splitting in Tetra hedral field. * Tetrahedral complexes are the second most Common type: here 4 ligands form a tetra hedron around the metal ion. in a tetrahedral crystal field splitting, the d-orbitals again split into e groups, with an energy difference of tet groups with an energy difference of tet. * The lower energy orbitals will be dz?dx?dy2 and the higher energy oribitals will bedxy, dx2 and dyz -opposite to the octahedral case. * further more, since the ligand electrons in tetrahedral symmetry are not oriented directly towards the d-or bitals, the energy splitting wil) be lower than in the octal hedral case. * square planar and other complex geo metris. can also be described by CFT. y

0

Chengy Dr dny dyzdzudzdx-yza 3 of The higher energy set of orbitals dx z, dy z, dxyis labelled as to and the lower energy get (dz2 and dx2-y2) is labelled as. * The Crystal field splitting in the tetria hedra) field is intrinisically smaller than in the octahedral field. For most purpose the relationship may be represented as $\Delta t = \frac{4}{9} DO$ Crystal field splitting of square planion. * degenerate orbital dny dyzytzg dxzyjeg dzx dzz

* square planar complex is a 20 structure. X In entire complex are orbital dx²-y² has strong acpulsion force and then dry experience less repulsion force than $dx^2 - y^2$ because st lies in between the axis. * Then the orbital d22 experiences more repulsion and present at the xy plane and less repulsion is experienced by dyz, dxz orbitals. * So due to this d-orbitals under go splitting it is called as crystal field splitting. * d-orbitals are called degenerate orbitals because all the orbitals of d has same energy level. * square planar complex as similar to the octa. hedral complex so it that exystal field splitting in octa hedral was done ond after octa. hedral splitting it under goes square plannar

splitting.

 \odot

At DSP has alonge spilting soit has low spin complex. * Enample for square planner complex are $E NI(CN) y)^{2} = [pa(CIY)]^{2}$

tent i i i Lomponito i integra * clearly DSP (square plonar) soo > st (octa hedral), (tetra hedral)

2 e 7 x

Applications of XRD: -6) structure of crystals. 1. a - nray pattern of salt Nacl b b-nray pattern of salt Nacl E-nray pattern of salt and Nacl d d-nray pattern of power mined Caystal of Nacl and hel. 2). paymer characterization. * Determine degree of crystanility; * Non - crystalline portion scatters n-ray beam to give a continuous back ground (amosphous materials) * Crystalline portion causes difraction lines that are not continuous crystalline materials). 3) state of anneal in metals-* RO is used to test the metals without removing the part from it position and without weakening.

4) particle size determination. al dia Ata spot counting method VEV, SO COSO /24 V= volume of individual crystallite. Vstotal volume innadiated. n=no. of spots in diffracting. So= divergence of 2-ray beam. 5). Mis cell aneous Application. * Self classification based on crystalmity. * Analysis of industrial dusts. * Assessment of weathering and degradation of mmerals and polyment. * study of connosion products. * Examination of tooth ename! and dentine, * Enamination of bone state and tissue state. * structure of DNA & RNA.

7

Assignment -2 Isomerism in transition metal complex:- (\mathbb{N}) It is a phenomenon where different compounds with same chemical formula but distinct structural elements on arrangements exist. this as due to the ability of transition metals to form coordination compounds with various ligonds, resulting in different bonding arrongements and Geome terres. There are two main types of isomeris obser. ved transition metal complemes :- structura) isomerism and stereoiso merusm. 1. structural isomerismia) Ioni sation isomerism: occurs when pr on ligand is each anged between the coordination sphere and the surrounding solvent. En: - [Co. CNH3) Sch] che can ensist as [Co(NH3) cl]²⁺ and [co (NH3)s)³⁺ cl2 b) Condination Isomenism: - Arises when the lignory in a complex inter change their position between ions. the central metal atom lion and the counter ions.

En: - for instance [Co (NH3/6] [Cr (CN)6]

and [cr (NH3)6] [co (cn)6] ore Coordination Esomers.

2. streoisomerism:a) Geometric Isomerism (cis-Irons Isomerism): This occurs in octa hedral complexes with two different ligands arranged in adjacent positions. If the two similar ligands are either cis on trons to each other, Geometric isomerismis observed. En: [Co (NH3) + cl2] can enist as is and trons isomers b) setical isomerism: type of isomerism occurs when a complex lacks a plone of symmetry, resulting in non -super imposable mirror image Structures. Exi. [cocen)3)^{3†} where en represents ethylene diamine It's important to note that not all the transition metals exhibit promenism and the present of isomerism depends on the ligonds, coordination number and geometry of the complex. Isomerism in transition metal complex has significant implications in their properties, reactivity and biologicay

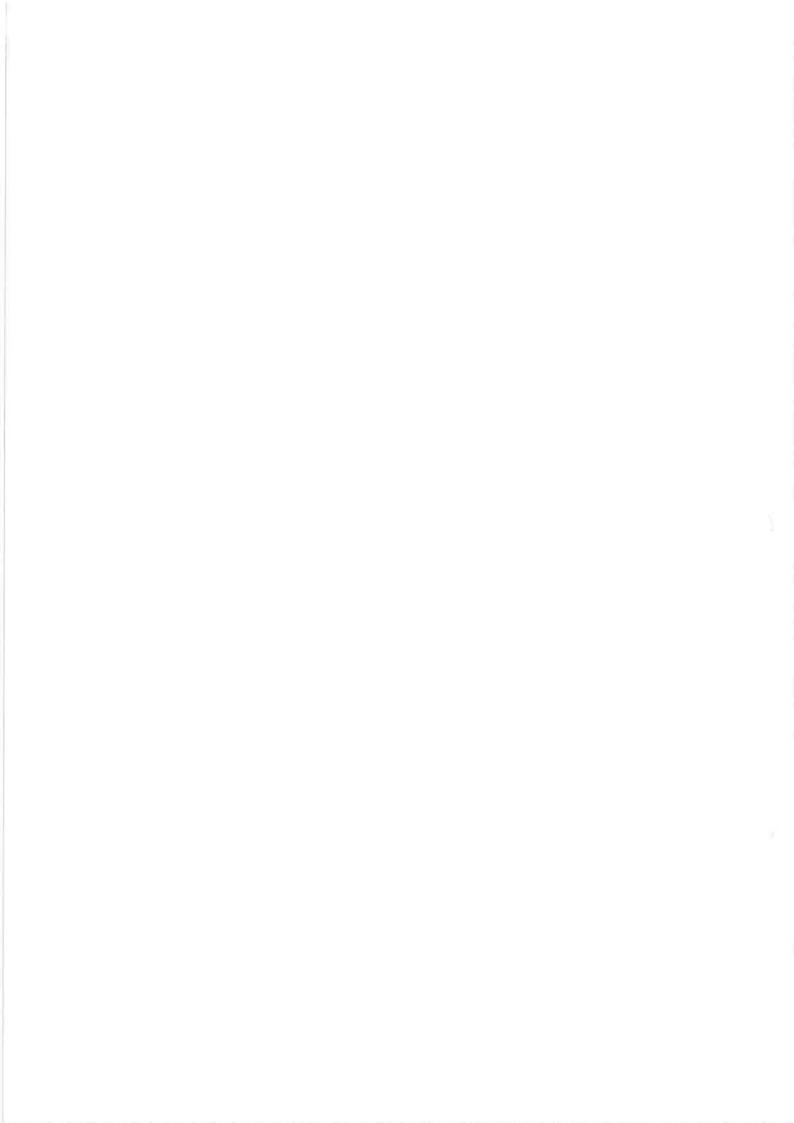
activity .

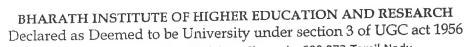
Ionic Interaction :- A rise from electro static (B) attraction between two groups of opposite charge these bonds are formed between positively Charged and negatively changed group. * They are also referred to as ionic bonds on a are the forces that hold to gether ionic compounds like changes repel each other and opposite charge attract. * Ionic bond is a specific type of chemical bond formed blue a metal and a non-metal. * Metals are alkali ond alkali earth metals. * Non metals ore halogen. neutron atom Loss of Goin of elections Electrones. mion cation 12 En: - Nacl (Na) (cl) -> (Na) (Cl)

Ionic Interaction in sodium chloride.

Dipole: - A polarized molecule having particully positive and negative pole. Share one pair of electron. Fluorine is more Electro negative. Dipole - Dipole interaction: Forms when two dipolar molecules interact with each other through space when this occurs, the particully negative portion of one of the polar molecules is attracted to the portially positive portion of second polar molecule.

 $\frac{f_{Mi}}{St} = \frac{St}{St} =$


 $O \leftarrow \cdots \rightarrow O$


Attraction. <u>Van der waals interaction</u>:- Includes attraction and repulsion between atoms, molecules and ond repulsion between atoms, molecules and Surfaces as well as other interactional of Surfaces as well as other interactional of inter molecular forces they differ from Covalent inter molecular forces they differ from Covalent ond ionic bonding in that they are Caused by Correlations in the fluctuating polarization of

of near by particles. Ion - dipole interaction: - Is an attractive force that results from the electrostatic attraction between an ion and a metal of as a neutral mole cule that has a dipole. * A positive ion attracts the partically negative end of a neutral polar molecule. * A negative ions attracts the positive end of a neutral polar mole cute. E---- St OS-() - - - - S - Ost polar molecule * Ion dipole forces are generated between polar water molecules and a sodium ion. × These inter molecullar ion - dipole forces are much weaker than Covalent or ionic bonds. Dispension forces or london forces;-* These forces that a rise as a result of of temporary dipole induced in a toms or molecules.

* A temporary dipole to a tempory dipole to form in another non - polor molecule. * Dis persion is the only inter molecular attra ction that occur between non-polar molecules. and the set of the formation of the set of t Catron Induced dipole \bigcirc ion-induced dipole muser of the second of the sec meraction, Dipole induced dipole Ð Đ dipole - induced dipole interaction. needs to be a state of the second state of the second

END SEMESTER QUESTION PAPER

173, Agaram Main Road, Selaiyur, Chennai – 600 073, Tamil Nadu

End Semester Examinations - Nov / Dec -2022

Regulation - 2020

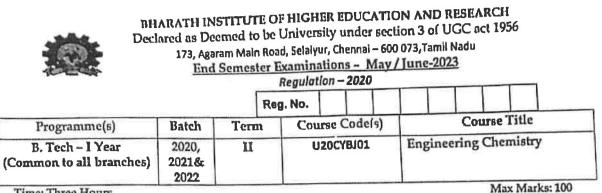
		Reg	ło.	
Programme(s)	Batch	Term	Course Code(s)	Course Title
B. Tech - Common to all branches	2022	/ I	U20CYBJ01	Engineering Chemistry
Time Three Hours	-			Max Marks: 100

Time: Three Hours

Date: 03.03.2023 / FN

	Part A – (10 x 2 = 20 Marks) (Answer All Questions)		
Q.No	Question	BL	CO
1	Define bond order.	U	COI
2	What is meant by crystal field theory?	U	CO1
3	State the selection rule for electronic spectroscopy.	U	CO2
4	Why TMS is used as a standard in NMR?	U	CO2
5	Electro negativity decreases down the group. Give reason.	U	CO3
6	What is coordination number & geometry? Give example.	U	CO3
7	Define Spontaneous process.	U	CO4
8	Define electrochemical corrosion.	U	CO4
9	What is meant by addition reaction?	U	CO5
10	Draw the staggered form of butane.	U	CO5
10	Part B – $(5 x 4 = 20 Marks)$		
	(Answer All Questions)		
11	Derive Schrodinger wave equation in a one dimensional box when the velocity of the wave (v).	AN	CO1
12	Explain in detail how electronic spectroscopy can be used for predicted and applied for a organic molecule?	AP	CO6
13			CO3
14	Explain how corrosion is controlled by sacrificial anode and impressed current cathode	AP	CO4
15	Write the constitutional isomers of pentane.	U	CO5
15	Part C- $(5 \times 12 = 60 \text{ Marks})$		
	(Answer either (a) or (b) of each questions)		
16(a)	Discuss the various factors affecting the crystal field stabilization energy depending on the metal and environment with an illustration.	AN	CO1
	OR		
16(b)	Sketch and explain about the crystal field splitting for tetrahedral geometry. Explain the hybridization taking place with an example.	AN	CO1
17(a)	Explain the different types of vibration modes in IR spectroscopy. Discuss about the fundamental vibration bands taking place in a nonlinear molecule with an example.	AP	CO2
	OR		001
17(b)	Explain in detail how the vibrational band occurs in IR instrumentation with the help of a block diagram?	AP	CO6
18(a)	Explain about how binding energy and kinetic energy is measured for different electronic orbitals with the help of XPS?	AN	CO3
	OR		
1 8 (h)	Explain the following terms and how it varies with the periodic trends	AN	CO3

Derive Nernst equation for reduction potential. Write its applications and apply the Nernst equation for the equation $Cu^{2+}(aq)+2e^{-}\rightarrow Cu_{(s)}$.	AP	CO6
OR		
Explain the different methods that could be used to control the corrosion by modifying the metal.	AP	CO4
Explain S _N 2 Reaction mechanism with suitable examples.	U	CO5
OR		
Discuss in detail the synthetic mechanism of Paracetamol. Mention its uses.	AP	C06
	equation for the equation $Cu^{2+}(aq)+2e^{-} \rightarrow Cu(s)$. OR Explain the different methods that could be used to control the corrosion by modifying the metal. Explain S _N 2 Reaction mechanism with suitable examples. OR	Derive Nernst equation for reduction potential. Write its applications and apply are reduction equation for the equation $Cu^{2+}_{(aq)}+2e^{-}\rightarrow Cu_{(s)}$. OR Explain the different methods that could be used to control the corrosion by modifying the metal. Explain S _N 2 Reaction mechanism with suitable examples. U OR OR U OR


by Dithuf

END SEMESTER ANSWER KEY

2

14

 \odot

Time: Three Hours

Date: 31.07.2023 / FN

1 Define bond order.

Ans: bond order = number of bonding electrons - number of antibonding electrons/2

2 What is crystal field stabilization energy?

Ans: the energy of the electron configuration in the ligand field minus the energy of the electronic configuration in the isotropic field.

3 What is Beer-Lamberts law?

Beer Lamberts Law:

Ans:

()

 $\mathbf{A} = \mathbf{\varepsilon} \mathbf{b} \mathbf{c}$

4 Why TMS is used as a standard in NMR?

Ans: Tetramethylsilane became the established internal reference compound for ¹H NMR because it has a strong, sharp resonance line from its 12 protons.

5 Write Bragg's equation for XRD spectroscopy.

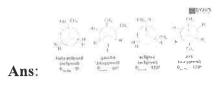
Ans: $n\lambda = 2d \sin\Theta$

6 Define Ionization energy.

Ans: The amount of energy required to remove an electron from an isolated atom or molecule.

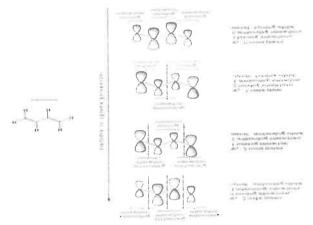
7 Write Nernst equation for reduction reaction.

Ans:
$$E = E^{0} + \frac{0.0591}{2} \log[Fe2+]$$


8 Define electrochemical corrosion.

Ans: The destruction of a metal or alloy by chemical or electrochemical reaction with its environment is known as corrosion.Eg.Rusting of iron.

9 What is meant by addition reaction?


Ans: An addition reaction is an organic reaction in which two or more molecules combine to generate a bigger one (the adduct).

10 Draw the staggered form of butane.

Part B (5x4=20 Marks)

11 Sketch the MO diagram of 1,3-Butadiene and analyze the HOMO & LUMO orbital.

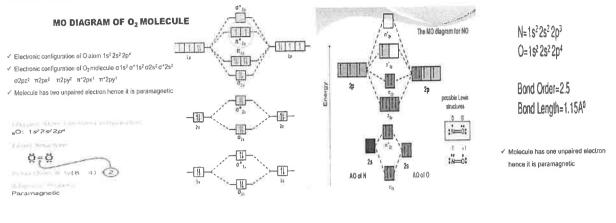
Ans:

12 How to detect the functional groups, symmetry and study the progress of chemical reaction using IR spectroscopy?

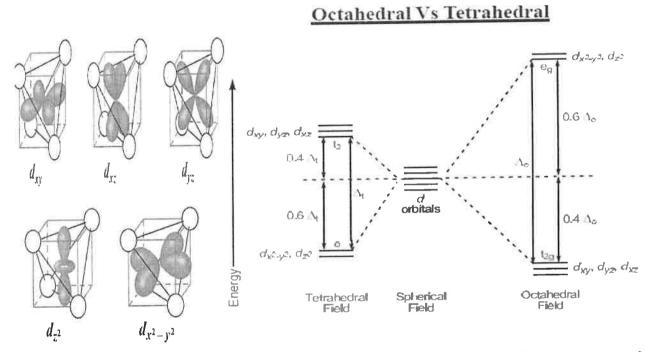
Ans: Here, we take the IR spectrum of Formaldehyde for an example. Formaldehyde has a C=O. functional group and C-H bond

13 Examine the term atomic radii & how it varies with the period and group of the periodic table.

14 Explain how corrosion is controlled by sacrificial anode and impressed current cathode protection?


Ans: The main difference between the two methods is that the impressed current cathodic protection uses an external power source with inert anodes while the sacrificial anodes cathodic protection uses the naturally occurring electrochemical potential difference between different metallic elements to provide protection.

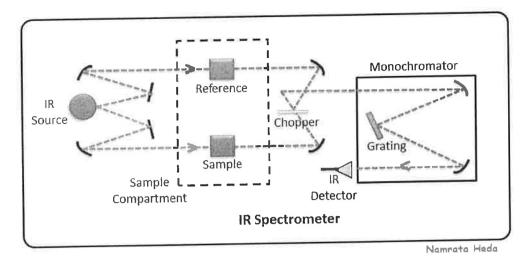
15 Write the constitutional isomers of pentane.


Part C-(5 x 12-60 Marks)

16(a) Depict and elucidate the molecular orbital diagrams for N2 and O2 molecules. Calculate its bond order.

OR

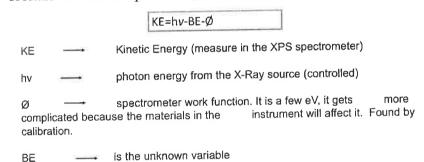
16(b) Draw and give details about the crystal field splitting for octahedral geometry with an example.

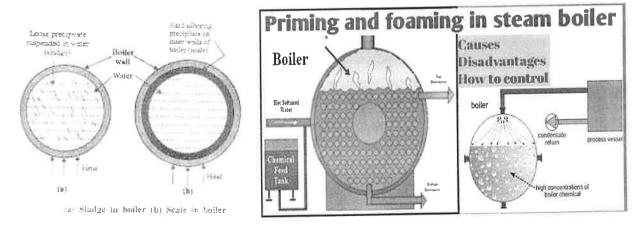

17(a) Explain the term chemical shift. How electronegativity is affecting chemical shift values of following compounds in NMR spectroscopy?

CH3CI, CH3I, (CH3)4 Si, CHBr3, CH2Br2, CH3F, CH3OH, CH3Br, CH2Cl2, CH4 Ans: CH3OH, CH3F, CH3Cl, CH2Cl2, CHCl3, CH3I, CH4, (CH3)4Si

)

OR


17(b) Explain in detail how the vibrational band occurs in IR instrumentation with the help of a block diagram.


18(a) Find out the oxidation number for the following molecule K3[Fe(CN)6], Ni[CO4], CaCl2, [Fe(NH3)6]Br2, [Cu(H2O)6]Cl2, K2CrO4 Ans: +3, 0, +2, +2, +3, +6

OR

18(b) Explain about how binding energy and kinetic energy is measured for different electronic orbitals with the help of XPS.

19(a) Explicate the boiler troubles taking place due to scale, sludge, priming, foaming and caustic embrittlement in detail and how it can be prevented and removed.

OR

19(b) Explain the different methods that could be used to control the corrosion by modifying the metal.

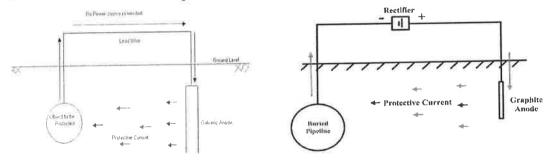
The rate of corrosion can be controlled by modifying the metal.

1) Selection of the metal 2) Using metal alloys

3) Using pure metals4) Proper designing

5) Cathodic protection methods:

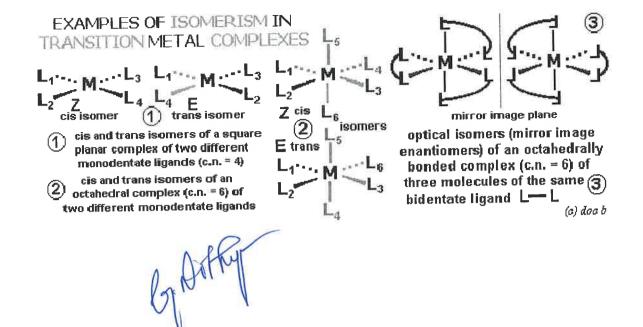
(a) Sacrificial anodic protection


The metal to be protected is made cathode. It is connected with more active metal. Corrosion will concentrate only on the active metal. Thus original metal is protected. Hence this process is known as sacrificial anodic protection method.

Eg.Sacrificial anodes - Zn, Mg, Al.

b. Impressed current cathodicprotection :

The corroding metal is converted from anode to cathode. This is done by applying a current in opposite direction of corrosion current.


Method: Negative terminal of the battery is connected to the metal. Positive terminal of the battery is connected to an inert anode. Inert anode used are graphite, platinised Titanium. The anode is buried in a "back fill" to provide electrical contact.

20(a) Explain SN1 Reaction mechanism with suitable examples.

Mechanism of SN1 Reaction Step 1: Formation of a tert-butyl carbocation by separation of a bromide anion from the carbon atom of tert-butyl bromide. CH. CH, ć⊕ Br:[©] H,C-C-Br H.C-Ŀн, ċн, Bromide Carbocation tertiButyl bromide Step 2: Nucleophilic attack of the carbocation by a water molecule, resulting in an oxonlum ion intermediate сн, н CH ć∞k c-o'o HC-H.C-H н Ъ ĊН ĊН, Oxonium Water Carbocation Step 3: Deprotonation of the protonated nucleophile by a second water molecule, which acts as a base, resulting in an alcohol and a hydronium ion. CH, CH HK -c-00 H,O[®] <u>с́</u> — он 0 H.Cн н H ċн, ċн, Hydronium tert-Butyl alcohol Water Oxonium Ans: OR

20(b) Explain the isomerism taking place in transition metal compounds.

TEXT BOOK AND REFERENCE BOOK

Text Book

- 1. Concise Inorganic chemistry: 5th Edition by J.D. Lee, Wiley, 2008.
- 2. William Kemp, Organic Chemistry, 3rd Edition. Mac Millan, 2009.
- Introduction to Chemical Engineering Thermodynamics, J.M. Smith, H.C. Ness, M. Abbott, B Bhatt, 2009.
- 4. Morrison R.T and Boyd R.N., Organic Chemistry, 6th Edition, New York, 1976.

Reference Book

- Inorganic Chemistry: Principles of Structure and Reactivity, 4th Edition, By James E. Huheey, Medhi 1983.
- Peter Atkins, Julio de Paula, and James keeler Atkins Physical Chemistry, 11th Edition, 2017.
- Chemistry Laboratory I & II, Dr. A. P. Srikanth, R. Komalavalli, Shreem Bhuvaneswari publications, Ch-44, 2009

Other Resources (Online Resources or others)

- i) https://nptel.ac.in/courses/122/101/122101001/ Atomic Structure, Structural Chemistry
- ii) https://nptel.ac.in/courses/122/101/122101001/_Titrations : Acid-Base, Redox and Complexometric

or Arthur

QUESTION BANK

 \bigcirc

DEPARTMENT OF CHEMISTRY

QUESTION BANK

Department	:	Chemistry
Program Name / Code	:	B TECH
Course Name / Code	:	Engineering Chemistry / U20CYBJ01

 \cap

Q. No.	Question	Weight age	CO	Bloom' s Level
1.01	UNIT I			
	PART - A			
1	What is meant by Aromaticity?	2	1	2
2	Define Pauli's exclusion principle.	2	1	2
3	Define Huckel's rule with suitable example.	2	1	2
4	Define bond order.	2	1	2
5	Predict the reason why He ₂ molecule does not exist?	2	1	2
6	Calculate the bond order for N ₂ molecule.	2	1	2
7	What is spectrochemical series?	2	1	2
8	What is meant by crystal field theory?	2	1	2
9	What is crystal field stabilization energy?	2	1	2
10	Define paramagnetic and diamagnetic property.	2	1	2
	PART – B			
	Draw the energy level diagram of C_2 molecule and analyze the 4		1	4
1	bond order, magnetic property.	4	1	T
2	Sketch the MO diagram of 1,3-Butadiene and analyze the HOMO & LUMO orbital.	4	1	4
3	Derive Schrodinger wave equation in a one dimensional box when the velocity of the wave (v).	4	1	4
4	Elucidate the MO diagram of benzene and analyze the HOMO & LUMO orbital.	4	1	4
5	Draw the energy diagram of d^6 system for the compound $[Fe(H_2O)_6]^{2+} \& [Fe(NH_3)_6]^{2+}$	4	1	4
6	Analyze the bond order and magnetic property for the molecule B_2 with the help of energy level diagram	4	1	4
7	Analyze the Crystal field splitting energy of d^5 to d^{10} electronic configuration in strong field tetrahedral complexes.	4	1	4
8	Sketch the energy level diagram of HF molecule and calculate its bond order.	4	1	4
9	Sketch the MO diagram of benzene and analyze the HOMO & LUMO orbital.	4	1	4
10	Analyze the Crystal field splitting energy of d ⁵ to d ¹⁰ electronic configuration in week field tetrahedral complexes.	4	1	4
	PART – C			
1	Depict and elucidate the molecular orbital diagrams for N_2 and O_2 molecules. Calculate its bond order.	12	1	4

DEPARTMENT OF CHEMISTRY

2	Represent the MO diagram for the following molecules with a neat sketch and calculate the bond order. (i) F_2 , (ii) CN^-	12	1	4
3	Illustrate the MO diagram of NO and CO molecules and also determine the magnetic moment.	12	1	4
4	Elucidate the Schrodinger wave equation of 3 dimensional, one dimensional and particle in a box system.	12	1	4
5	Discuss the various factors affecting the crystal field stabilization energy depending on the metal and environment with an illustration.	12	1	4
6	Draw and give details about the crystal field splitting for octahedral geometry with an example.	12	1	4
7	Sketch and explain about the crystal field splitting for tetrahedral geometry. Explain the hybridization taking place with an example.	12	1	4

Q. No.	Question	Weight age	CO	Bloom' s Level
	Unit-II	1 0		5 Level
1	PART -A			
1	What is meant by molecular spectroscopy?	2	2	2
$\frac{2}{3}$	Define auxochrome.	2	6	2
	Define chromophore and its type.	2	6	2
4	What is Beer-lamberts law?	2	6	2
5	State the selection rule for electronic spectroscopy.	2	2	2
6	Why homo diatomic molecules are IR inactive?	2	2	2
7	Write regions of IR spectroscopy. Which region we use in IR spectroscopy?	2	2	2
8	Why TMS is used as a standard in NMR?	2	2	
9	Write the NMR splitting pattern for CH ₃ CH ₂ COOH.	2	2	2
10	Define shielding and deshielding of protons.	2	2	2
	PART –B	4	2	2
1	Illustrate and enlighten the vibrational mode of a linear molecule with an example.	4	2	3
	How to detect the functional groups, symmetry and study the progress of chemical reaction using IR spectroscopy?	4	2	3
3	Explain in detail how electronic spectroscopy can be used for predicted and applied for a organic molecule.	4	6	3
4	Find out the Spin (I) value for the following nuclei and mention which one is NMR active or inactive nuclei. $_1H^1$, $_1D^2$, $_6C^{12}$, $_6C^{13}$, $_7N^{14}$, $_7N^{15}$, $_8O^{16}$, $_9F^{18}$, $_9F^{19}$, $_8O^{17}$, $_{15}P^{31}$	4	2	3
5	Explain about chemical shift in Nuclear Magnetic Resonance spectroscopy and how the δ value varies with the upfield and	4	2	3

DEPARTMENT OF CHEMISTRY

	downfield.			
6	Describe and derive the equation of Beer's Lambert's law with its limitations. How it is used for analyzing the unknown concentration of the solution?	4	6	3
7	Explain the possible absorption shits in UV spectroscopy with suitable example in detail.	4	6	3
8	Predict the splitting pattern of following molecules i) CH ₃ CH ₂ COOH ii) CH ₃ CH ₂ COCH ₃ iii) CH ₃ CH ₂ OCH ₂ CH ₃ iv) CH ₃ CH ₂ CH ₂ CH ₂ Br	4	2	3
9	Examine the chemical shift in ¹ H NMR of following molecules and arrange them in increasing order of chemical shift. (a) CH ₃ Cl, CHCl ₃ , CH ₂ Cl ₂ , CH ₄ (b) CH ₃ F, CH ₃ I, (CH ₃) ₄ Si, CH ₃ Cl	4	2	3
10	Sketch the different vibrational modes of IR spectroscopy? Give its selection rule.	4	2	3
	PART – C			
1	Expalin the term chemical shift. How electronegativity is affecting chemical shift values of following compounds in NMR spectroscopy? CH ₃ Cl, CH ₃ I, (CH ₃) ₄ Si, CHBr ₃ , CH ₂ Br ₂ , CH ₃ F, CH ₃ OH, CH ₃ Br, CH ₂ Cl ₂ , CH ₄	12	2	3
2	Explain the UV instrumentation methods and differentiate the single beam and double beam method.	12	6	3
3	Explain the different types of vibration modes in IR spectroscopy. Discuss about the fundamental vibration bands taking place in a non linear molecule with an example.	12	2	3
4	Explain the fundamental vibration bands for linear (CO_2) and non-linear (H_2O) molecules.	12	2	3
5	Explain in detail how the vibrational band occurs in IR instrumentation with the help of a block diagram.	12	6	3
6	Draw and explain the possible electronic transitions in UV spectroscopy with suitable example in detail.	12	6	3
7	Explain how shielding effect and deshielding effect takes place in NMR spectroscopy.	12	2	3

Q. No.	Question	Weight age	CO	Bloom' s Level
	UNIT-III			
	PART –A			
1	What is the basic principle of XPS?	2	3	2
2	Is it possible to detect all elements in XPS? Give reason.	2	3	2

DEPARTMENT OF CHEMISTRY

3	Define kinetic energy?	-		
4	What is meant by path difference?	2	3	2
5	Write Bragg's equation for XRD spectroscopy.	2	3	2
6	Write any two applications of XRD methods.	2	3	2
7	Define ionic Radii?	2	3	2
8	Electro negativity decreases down the group. Give reason?	2	3	2
9	Define Ionization energy.	2	3	2
10	What is coordination number & geometry? Give example.	2	3	2
	PART –B	2	3	2
	Derive the Bragg's equation for XRD with pictorial			T
1	representation and analyze how it used to find out the crystal lattice.	4	3	4
2	Elucidate the binding energy taking place in various electronic shells.	4	3	4
3	Examine the term atomic radii & how it varies with the period and group of the periodic table.	4	3	4
4	Analyze the applications of XRD and how it used in analyzing the crystal structure.	4	3	4
5	Describe about the elemental shift & chemical shift taking place in X-ray Photoelectron Spectroscopy.	4	3	4
6	How does absorption and emission Spectroscopy takes place when it is passed into a organic molecule.	4	3	4
7	Find out the geometry and hybridization of the following compound [Cu(CN)4] ²⁻ ,[NiBr4] ²⁻	4	3	4
8	Calculate the oxidation number for the following molecule $KCIO_3$, $[Fe(H_2O)_4]^{2+}$, $[Cu(Br)_4]^{2-}$, $[NiBr_4]^{2-}$	4	3	4
9	How ionic radii and ionization energy varies with the group and period in the Mendeleev's periodic table?	4	3	4
10	Explain how binding energy changes for Li and Na atom in XPS spectroscopy?	4	3	4
	PART – C			
1	Explain the following terms and how it varies with the periodic trends i. Ionisation energy ii. Electronegativity	12	3	4
2	iii. Ionic radii Sketch the energy level of orbital arrangement using (n+1) rule	12	2	
3	Pauli, Hund's and Aufbaf rule. Explain how X-ray Photoelectron Spectroscopy is used with the x ray source inside a hemispherical analyser.	12	3	4

DEPARTMENT OF CHEMISTRY

4	Find out the oxidation number for the following molecule K ₃ [Fe(CN) ₆], Ni[CO ₄], CaCl ₂ , [Fe(NH ₃) ₆]Br ₂ , [Cu(H ₂ O) ₆]Cl ₂ , K ₂ CrO ₄	12	3	4
5	Find out the geometry of the following compounds $[Cu(NH_3)_4]^+$, $[Ni(CN)_4]^{2-}$, $Ni(CO)_4$, $[NiCl_4]^{2-}$, $[Cu(H_2O)_4]^{2+}$, $[Cu(NH_3)_4]^{2+}$.	12	3	4
6	Explain about how binding energy and kinetic energy is measured for different electronic orbitals with the help of XPS.	12	3	4
7	 Explain the following terms and how it varies with the periodic trends Atomic Radii Polarization Electron affinity 	12	3	4

Q. No.	Question	Weight age	CO	Bloom' s Level
	UNIT-IV			
	PART –A			
1	Define isolated system.	2	4	2
2	What is HSAB Principle?	2	4	2
3	Define Spontaneous process.	2	4	2
4	Alloying of metals is preferable. Give reason.	2	4	2
5	Write Nernst equation for reduction reaction.	2	6	2
6	Write any two Nernst equation applications.	2	6	2
7	What is meant by Caustic embrittlement?	2	4	2
8	Define Native metal with example.	2	4	2
9	Define electrochemical corrosion.	2	4	2
10	Write different type of wet corrosion.	2	4	2
	PART –B			
1	Write different types of system in thermodynamics with suitable example.	4	4	3
2	Derive Nernst equation for the oxidation reaction $M \rightarrow M^{n+}+2e^{-}$			
3	Explain about the galvanic corrosion taking place in Zn-Fe and Cu-Fe couple with suitable example.	4	4	3
4	How scale and sludge affects boiler and what can be done to remove it?	4	4	3
5	Enumerate the characteristics or requirements that is required for a potable water.	4	4	3
6	Explain how corrosion is controlled by sacrificial anode and impressed current cathode protection.	4	4	3
7	Examine the Hard and soft acid base (HSAB) concept for acids and bases.	4	4	3

DEPARTMENT OF CHEMISTRY

8	Examine the differential aeration corrosion taking place in a metal with example.	4	4	3
9	How reverse osmosis process is carried out using a semi permeable membrane.	4	4	3
10	Explain in detail how hydrogen evolution takes place in wet condition.	4	6	3
	PART – C			
1	Explicate the boiler troubles taking place due to scale, sludge, priming, foaming and caustic embrittlement in detail and how it can be prevented and removed.	12	4	3
2	Derive Nernst equation for reduction potential. Write its applications and apply the Nernst equation for the equation $Cu^{2+}_{(aq)}+2e^{-}\rightarrow Cu_{(s)}$.		6	3
3	Mention and elaborate the preventive methods that have to be followed to treat the municipal water.	12	4	3
4	Sketch the ion-exchanger method and explain how it is used for removing cations and anions present in water.		4	3
5	Examine the carbonate, calgon and phosphate conditioning method for water treatment.		4	3
6	Explain the different methods that could be used to control the corrosion by modifying the metal.		4	3
7	Explain in detail how corrosion occurs in presence of oxygen and hydrogen in dry environment.	12	6	3

Q. No.	Question		CO	Bloom' s Level
	UNIT-V	age		S LICTOR
	PART –A			
1	Define substitution reaction.	2	5	2
2	What is meant by addition reaction?	2	5	2
3	Compare addition and substitution reaction.	2	5	2
4	Define Diene and Dienophile with example.	2	6	2
5	Define the term racemic mixture.	2	6	2
6	Define Cis-Trans isomers with example.	2	6	
7	Write any four reducing agents.	2	5	2
8	Differentiate chiral and achiral molecule with example.	2	5	2
9	Draw the staggered form of butane.	2	5	2
10	Define drug. Give two examples.	2		2
	PART – B	Z	6	2
1	Write the different oxidation reaction mechanism with suitable examples.	4	6	3
2	Draw the constitutional isomers of butanol	4	5	2

DEPARTMENT OF CHEMISTRY

3	Explain in detail about enantiomer and diasteromer taking place in organic molecule with suitable example.	4	6	3
4	Write the constitutional isomers of pentane.	4	5	2
5	Draw the synthesis and mechanism of methyl salicylate and illustrate the use of it in the field of medicine.	4	6	3
6	Discuss the ring opening reaction with an example.	4	5	2
7	How reduction reaction takes place in presence of LiAlH ₄ as a		6	3
8	reducing agent. Draw the cis trans isomer and write the IUPAC name for the molecule CICH=CHCl and CH ₃ C ₂ H ₅ C=CCH ₃ C ₂ H ₅		6	3
9	Draw the different stereochemical forms of tartaric acid.	4	5	2
10	Explain about types of structural and stereo isomerism with an	4	5	2
	example. PART – C			
1	Explain S _N 1 Reaction mechanism with suitable examples.	12	5	2
$\frac{1}{2}$	Explain E^1 and E^2 Reaction mechanism with suitable examples.	12	5	2
3	Explain S_N^2 Reaction mechanism with suitable examples.	12	5	2
4	Explain Diels-Alder reaction and its mechanism in detail. Write down some examples of diene and dienophiles.	12	6	3
5	Discuss in detail the synthetic mechanism of Paracetamol. Mention its uses.	12	6	3
6	Explain the isomerism taking place in transition metal compounds.	12	6	3
	Draw the conformational analysis of Butane and Cyclohexane.	12	5	2

G. Aithy

STUDENT PERFORMANCE RECORD & & STUDENT ATTENDANCE RECORD

 \bigcirc

ECE TERM I STUDENT PERFORMANCE

5.No.	Reg No.	Student Name	CLA 1 (30)	CLA 2 (30	CLA 3 (30	CLA 4 (1
1	U22EC001	ADARI BALA KRISHNA KARTHIK	18	20	20	10
2	U22EC002	R ADARSH YADAV	20	18	12	10
3	U22EC003	AJAY KRISHNA T U	15	14	20	10
4	U22EC004	G AJAY KUMAR REDDY	0	20	18	10
5	U22EC005	AKASH TULLURI	0	20	10	10
6	U22EC006	AKKALA HIMAKARA VENKATESH F	15	20	20	10
7	U22EC007	AKKI NAGA PAVAN KUMAR REDDY	22	20	14	10
8	U22EC008	ALLAM VINAY	13	10	16	10
9	U22EC009	ALLAM YASWANTH	0	20	10	10
10	U22EC010	ALLU NAVEEN	20	14	3	10
11	U22EC011	AMBATI CHANDAN REDDY	14	20	18	10
12	U22EC012	AMBATI NAVEEN REDDY	15	20	10	10
13	U22EC013	AMBATI SHIVA REDDY	20	18	20	10
14	U22EC014	AMRITA .	25	28	28	10
15		AMUDALAPALLI LOKESH	21	18	26	10
16		ANAKALA NANDA KUMAR	24	20	18	10
17	U22EC017	ANCHA GANESH	28	28	28	10
18		ANCHELA VAISHNAVI	24	26	20	10
19	0	ANCHULA ASHOK	15	12	20	10
20		ANDRA CHARAN	18	14	14	10
21	U22EC021	ANDRA MADHUSUDHAN NAIDU	15	16	14	10
22	U22EC022	ANGADI ANWAR	24	18	26	10
23		APPADI KAVYA	26	28	28	10
24	U22EC025	ARELLY ABHIRAM	15	12	18	10
25	U22EC026		18	24	18	10
26	U22EC027	ASAM MANOHAR REDDY	15	14	22	10
27	U22EC028	ASHALA LOKESH	26	20	14	10
28	U22EC029		28	26	18	10
29		ATHURU TEJA REDDY	15	22	20	10
30		AVISINENI UDAY KIRAN	15	14	16	10
31		AVULA HARSHAVARDHAN REDDY	15	24	24	10
32		AVULAPATI KUSHWANTH RAM	18	16	8	10
33		AYODHYPURAM VENKATRAMI REI		26	22	10
34		BACHU SAI SHIVA	17	16	20	10
35		BADDIPALLI BHASKAR REDDY	15	16	18	10
36		BADE HEMA PANDU RANGA RAO	15	14	20	10
37		BAILAPUDI YESWANTH	17	16	20	10
38		BALAGONDA INDU	28	28	28	10
39		BALAGONDA INDE	20	20	14	10
39 40		BALAM NARESH BALTHA SAI TEJA	27	20	14	10
		BALU RAVI KRISHNA REDDY	15	16	6	10
41		BANDARI SANDEEP	25	10	14	10
42 43		BANDARI SANDELP BANDARU ARAVIND KUMAR	20	12	20	10

44		BANDARU CHARAN KISHORE	25	20	20	10
45		BANDARU UMA MAHESH	15	18	22	10
46		BANDI VINOD	15	8	14	10
47		BAREDDY VENKATESWARA REDDY	22	18	20	10
48	U22EC050	BATHALA VENKATA SUJAN KARTH	12	18	12	10
49	U22EC051	BATHINA CHARAN KUMAR REDDY	22	22	22	10
50	U22EC052	BATTEPATI ANKAIAH	15	12	18	10
51	U22EC053	BAVIRISETTI RAJESH	14	20	20	10
52	U22EC054	BAYYAVARAPU VISHNU VARDHAN	14	12	14	10
53	U22EC055	BESTA MAHENDRA	15	20	14	10
54	U22EC056	BESTHA PAVAN KUMAR	16	12	14	10
55	U22EC057	BHURAGALA RAMESH	24	26	26	10
56	U22EC058	BIJIVEMULA VENKATA SUBBA RED	18	16	20	10
57	U22EC059	BITRA JAYASIMHA	24	14	AB	10
58	U22EC084	CHINDAM SASHIVARUN	23	AB	15	10
59	U22EC102	DEGA SRINU	15	18	18	10
60	U22EC132	GANNAMANI MANOHAR KRISHNA	30	30	30	10
61	U22EC133	GANTA MANIKANTA	15	24	20	10
62	U22EC134	GILAKA PEDDANNA	24	26	26	10
63	U22EC135	GOLAKOTI RAVINDRA SAI KRISHNA	27	26	26	10
64	U22EC136	GOLLA DHANASHEKAR	24	30	30	10
65	U22EC137	GOLLA PAVAN KUMAR	15	20	22	10
66	U22EC138	GOLLAPALLI SATHISH KUMAR	15	22	22	10
67	U22EC139	GORANTALA ROHAN	15	28	28	10
68	U22EC141	GOSU VINAY	15	20	14	10
69	U22EC142	GOTTAPU JAGADEESH	18	26	26	10
70	U22EC143	GUDA REDDY ESWAR REDDY	6	26	26	10
71	U22EC144	GUDDETI SASIKANTH	12	20	24	10
72	U22EC145	GUDE KISHORE BABU	15	16	16	10
73	U22EC146	GUDIVADA HEMANTH	15	20	20	10
74	U22EC147	GUDURI ABHISHEK REDDY	21	30	30	10
75	U22EC148	GUGGILLA VENKATA PRASAD	15	30	30	10
76	U22EC149	GULLA PRASANTH KUMAR	9	24	24	10
77	U22EC150	GUMPULA MAHITA PRITAM	24	26	26	10
78	U22EC151	GUNDRA DHANUNJAY	15	24	24	10
79		GUNNAM ANIL KUMAR	30	30	30	10
80		GUNTURU SANDHYAVALLI	15	28	28	10
81		GURIJEPALLI VINOD KUMAR	30	30	30	10
82	U22EC155	GURRALA MAHESH BABU	0	26	26	10
83	U22EC156	GURRAM NAGA NIHITHA	15	18	18	10
84	U22EC157	GUTAM VENKATESH	15	18	18	10
85	U22EC158	GUTTALASANDU TEJASWINI	18	28	28	10
86	U22EC159	GUTTUR GANESH	15	24	24	10
87	U22EC160	HARI KRISHNAN E	15	20	12	10
88	U22EC160	HARINI G	24	26	26	10
89	U22EC101	INJA SAMARASIMHA REDDY	15	20	16	10
55		JASTHI RAMYASAI	9	22	22	10
90	77166 162		7 1	1.1.	22	10

92	U22EC166	JUJJURU YADAGIRI	15	28	28	10
93		JUTUR MANASA HARSHINI	18	28	28	10
94		KAKANABOINA VIJAYAMUKTHANA		18	18	10
95		KOCHERLA SRI HARSHA	18	22	22	10
96		KADIYALA KARTHIK	24	30	30	10
97	U22EC171		15	20	22	10
98	U22EC172	KALA SAI KIRAN	15	20	22	10
99	U22EC173	KALAL ABHILASH KUMAR GOUD	21	20	20	10
100	U22EC174	KALINGIRI SURENDRA BABU	12	20	20	10
101	U22EC175	KALLAKURI ABHISHEK	6	20	20	10
102	U22EC176	KAMASANI NITHISH	0	20	20	10
103	U22EC177	KAMMARI RAJESH ACHARI	15	18	18	10
104	U22EC178	KANCHARLA VENKATA SUKUMAR	15	26	26	10
105	U22EC179	KANCHETTI GANESH	9	22	24	10
106	U22EC180	KANKANALA ANVESH	15	22	20	10
107	U22EC181	KANNEKANTI SURENDRA VENKATA	15	24	20	10
108		KANTINENI ANIL KUMAR	27	28	28	10
109		KANUMALLAPURI MOHAN	15	20	22	10
110	U22EC184	KAPUGORLLA SRIKANTH	15	22	20	10
111		KARNA LAHARI	12	22	22	10
112		KARNAKANTI LOHITH	12	20	24	10
113		KARNATI ASHOK REDDY	15	18	18	2
114		KARPURAPU SAHITH BABU	18	28	28	10
115		KARRA JAYA PRAKASH	21	24	24	10
116		M KARTHIK	12	16	16	10
117		KATHI AKHIL REDDY	30	30	30	10
118		KATPADI ISHAQ	27	28	28	10
119		KEKKIRENI PAVAN.	15	20	20	10
120		KETHAM BALAJI	15	22	20	10
121		KETHIREDDY KEDARNATH REDDY	21	28	28	10
122		KODUMURTHY GOVARDHAN	27	28	30	10
123		KODURI TARUN	15	20	18	10
124		KOLA VENKATA SAI KRISHNA	15	22	16	10
125		KOLAGANI NAGARAJU	15	22	24	10
126		KOLLEBOYINA SRINIVASULU	21	26	26	10
127		KOLLUMALLA SURYA GANESH	15	24	22	10
128		KOMARNENI ROHIT	15	26	24	10
129		KOMMU DURGA DILEEP	15	20	20	10
130		KONA SHARON PRISE SUJEEV	30	20	20	10
131		MOLAKALAPALLI POOJITHA	15	22	22	10
132		MOLAKAPALLI JAGADEESH CHOWI	24	24	22	10
133		MOLLA NASIRULLA	9	24	22	10
134		MOPIDEVI KARTHIK VARMA	15	20	20	10
135		MUDADLA VASU NAIDU	18	22	20	10
136		MUKKAMALLA MANIKANTESWARA	18	22	20	10
137		MULAMREDDY BALA NAGI REDDY	15	22	20	10
138		MUMMASANI DINESH KUMAR RED	15	30	30	10
139	U22EC284	MUNDRU ARUN	12	20	20	10

140	LIDORCOOS		1			T
140			9	22	20	10
141		MUTTHUMULA VENKATA SAI	9	20	20	10
142			18	22	22	10
143		MYLARI RAVI SANKAR	15	22	22	10
144			15	24	24	10
145	0====;0	NADENDLA SATISH KUMAR	15	22	22	10
146		NADENDLA VENKATA SADIK	15	10	10	10
147	U22EC292	NADIMPALLI HARDHIK VARMA	21	26	26	10
148		NAGALAKUNTA VENGAL REDDY	27	30	30	10
149	U22EC294		15	20	20	10
150		NAGISETTY RAMA KRISHNA	18	20	20	10
151	U22EC296		21	26	26	10
152		NALAM HEMA DURGA VENKAT VIV	21	20	20	10
153		NALAM MURAARI	15	24	24	10
154		NALAMOTHU MANOJ KUMAR	15	18	20	10
155	U22EC300	NALLA SATHISH	30	30	30	10
156	U22EC301	NALLA SURESH	24	22	22	10
157	U22EC302	NALLABOTHULA GOWTHAM KUMA	12	20	22	10
158	U22EC303	NALLABOTHULA BHARGAV SAI	9	20	20	10
159	U22EC304	NANDAM VIVEK JOSHI	12	22	22	10
160	U22EC305	NANDAVARAPU DILEEP	27	18	20	10
161	U22EC306	K V NARENDRA	15	20	20	10
162	U22EC307	NARMALA PHANI KUMAR	18	26	26	10
163	U22EC308	NARNAPATI VEERANJANEYULU	24	28	28	10
164		NARREDDY LAHARI	18	26	24	10
165	U22EC310	NARSIPURAM CHIRU	27	28	28	10
166	U22EC311	NAWIN S	15	AB	AB	10
167	U22EC312	NEMALLAPUDI JASWANTH	15	18	18	10
168	U22EC313	NETHAGANI SREEJA	18	20	20	10
169		NIDADAVOLU NAGA TEJASWINI DE		28	28	10
170		NIGIDALA VAMSI VARMA	18	24	20	10
171	U22EC316		9	12	12	10
172		NIVEDHA D	27	28	26	10
173		PADAMALA MAHESH	9	16	16	10
174		PADMANABHAN S	18	18	18	10
175		PAILA REVATHI	12	18	18	
176		PAKANATI BHARATH KUMAR REDI	9	18	18	10
177		PAKANATI SADA SIVA REDDY	6	18	18	10
178		PALEM HEMANTH SAI	6	18	18	10
179		PALLE POLI REDDY	12	10		10
180		PALLE PRAMOD REDDY	6		12	10
181		PALLEM YASWANTH KUMAR REDD	30	20	20	10
182		PALLERIA ROHITH KUMAR REDD		30	30	10
183		PALVARI VAMSHI KRISHNA	15	28	28	10
			9	22	22	10
		PANDARABOINA MAHESH	18	22	22	10
		PAREPALLI SAI GANESH	21	22	20	10
		PASUPULETI DAMODHAR NAIDU	15	16	16	10
187	U22EU333 H	PATAN KHAJA VALI	30	26	24	10

U22EC334	PATCHAVA LAKSHMI NARASIMHA	30	30	30	10
U22EC335	PATHI GNANENDRA NAIDU	30	30	30	10
U22EC336	PEDAMALLI PRASANTH REDDY	24	28	28	10
U22EC337	PEDDAKOTLA CHANDU PRAKASH F	24	24	24	10
U22EC338	PEDDAMAR BHAGYA SRAVANTHI	21	26	24	10
U22EC339	PEDDAPUDI JAGADEESWAR REDDY	15	20	18	10
U22EC340	PEMMASANI V L N ADITYA CHANDI	21	24	24	10
U22EC341	PERAM SIVA MALLESWAR REDDY	15	10	10	10
U22EC342	PERUBOINA PURNA SAI NAVEEN	15	20	20	10
U22EC343	PERUGU SATHISH	21	26	26	10
U22EC344	PILLA VENKATA RAMCHARAN	21	28	28	10
U22EC345	PILLIKANDLA HEMANTH	12	22	22	10
U22EC346	PINJARI KABULA	12	16	14	10
U22EC403	SHARMILA K	27	24	26	10
U22EC484	DASOJU HARIKRISHNA	AB	19	15	10
	U22EC335 U22EC337 U22EC338 U22EC339 U22EC340 U22EC341 U22EC342 U22EC343 U22EC344 U22EC345 U22EC346 U22EC346	U22EC335PATHI GNANENDRA NAIDUU22EC336PEDAMALLI PRASANTH REDDYU22EC337PEDDAKOTLA CHANDU PRAKASH FU22EC338PEDDAMAR BHAGYA SRAVANTHIU22EC339PEDDAPUDI JAGADEESWAR REDDYU22EC340PEMMASANI V L N ADITYA CHANDIU22EC341PERAM SIVA MALLESWAR REDDYU22EC342PERUBOINA PURNA SAI NAVEENU22EC343PERUGU SATHISHU22EC344PILLA VENKATA RAMCHARANU22EC345PILLIKANDLA HEMANTHU22EC346PINJARI KABULAU22EC403SHARMILA K	U22EC335PATHI GNANENDRA NAIDU30U22EC336PEDAMALLI PRASANTH REDDY24U22EC337PEDDAKOTLA CHANDU PRAKASH F24U22EC338PEDDAMAR BHAGYA SRAVANTHI21U22EC339PEDDAPUDI JAGADEESWAR REDDY15U22EC340PEMMASANI V L N ADITYA CHAND21U22EC341PERAM SIVA MALLESWAR REDDY15U22EC342PERUBOINA PURNA SAI NAVEEN15U22EC343PERUGU SATHISH21U22EC344PILLA VENKATA RAMCHARAN21U22EC345PILLIKANDLA HEMANTH12U22EC346PINJARI KABULA12U22EC403SHARMILA K27	U22EC335PATHI GNANENDRA NAIDU3030U22EC336PEDAMALLI PRASANTH REDDY2428U22EC337PEDDAKOTLA CHANDU PRAKASH F2424U22EC338PEDDAMAR BHAGYA SRAVANTHI2126U22EC339PEDDAPUDI JAGADEESWAR REDDY1520U22EC340PEMMASANI V L N ADITYA CHAND2124U22EC341PERAM SIVA MALLESWAR REDDY1510U22EC342PERUBOINA PURNA SAI NAVEEN1520U22EC343PERUGU SATHISH2126U22EC344PILLA VENKATA RAMCHARAN2128U22EC345PILLIKANDLA HEMANTH1222U22EC346PINJARI KABULA1216U22EC403SHARMILA K2724	U22EC335 PATHI GNANENDRA NAIDU 30 30 30 U22EC336 PEDAMALLI PRASANTH REDDY 24 28 28 U22EC337 PEDDAKOTLA CHANDU PRAKASH F 24 24 24 U22EC338 PEDDAKOTLA CHANDU PRAKASH F 24 24 24 U22EC338 PEDDAMAR BHAGYA SRAVANTHI 21 26 24 U22EC339 PEDDAPUDI JAGADEESWAR REDDY 15 20 18 U22EC340 PEMMASANI V L N ADITYA CHAND 21 24 24 U22EC341 PERAM SIVA MALLESWAR REDDY 15 10 10 U22EC342 PERUBOINA PURNA SAI NAVEEN 15 20 20 U22EC343 PERUGU SATHISH 21 26 26 U22EC344 PILLA VENKATA RAMCHARAN 21 28 28 U22EC345 PILLIKANDLA HEMANTH 12 22 22 U22EC346 PINJARI KABULA 12 16 14 U22EC345 SHARMILA K 27 24 26

Gr. Arthy

Ô

ECE TERM I STUDENT ATTENDANCE PERCENTAGE

S.No.	Reg No.	Student Name	ATTENDANCE %
1	U22EC001	ADARI BALA KRISHNA KARTHIK	71
2	U22EC002	R ADARSH YADAV	62
3	U22EC003	AJAY KRISHNA T U	81
4	U22EC004	G AJAY KUMAR REDDY	68
5		AKASH TULLURI	43
6	U22EC006	AKKALA HIMAKARA VENKATESH F	84
7	U22EC007	AKKI NAGA PAVAN KUMAR REDDY	81
8	U22EC008	ALLAM VINAY	82
9	U22EC009	ALLAM YASWANTH	71
10	U22EC010	ALLU NAVEEN	77
11	U22EC011	AMBATI CHANDAN REDDY	83
12	U22EC012	AMBATI NAVEEN REDDY	71
13	U22EC013	AMBATI SHIVA REDDY	78
14	U22EC014	AMRITA .	82
15	U22EC015	AMUDALAPALLI LOKESH	86
16	U22EC016	ANAKALA NANDA KUMAR	84
17	U22EC017	ANCHA GANESH	77
18	U22EC018	ANCHELA VAISHNAVI	84
19	U22EC019	ANCHULA ASHOK	82
20	U22EC020	ANDRA CHARAN	65
21	U22EC021	ANDRA MADHUSUDHAN NAIDU	92
22	U22EC022	ANGADI ANWAR	91
23	U22EC023	APPADI KAVYA	86
24	U22EC025	ARELLY ABHIRAM	73
25	U22EC026	ARVAPALLI VARUN KUMAR	84
26	U22EC027	ASAM MANOHAR REDDY	86
27	U22EC028	ASHALA LOKESH	94
28	U22EC029	K ASHOK	81
29	U22EC030	ATHURU TEJA REDDY	81
30	U22EC031	AVISINENI UDAY KIRAN	83
31	U22EC032	AVULA HARSHAVARDHAN REDDY	87
32	U22EC033	AVULAPATI KUSHWANTH RAM	78
33		AYODHYPURAM VENKATRAMI REI	83
34		BACHU SAI SHIVA	78
35	U22EC036	BADDIPALLI BHASKAR REDDY	83
36		BADE HEMA PANDU RANGA RAO	70
37		BAILAPUDI YESWANTH	60
38		BALAGONDA INDU	87
39		BALAM NARESH	82
40		BALTHA SAI TEJA	88
41		BALU RAVI KRISHNA REDDY	84
42		BANDARI SANDEEP	73
43		BANDARU ARAVIND KUMAR	79
44		BANDARU CHARAN KISHORE	84

45		BANDARU UMA MAHESH	81
46	U22EC048	BANDI VINOD	74
47	U22EC049	BAREDDY VENKATESWARA REDDY	86
48	U22EC050	BATHALA VENKATA SUJAN KARTH	86
49	U22EC051	BATHINA CHARAN KUMAR REDDY	88
50	U22EC052	BATTEPATI ANKAIAH	81
51	U22EC053	BAVIRISETTI RAJESH	82
52	U22EC054	BAYYAVARAPU VISHNU VARDHAN	56
53	U22EC055	BESTA MAHENDRA	82
54	U22EC056	BESTHA PAVAN KUMAR	71
55	U22EC057	BHURAGALA RAMESH	92
56	U22EC058	BIJIVEMULA VENKATA SUBBA RED	94
57	U22EC059	BITRA JAYASIMHA	64
58	U22EC084	CHINDAM SASHIVARUN	69
59	U22EC102	DEGA SRINU	100
60	U22EC132	GANNAMANI MANOHAR KRISHNA	96
61	U22EC133	GANTA MANIKANTA	18
62	U22EC134	GILAKA PEDDANNA	99
63	U22EC135	GOLAKOTI RAVINDRA SAI KRISHNA	87
64		GOLLA DHANASHEKAR	80
65	U22EC137	GOLLA PAVAN KUMAR	85
66	U22EC138	GOLLAPALLI SATHISH KUMAR	74
67	U22EC139	GORANTALA ROHAN	82
68	U22EC141	GOSU VINAY	80
69	U22EC142	GOTTAPU JAGADEESH	99
70	U22EC143	GUDA REDDY ESWAR REDDY	75
71	U22EC144	GUDDETI SASIKANTH	48
72	U22EC145	GUDE KISHORE BABU	93
73	U22EC146	GUDIVADA HEMANTH	61
74	U22EC147	GUDURI ABHISHEK REDDY	90
75	U22EC148	GUGGILLA VENKATA PRASAD	89
76	U22EC149	GULLA PRASANTH KUMAR	80
77	U22EC150	GUMPULA MAHITA PRITAM	94
78		GUNDRA DHANUNJAY	61
79	U22EC152	GUNNAM ANIL KUMAR	100
80		GUNTURU SANDHYAVALLI	56
81	U22EC154	GURIJEPALLI VINOD KUMAR	100
82		GURRALA MAHESH BABU	92
83	U22EC156	GURRAM NAGA NIHITHA	49
84	U22EC157	GUTAM VENKATESH	85
85	U22EC158	GUTTALASANDU TEJASWINI	100
86		GUTTUR GANESH	73
87	U22EC160	HARI KRISHNAN E	44
88	U22EC161		77
89		INJA SAMARASIMHA REDDY	72
90		JASTHI RAMYASAI	76
91	-	JILLELLA SISINDAR REDDY	62
92		JUJJURU YADAGIRI	83

 \bigcirc

J

93		JUTUR MANASA HARSHINI	94
94	U22EC168	KAKANABOINA VIJAYAMUKTHANA	96
95	U22EC169	KOCHERLA SRI HARSHA	83
96	U22EC170		83
97	U22EC171	KADIYAM PRAKASH RAJ	79
98	U22EC172	KALA SAI KIRAN	49
99	U22EC173	KALAL ABHILASH KUMAR GOUD	86
100	U22EC174	KALINGIRI SURENDRA BABU	86
101	U22EC175	KALLAKURI ABHISHEK	80
102	U22EC176	KAMASANI NITHISH	90
103	U22EC177	KAMMARI RAJESH ACHARI	77
104	U22EC178	KANCHARLA VENKATA SUKUMAR	51
105	U22EC179	KANCHETTI GANESH	18
106	U22EC180	KANKANALA ANVESH	59
107	U22EC181	KANNEKANTI SURENDRA VENKAT	82
108	U22EC182	KANTINENI ANIL KUMAR	97
109	U22EC183	KANUMALLAPURI MOHAN	92
110	U22EC184	KAPUGORLLA SRIKANTH	92
111	U22EC185	KARNA LAHARI	94
112	U22EC186	KARNAKANTI LOHITH	73
113	U22EC187	KARNATI ASHOK REDDY	73
114	U22EC188	KARPURAPU SAHITH BABU	90
115	U22EC189	KARRA JAYA PRAKASH	92
116	U22EC190	M KARTHIK	89
117	U22EC192	KATHI AKHIL REDDY	94
118	U22EC193	KATPADI ISHAQ	77
119	U22EC194	KEKKIRENI PAVAN.	83
120	U22EC195	KETHAM BALAJI	89
121	U22EC196	KETHIREDDY KEDARNATH REDDY	92
122	U22EC197	KODUMURTHY GOVARDHAN	97
123	U22EC198	KODURI TARUN	89
124	U22EC199	KOLA VENKATA SAI KRISHNA	69
125	U22EC200	KOLAGANI NAGARAJU	24
126	U22EC201	KOLLEBOYINA SRINIVASULU	99
127	U22EC202	KOLLUMALLA SURYA GANESH	63
128	U22EC203	KOMARNENI ROHIT	89
129	U22EC204	KOMMU DURGA DILEEP	66
130	U22EC205	KONA SHARON PRISE SUJEEV	42
131	U22EC276	MOLAKALAPALLI POOJITHA	91
132	U22EC277	MOLAKAPALLI JAGADEESH CHOWI	73
133	U22EC278	MOLLA NASIRULLA	65
134	U22EC279	MOPIDEVI KARTHIK VARMA	74
135	U22EC280	MUDADLA VASU NAIDU	88
136	U22EC281	MUKKAMALLA MANIKANTESWARA	87
137		MULAMREDDY BALA NAGI REDDY	87
138		MUMMASANI DINESH KUMAR RED	91
139		MUNDRU ARUN	85
140		MUTRA DHANANJAYA REDDY	87

141	LIDDEC286	MUTTHUMULA VENKATA SAI	86
	U22EC280	MUTYALA MADHU	79
142 143		MYLARI RAVI SANKAR	79
	U22EC288		88
144		NADENDLA SATISH KUMAR	82
145			80
146	U22EC291	NADENDLA VENKATA SADIK	93
147		NADIMPALLI HARDHIK VARMA	93
148	U22EC293		88
149		NAGAVELLI NIKHIL TEJA	84
150	-	NAGISETTY RAMA KRISHNA NAKKALA VENUGOPAL	88
151		NALAM HEMA DURGA VENKAT VIV	82
152	U22EC297		74
153	U22EC298		84
154	U22EC299	NALAMOTHU MANOJ KUMAR	
155	U22EC300	NALLA SATHISH	93
156	U22EC301	NALLA SURESH	
157	U22EC302	NALLABOTHULA GOWTHAM KUMA	86
158	U22EC303	NALLABOTHULA BHARGAV SAI	88
159	U22EC304		71
160		NANDAVARAPU DILEEP	93
161		K V NARENDRA	59
162		NARMALA PHANI KUMAR	88
163	in the second	NARNAPATI VEERANJANEYULU	88
164		NARREDDY LAHARI	87
165		NARSIPURAM CHIRU	89
166		NAWIN S	6
167		NEMALLAPUDI JASWANTH	59
168		NETHAGANI SREEJA	90
169	U22EC314	NIDADAVOLU NAGA TEJASWINI DE	87
170	U22EC315	NIGIDALA VAMSI VARMA	63
171	U22EC316	NITHISH M	86
172	U22EC317	NIVEDHA D	92
173	U22EC318	PADAMALA MAHESH	87
174	U22EC319	PADMANABHAN S	85
175	U22EC320	PAILA REVATHI	88
176	U22EC321	PAKANATI BHARATH KUMAR REDI	79
177	U22EC322	PAKANATI SADA SIVA REDDY	88
178	U22EC323	PALEM HEMANTH SAI	87
179	U22EC325	PALLE POLI REDDY	82
180	U22EC326	PALLE PRAMOD REDDY	84
181	U22EC327	PALLEM YASWANTH KUMAR REDD	93
182	U22EC328	PALLERLA ROHITH KUMAR REDDY	91
183	U22EC329	PALVARI VAMSHI KRISHNA	90
184	U22EC330	PANDARABOINA MAHESH	89
185	U22EC331	PAREPALLI SAI GANESH	81
186		PASUPULETI DAMODHAR NAIDU	80
187		PATAN KHAJA VALI	88
188		PATCHAVA LAKSHMI NARASIMHA	90

U22EC335	PATHI GNANENDRA NAIDU	90
U22EC336	PEDAMALLI PRASANTH REDDY	92
U22EC337	PEDDAKOTLA CHANDU PRAKASH F	86
U22EC338	PEDDAMAR BHAGYA SRAVANTHI	86
U22EC339	PEDDAPUDI JAGADEESWAR REDDY	75
U22EC340	PEMMASANI V L N ADITYA CHAND	87
U22EC341	PERAM SIVA MALLESWAR REDDY	73
U22EC342	PERUBOINA PURNA SAI NAVEEN	82
U22EC343	PERUGU SATHISH	86
U22EC344	PILLA VENKATA RAMCHARAN	89
U22EC345	PILLIKANDLA HEMANTH	88
U22EC346	PINJARI KABULA	86
U22EC403	SHARMILA K	93
U22EC484	DASOJU HARIKRISHNA	30
	U22EC336 U22EC337 U22EC338 U22EC339 U22EC340 U22EC341 U22EC342 U22EC343 U22EC344 U22EC344 U22EC344 U22EC345 U22EC346 U22EC403	U22EC336PEDAMALLI PRASANTH REDDYU22EC337PEDDAKOTLA CHANDU PRAKASH FU22EC338PEDDAMAR BHAGYA SRAVANTHIU22EC339PEDDAPUDI JAGADEESWAR REDDYU22EC340PEMMASANI V L N ADITYA CHANDIU22EC341PERAM SIVA MALLESWAR REDDYU22EC342PERUBOINA PURNA SAI NAVEENU22EC343PERUGU SATHISHU22EC344PILLA VENKATA RAMCHARANU22EC345PILLIKANDLA HEMANTHU22EC346PINJARI KABULA

By. Dither

COURSE END SURVEY

 \bigcirc

INSTITUTE OF HIGHER EDUCATION AND RESEARCH (Declared as Desimed-to-be University under section 3 of UGC Act, 1956) (Vide Notification No. F9-5/2000 - U.3, Meistry of Human Resource Development, Gost of India, dated 4" July 2007)

BTECH ELECTRICAL AND ELECTRONICS ENGINEERING

ACADEMIC YEAR 2022-2023 (TERM I) - ENGINEERING CHEMISTRY - U20CYBJ01

STUDENT PERFORMANCE RECORD

OL N.	Dec No	Name STUDENT PE	C01	CO2	CO3	CO4	C05	CO6	Averag
SI No.	Reg. No U22EC018	ANCHELA VAISHNAVI	98	94	95	97	96	97	96
1	U22EC018	ANCHULA ASHOK	98	97	100	94	100	100	98
2	U22EC019	ANDRA CHARAN	100	94	98	100	88	97	96
3	U22EC020	ANDRA CHARAIN	98	94	98	97	100	100	98
4	U22EC021	ANGADI ANWAR	95	84	100	91	75	97	90
5	U22EC022 U22EC023	APPADI KAVYA	93	94	95	94	92	100	94
6		ARELLY ABHIRAM	95	84	98	100	88	97	94
7	U22EC025 U22EC026	ARVAPALLI VARUN KUMAR	98	94	95	94	83	100	94
8	U22EC020 U22EC027	ASAM MANOHAR REDDY	95	84	100	78	88	100	91
9	U22EC027	ASHALA LOKESH	98	94	95	97	92	100	96
10	U22EC028	K ASHOK	93	100	95	100	88	97	95
11		ATHURU TEJA REDDY	95	84	98	94	88	100	93
12	U22EC030	AVISINENI UDAY KIRAN	98	84	100	91	96	97	94
13	U22EC031 U22EC032	AVULA HARSHAVARDHAN RE	95	94	93	100	83	100	94
14	U22EC032 U22EC033	AVULAPATI KUSHWANTH RAN	93	78	98	88	100	100	93
15	U22EC033	AYODHYPURAM VENKATRAM	95	88	100	97	88	100	94
16		BACHU SAI SHIVA	98	97	93	94	100	100	97
17	U22EC035	BADDIPALLI BHASKAR REDDY	98	88	98	91	83	97	92
18	U22EC036	BADDIFALLI BHASKAR REDD BADE HEMA PANDU RANGA R	95	88	95	100	100	94	95
19	U22EC037	BAILAPUDI YESWANTH	98	97	98	94	83	94	94
20	U22EC038	BALAGONDA INDU	95	88	98	94	88	100	94
21	U22EC039	BALAGONDA INDO BALAM NARESH	93	84	98	94	92	97	93
22	U22EC040	BALAM NAKESIT BALTHA SAI TEJA	98	94	95	97	96	100	96
23	U22EC041	BALU RAVI KRISHNA REDDY	95	84	95	100	100	97	95
24	U22EC042	BANDARI SANDEEP	100	100	100	81	92	100	95
25	U22EC044	BANDARI SANDEEP BANDARU ARAVIND KUMAR	98	78	95	94	88	97	91
26	U22EC045	BANDARU ARAVIND KOMAR BANDARU CHARAN KISHORE	93	88	95	100	92	100	94
27	U22EC046	BANDARU UMA MAHESH	93	84	95	97	88	100	93
28	U22EC047	BANDI VINOD	95	94	98	88	79	100	92
29	U22EC048	BAREDDY VENKATESWARA R	0	100	93	97	96	97	80
30	U22EC049	BAREDDY VENKATESWARAK BATHALA VENKATA SUJAN K	95	84	93	97	100	97	94
31	U22EC050	BATHINA CHARAN KUMAR RE	98	94	95	94	92	97	95
32	U22EC051		100	84	100	97	96	100	96
33	U22EC052	BATTEPATI ANKAIAH	95	84	98	100	92	100	95
34	U22EC053	BAVIRISETTI RAJESH	98	97	93	91	88	100	94
35	U22EC054	BAYYAVARAPU VISHNU VARI	95	88	98	97	96	97	95
36	U22EC055	BESTA MAHENDRA	98	84	98	81	88	97	91
37	U22EC056	BESTHA PAVAN KUMAR	100	94	95	94	96	100	96
38	U22EC057	BHURAGALA RAMESH		84	95	94	83	97	92
39	U22EC058	BIJIVEMULA VENKATA SUBBA	98	94	95	97	92	100	95
40	U22EC059	BITRA JAYASIMHA	95	91	98	94	96	97	95
41	U22EC180	KANKANALA ANVESH	98	100	95	97	96	100	97
42	U22EC181	KANNEKANTI SURENDRA VEN		91	93	94	100	97	95
43	U22EC182	KANTINENI ANIL KUMAR	95	88	93	94	96	100	95
44	U22EC183	KANUMALLAPURI MOHAN	100		98	97	83	97	93
45	U22EC184	KAPUGORLLA SRIKANTH	95	91	98	91	83	100	94
46	U22EC185	KARNA LAHARI	98	94	98	91	88	97	94
47	U22EC186	KARNAKANTI LOHITH	90	97	98	100	83	100	96
48	U22EC187	KARNATI ASHOK REDDY	100	94	98	88	83	100	91
49	U22EC188	KARPURAPU SAHITH BABU	100	78			92	100	94
50	U22EC189	KARRA JAYA PRAKASH	98	88	93	97	92	97	96
51	U22EC190	M KARTHIK	100	97	98	94		100	90
52	U22EC192	KATHI AKHIL REDDY	98	88	98	81	79	100	90
53	U22EC193	KATPADI ISHAQ	95	91	95	94	96	100	95
54	U22EC194	KEKKIRENI PAVAN.	100	88	98	100	96	1 100	9/

0

					400	04	92	100	95
55	U22EC195	KETHAM BALAJI	100	84	100 95	94	100	100	95
56	U22EC196	KETHIREDDY KEDARNATH RE	98 95	84 94	95	100	75	97	93
57	U22EC197	KODUMURTHY GOVARDHAN	95	94 81	95	94	88	97	92
58	U22EC198	KODURI TARUN	100	84	98	94	100	97	95
59	U22EC199	KOLA VENKATA SAI KRISHNA	98	94	100	97	92	100	97
60	U22EC200	KOLAGANI NAGARAJU	98	91	98	75	96	100	93
61	U22EC201	KOLLEBOYINA SRINIVASULU KOLLUMALLA SURYA GANESI	93	91	95	94	96	100	95
62	U22EC202		95	94	95	97	96	97	96
63	U22EC203	KOMARNENI ROHIT KOMMU DURGA DILEEP	95	94	100	100	88	97	96
64	U22EC204	KONA SHARON PRISE SUJEEV	93	88	98	91	88	100	93
65	U22EC205	MOLAKALAPALLI POOJITHA	95	91	95	97	83	97	93
66	U22EC276 U22EC277	MOLAKAPALLI JAGADEESH CI	98	91	95	100	92	100	96
67	U22EC277	MOLLA NASIRULLA	93	97	98	75	96	97	92
68	U22EC278	MOPIDEVI KARTHIK VARMA	98	91	95	100	96	100	96
69	U22EC279	MUDADLA VASU NAIDU	93	84	93	97	71	97	89
70	U22EC280	MUKKAMALLA MANIKANTES	95	88	98	88	100	100	95
71 72	U22EC281	MULAMREDDY BALA NAGI RE	98	91	98	97	100	97	97
	U22EC282	MUMMASANI DINESH KUMAR	95	94	98	81	92	100	93
73 74	U22EC283	MUNDRU ARUN	93	91	95	94	100	97	95
74	U22EC284	MUTRA DHANANJAYA REDDY	100	94	98	97	100	100	98
75	U22EC285	MUTTHUMULA VENKATA SAI	93	91	100	94	88	100	94
77	U22EC280	MUTYALA MADHU	98	78	98	94	96	100	94
78	U22EC288	MYLARI RAVI SANKAR	100	94	95	94	96	100	96
79	U22EC289	NAAGAD YOUNES KHAN	100	94	98	94	100	97	97
80	U22EC290	NADENDLA SATISH KUMAR	100	88	100	97	92	97	95
81	U22EC291	NADENDLA VENKATA SADIK	98	91	88	94	100	97	94
82	U22EC292	NADIMPALLI HARDHIK VARM	100	81	98	97	92	100	95
83	U22EC293	NAGALAKUNTA VENGAL RED	98	88	95	72	92	100	91
84	U22EC294	NAGAVELLI NIKHIL TEJA	100	97	98	97	96	100	98
85	U22EC295	NAGISETTY RAMA KRISHNA	100	94	98	97	75	97	93
86	U22EC296	NAKKALA VENUGOPAL	98	84	93	91	100	97	94
87	U22EC297	NALAM HEMA DURGA VENKA	95	91	98	100	96	94	95
88	U22EC298	NALAM MURAARI	98	84	93	94	83	97 100	91 92
89	U22EC299	NALAMOTHU MANOJ KUMAR	95	94	98	72	96	97	92
90	U22EC300	NALLA SATHISH	98	94	98	100	83	100	96
91	U22EC084	CHINDAM SASHIVARUN	93	100	98	88	96 96	97	92
92	U22EC001	ADARI BALA KRISHNA KARTH	98	88	95	88	100	100	94
93	U22EC002	R ADARSH YADAV	95	84	95	97	100	97	98
94	U22EC003	AJAY KRISHNA T U	98	94	100	97	92	100	97
95	U22EC004	G AJAY KUMAR REDDY	98	100	98 93	81	83	97	88
96	U22EC005	AKASH TULLURI	90	84	95	97	96	100	96
97	U22EC006		95	91 88	100	91	100	100	96
98	U22EC007	AKKI NAGA PAVAN KUMAR R	95 93	81	95	91	96	100	93
99	U22EC008	ALLAM VINAY	93	91	95	100	75	100	93
100	U22EC009		100	84	95	97	79	97	92
101	U22EC010	ALLU NAVEEN	98	91	100	100	92	97	96
102	U22EC011	AMBATI CHANDAN REDDY	93	88	93	94	96	97	93
103	U22EC012		93	91	93	78	92	100	91
104	U22EC013	AMBATI SHIVA REDDY	98	88	95	91	92	100	94
105	U22EC014		95	97	98	78	96	100	94
106	U22EC015		95	91	98	91	79	97	92
107	U22EC016		95	88	98	97	100	97	96
108	U22EC017		98	94	98	94	92	100	96
109	U22EC102		-	88	100	94	96	97	94
110	U22EC132 U22EC133		95	97	88	100	92	100	95
111	U22EC133 U22EC134		93	91	98	94	75	97	91
112	U22EC134			88	95	78	88	100	91
113	U22EC135		90	91	95	94	83	97	92
114	U22EC130		93	88	100	94	71	100	91
115	U22EC137			91	95	88	100	97	94
116	U22EC138		95	94	90	94	75	100	91
117									92

	112250142	GOTTAPU JAGADEESH	95	91	95	81	96	100	93
119	U22EC142 U22EC143	GUDA REDDY ESWAR REDDY	90	84	100	91	92	100	93
120	U22EC143	GUDDETI SASIKANTH	98	91	90	100	92	100	95
121	U22EC144 U22EC145	GUDE KISHORE BABU	100	84	93	94	100	100	95
122		GUDIVADA HEMANTH	98	97	95	78	100	97	94
123	U22EC146	GUDURI ABHISHEK REDDY	93	91	98	91	92	97	93
124	U22EC147	GUGGILLA VENKATA PRASAD	95	81	98	100	71	97	90
125	U22EC148		95	84	93	94	75	100	90
126	U22EC149	GULLA PRASANTH KUMAR	98	94	98	97	92	100	96
127	U22EC150	GUMPULA MAHITA PRITAM	100	100	100	97	96	100	99
128	U22EC151	GUNDRA DHANUNJAY	95	81	95	88	75	97	88
129	U22EC152	GUNNAM ANIL KUMAR	95	91	98	97	100	97	96
130	U22EC153	GUNTURU SANDHYAVALLI	95	84	98	88	96	100	93
131	U22EC154	GURIJEPALLI VINOD KUMAR		88	98	97	75	100	92
132	U22EC155	GURRALA MAHESH BABU	98		93	81	92	100	93
133	U22EC156	GURRAM NAGA NIHITHA	95	97		94	96	97	96
134	U22EC157	GUTAM VENKATESH	98	97	95			100	90
135	U22EC158	GUTTALASANDU TEJASWINI	95	84	95	91	96		93
136	U22EC159	GUTTUR GANESH	100	88	100	94	96	97	90
137	U22EC160	HARI KRISHNAN E	95	88	95	94	100	100	
138	U22EC161	HARINI G	100	97	98	78	100	97	95
139	U22EC162	INJA SAMARASIMHA REDDY	98	88	95	91	75	100	91
140	U22EC164	JASTHI RAMYASAI	95	78	98	100	79	97	91
141	U22EC165	JILLELLA SISINDAR REDDY	98	97	95	97	96	100	97
142	U22EC166	JUJJURU YADAGIRI	98	84	90	100	75	100	91
143	U22EC167	JUTUR MANASA HARSHINI	100	88	95	75	92	100	92
144	U22EC168	KAKANABOINA VIJAYAMUKT	93	88	95	94	100	100	95
145	U22EC169	KOCHERLA SRI HARSHA	95	94	100	94	100	97	97
146	U22EC170	KADIYALA KARTHIK	98	91	90	91	88	100	93
147	U22EC171	KADIYAM PRAKASH RAJ	98	88	90	100	75	97	91
148	U22EC172	KALA SAI KIRAN	93	88	95	91	83	100	91
149	U22EC172	KALAL ABHILASH KUMAR GO	93	94	93	97	92	100	95
	U22EC175	KALINGIRI SURENDRA BABU	0	0	0	0	0	0	0
150	U22EC174	KALLAKURI ABHISHEK	98	88	98	97	96	97	95
151	U22EC175	KALLAROR / DIRIGHLAR	98	91	98	78	100	94	93
152		KAMMARI RAJESH ACHARI	95	91	95	94	96	100	95
153	U22EC177	KANCHARLA VENKATA SUKU	90	94	100	97	83	97	93
154	U22EC178		95	91	90	94	92	100	94
155	U22EC179	KANCHETTI GANESH NALLA SURESH	100	88	95	100	100	97	97
156	U22EC301			94	95	94	96	100	96
157	U22EC302	NALLABOTHULA GOWTHAM K		91	98	94	96	94	95
158	U22EC303	NALLABOTHULA BHARGAV SA				94	100	100	95
159	U22EC304	NANDAM VIVEK JOSHI	98	88	90	97	100	97	94
160	U22EC305	NANDAVARAPU DILEEP	98	91	83			100	98
161	U22EC306	K V NARENDRA	100	100	98	100	92		
162	U22EC307	NARMALA PHANI KUMAR	100	84	98	97	100	97	96
163	U22EC308	NARNAPATI VEERANJANEYUI	95	88	93	97	88	100	93
164	U22EC309	NARREDDY LAHARI	95	94	95	97	88	100	95
165	U22EC310	NARSIPURAM CHIRU	98	81	95	100	71	100	91
166	U22EC311	NAWIN S	95	91	98	100	100	100	97
167	U22EC312	NEMALLAPUDI JASWANTH	95	100	98	81	75	97	91
168	U22EC313	NETHAGANI SREEJA	98	81	98	94	92	97	93
169	U22EC314	NIDADAVOLU NAGA TEJASWI	100	84	98	97	100	97	96
170	U22EC315	NIGIDALA VAMSI VARMA	93	94	100	100	92	100	96
171	U22EC316	NITHISH M	98	91	88	78	96	100	92
172	U22EC317	NIVEDHA D	95	81	100	97	96	100	95
172	U22EC317	PADAMALA MAHESH	98	84	93	94	88	97	92
	U22EC318	PADMANABHAN S	100	88	98	97	88	97	94
_174		PAILA REVATHI	98	84	98	100	96	100	96
175	U22EC320	PAILA REVAIN PAKANATI BHARATH KUMAR	95	94	98	97	96	97	96
176	U22EC321		100	100	95	100	96	100	98
177	U22EC322	PAKANATI SADA SIVA REDDY		84	98	97	96	97	94
178	U22EC323	PALEM HEMANTH SAI	95			100	96	100	96
179	U22EC325	PALLE POLI REDDY	95	91	98			97	92
180	U22EC326	PALLE PRAMOD REDDY	100	88	98	97	71		92
181	U22EC327	PALLEM YASWANTH KUMAR	95	91	98	100	100	94	
	U22EC328	PALLERLA ROHITH KUMAR RI	98	78	100	94	88	97	92

183	U22EC329	PALVARI VAMSHI KRISHNA	95	91	95	97	96	100	96
183	U22EC329	PANDARABOINA MAHESH	100	84	100	100	100	97	97
185	U22EC331	PAREPALLI SAI GANESH	100	97	98	94	100	100	98
186	U22EC332	PASUPULETI DAMODHAR NAII	100	94	98	100	100	100	99
187	U22EC333	PATAN KHAJA VALI	100	84	98	94	96	100	95
188	U22EC334	PATCHAVA LAKSHMI NARASI	95	81	100	97	88	100	93
189	U22EC335	PATHI GNANENDRA NAIDU	98	97	95	100	88	97	96
190	U22EC336	PEDAMALLI PRASANTH REDD	100	97	100	81	92	97	94
191	U22EC337	PEDDAKOTLA CHANDU PRAKA	93	81	98	100	100	97	95
192	U22EC338	PEDDAMAR BHAGYA SRAVAN	95	94	100	97	92	100	96
193	U22EC339	PEDDAPUDI JAGADEESWAR R	98	97	98	100	96	100	98
194	U22EC340	PEMMASANI V L N ADITYA CH	100	97	98	97	71	94	93
195	U22EC341	PERAM SIVA MALLESWAR REI	95	88	95	100	92	97	94
196	U22EC342	PERUBOINA PURNA SAI NAVE	95	91	98	94	100	100	96
197	U22EC343	PERUGU SATHISH	98	97	98	94	96	100	97
198	U22EC344	PILLA VENKATA RAMCHARAN	95	88	98	100	88	97	94
199	U22EC345	PILLIKANDLA HEMANTH	98	88	98	94	96	100	95
200	U22EC346	PINJARI KABULA	95	94	100	97	100	97	97
201	U22EC403	SHARMILA K	95	91	95	94	96	100	95
202	U22EC484	DASOJU HARIKRISHNA	98	91	98	97	100	97	97
			95	89	96	93	91	98	94

BTECH ELECTRICAL AND ELECTRONICS ENGINEERING ACADEMIC YEAR 2022-2023 (TERM I) - ENGINEERING CHEMISTRY - U20CYBJ01 DIRECT ATTAINMNET

CO's	C01	CO2	CO3	CO4	CO5	CO6
Average Mark	95	89	96	93	91	98
No.of students above average	104	111	112	152	134	110
Total no. of students	202	202	202	202	202	202
% CO attainment	51	55	55	75	66	54

Porton

BTECH ELECTRICAL AND ELECTRONICS ENGINEERING ACADEMIC YEAR 2022-2023 (TERM I) - ENGINEERING CHEMISTRY - U20CYBJ01

CO INDIRECT ATTAINMNET - SURVEY REPORT

CO	No. of 5's	No. of 4's	No. of 3's	No. of 2's	No. of 1's	CO%
C01	110	62	15	10	5	90
CO2	111	63	11	11	6	93
CO3	118	50	17	9	8	90
CO4	115	55	13	10	9	88
C05	117	48	19	10	8	90
CO6	116	49	16	14	7	81

CO ATTAINMENT

 \bigcirc

INSTITUTE OF HIGHER EDUCATION AND RESEARCH (Declared as Deemed-to-be University under section 3 of UGC Act, 1956) (vide Notification No. F.9-5/2000 - U.3. Ministry of Human Resource Development, Govt. of India, dated 4" July 2002)

A IN IN 11

Q

0

Q

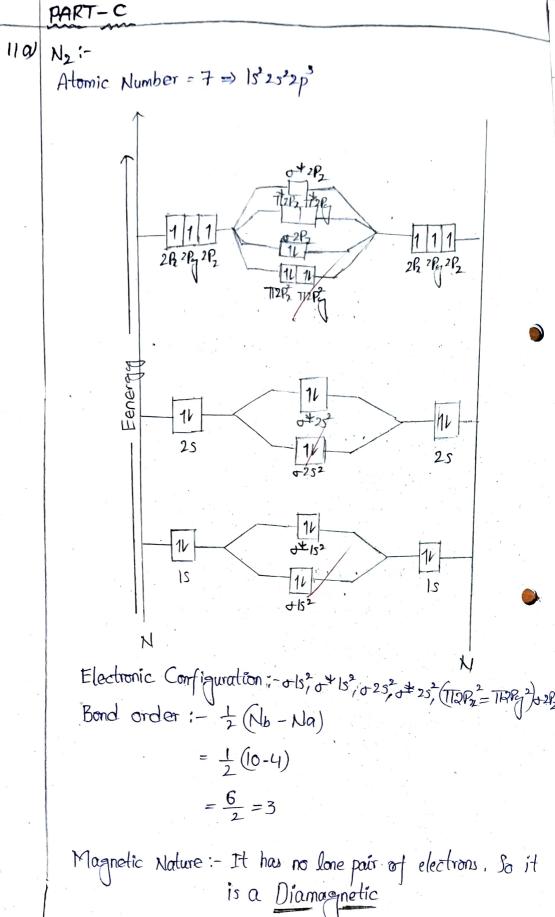
J

BTECH ELECTRONICS AND ELECTRICAL ENGINEERING

ACADEMIC YEAR 2022-2023 (TERM I) - ENGINEERING CHEMISTRY - U20CYBJ01

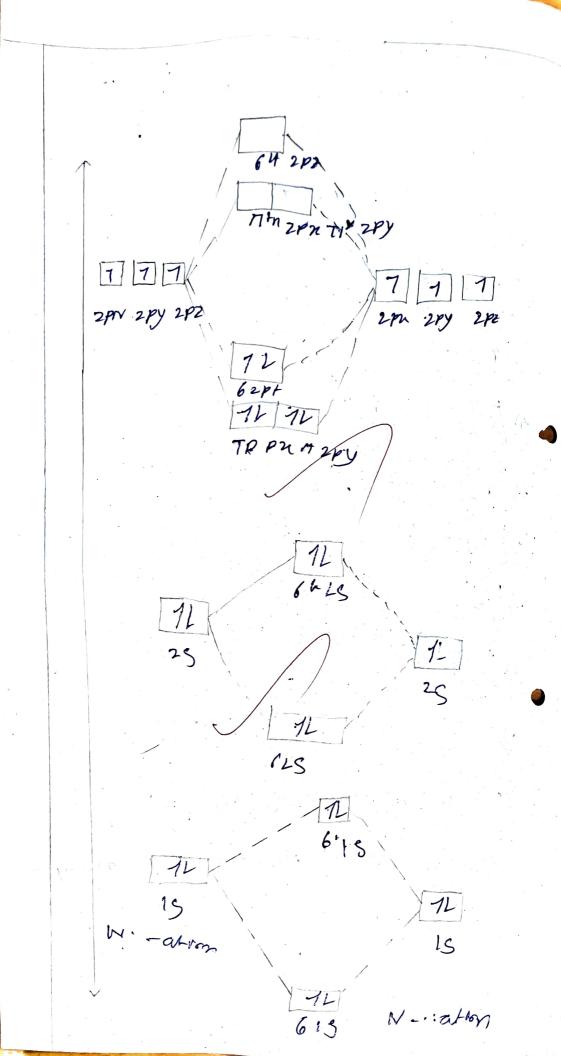
ſ			_	_	ţ	_					3	T	Т	0	σ	σ	٦
					Modificat	ion of	Target	when	achieved(Gap <=0)	Target	to 96	Target Increased	10 32	Target Increased to 96	Target Increased to 94	Target Increased to 92	Target Increased to 95
							Proposed		the Gap (Gap >0)		Attained	Target Attained	Ĩ	Target Attained	Target Attained	Target Attained	Target Attained
		co	ATTAIN	MENT	GAP [FARGET Actions	_	Z			ų		7-	ų	-2	ų	'n
			V	2	0	L	TARGET -	[CLASS ATTA]	AVERAG N El (%)		92	ç	00	92	06	87	91
						TOTAL		z	MENT A		95	ĉ	22	95	92	6	94
		INDIREC T CO	ATTAIN	MENT	(OBTAIN	ED 1	FROM C		SURVEY N		06	ć	52	66	88	6	81
	_	IL	A	-		M	DIRECT	_	MENT)		96	6	Ъ Л	96	8	6	67
F		co	ATTAIN	MENT	AVERAG	E FROM	END I	IEST	ER EXAM		96	5	76	98	89	86	97
CO ATTAINMENT	R EXAM		F		4				OBTAINE D		19	7	TT	20	16	12	16
CO ATI	END SEMESTER EXAM								D		20		77	20	18	14	16
				00	ATTAINME	T	AVERAGE	FROM	ASSESSMEN MA		96	c	88	95	96	95	97
	a			0	~	K .	4		A2]		4			2			4
	MARKS OBTAINED								A1	-	-						
	ARKS O					_	_		AT2	-			TT				5.5
	ž								AT1 AT2		15	L	C.0	17	14	9.5	6
	оттер								A1 A2		4			2			4
	MARKS ALLOTTED								AT2	-			12				9
	MAR								AT1 AT		16		8	18	14	10	e
									0		c01		202	Ö	CO4	cos	00

CLA II - SAMPLE ANSWER SHEETS

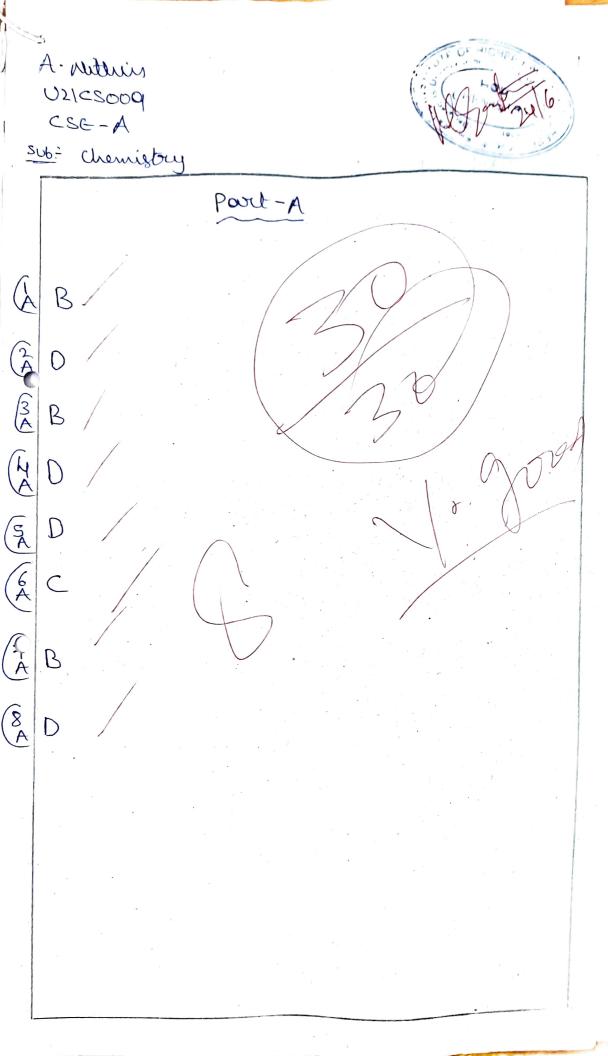

()

i.e

T. Sree Lakshmi T. Stee Lakshmi ducation Register Number :- URICNR48 Section - CSE-L umanities Eno 673 PART-A D(d) 15252p4 2) (b) (Hund's rule of maximum multiplicity) Heisenberg 3) (a) dr2- y2 principle 4) (b) Fer (5) (d) All 6) (c) $CH_2 = CH - CH = CH_2$ 76 Cosmic rags 8) (6) \$00nm to Boonm (c) PART-B < 9a) Transition states in uv spectroscopy * Absorption of energy in u-v rigion by the indecules cause the transistion of evalence ens in the molecules * + - - +, n- - +, 11- 11+, n- 11* σ-σ*> n-r*>Π-Π*>n-π* 114 0-0+ n-r* h-11* 71-71*


o -o + transistion :-It occurs in the compound having all electrons are involved Ex: cttz, Gtte elc are saturated n-r* transistion : It occurs in saturated compounds having lone pair of electrons Ex: (CH3)N TT-TI+ transistion :-It occurs in any molecules having TT electron system Ex, - Alkenes, Allege A-TT+ -transistion :-It occurs in unsaturated compounds having lone pair of electrons Ex:- Aldehades, Ketones. Fundamental vibratitions of Ho and CO2 in IR Spectroscopy 10a) H20: + H20 is a bending, non-linear, triatomic molecules * It has $3n-6 = 3 \times 3 - 6 = 9 - 6 = 3$ (-fundamental Vibrations) 4) No. of atoms They are 1) Symmetric streching 2) Asymmetric streaching 3) Bonding Vibration. 1) Symmetric streaching :-Both bonds, can expand and contrast at the same time 2) Asymmetric streaching :-One band is expand and another bond undergo contrast H 3) Bending Vibration:-Bond angle changed causes the bending vibratition.

CO2: + CO2 is linear and triatomic molecule * It has $3n-5 = .3x \cdot 5 = 9 - 5 = 4$ 12 No:orf atoms They are 1) Symmetric streaching 2) Asymmetric streaching 3) In-plane streaching -> Scisscoring Rocking 4) Out-of plane streaching 1) Symmetric streaching: - No dipolemoment takes place which (cause the IR inactive, so they) does not produce IR spectrum, so they are IR inactive 2) Asymmetric streaching :- Dipolemoment talces place which produces IR spectra, so they aretactive 3) In-plane streaching: -> Scissoring -> Rocking Dipole momenent takes place and IR active 4) Out-of plane streaching :=> klagging Dipole moment takes place and \$\$ active Scissoring Roclein Thisting Ð G (\mathbf{H}) . [

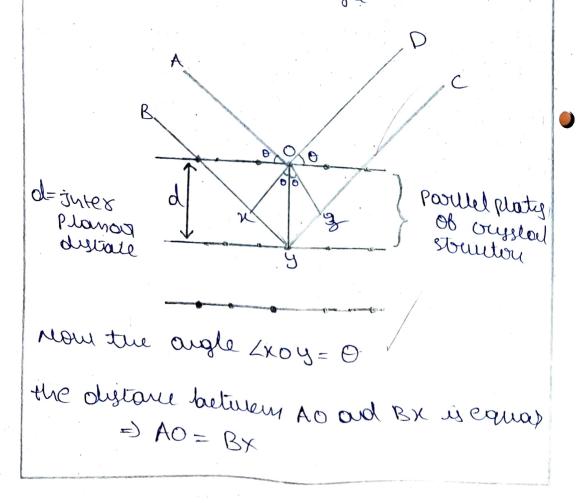

T. Sree Lakshmi Register Number: URICNIZUB Section: - CSE-L HF :- H :- 15' F :- 15° 25°2p⁵ の海 15 TIZR 1 1191 Energy J2P2 25 72 15² Electronic Configuration : - 15,25,05P2(TT2P2=TT2Py) Bond order :- 1(2-0)=1 $i - \frac{2}{2} = 1$ Jagnetic Nature: - Since it has no lone pair of electrons it is Diamagnetic

Name -> Mijanur Rahaman hei Laucalio., Rall No -> URICS 490 (G) Sci Subject -> Engineering chemistry 00 013 530 26] a)[b] 3)[9] e) [C] s)[d] 6/27 1.6 7) 8)[C] part-c Ð - Th 1) NOT of Mr molable elcione · con Frydim or N'S 182 2822p3

Bond denoth = if = 3 IUS Dea manative. e lechonre contiguration of 4 is " sand F.15/822822ps Æ 21/11/2/09 A 11 7 7. 15 12 11 42 2pm 1 2y . B and ? cny h = 2-0 = 1

Ë 2 PM JEPY 8 12 11 17 1 1 11 11 a zpu a 20% Ø Bond Lengt 2 1

Poul-B q ġ Chemical shift: * no of signals and position plays mater role IN NMR spectro scopy * by mong the position of proton we can detourne the nature of the compand * diffrent protos nous diffrent deitroil envouvent: * due to the noricition in the electronic envision ment it absorbs different magnetic field. chemical stuff scale-* we use del scale. 3 10 8 7 6 2 5 -* Unity = ppm * It goes from right to left. * when our atom is placed in an external morgnetic field a secretic magnetic field is formed by tuelectroy


ē Ð secondry magnetic field. (B) Externa field al martie * if the scondary magnitul field oposy the ceternal magnetic field then it social se be shilded atoms then the atom goes toup field. * it the sciolary magnetic field alleft the eltimal magnetic field they the Signal slifts to down field. * the subting of up field and down field is termed as chemical subt O Increasing order of chemical slift; (i) CHICK CHCLZCHCL3 $(ii)(CH_3)_{y} si < CH_3 Bs < CH_3 OH$

Braggi Law in XRD spectroscopy:

* X-stay difscartions tellingue is used for the determinal of structure of oney given Orystaline structure

* it Based on the concept of Briagg's law

* Suppose a beaus of X-Iay, fall on the Orystaline structure seem of it rays at glancing angle (O) sum of the rays crieb be reflected from the orystal surbar outs plate at same angle.

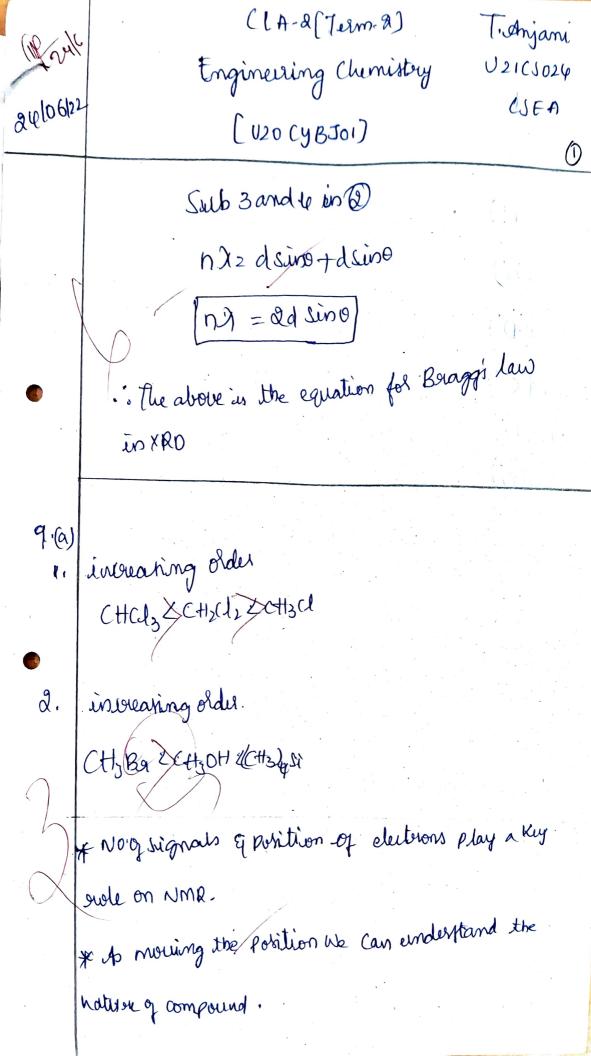
* similarly the distance between DO and CZ is equal => 00 = cz * patty differre is xy+yz -0 * The patter difference is equal to integral Multiple of cuase length (MX) - D from () and () NX= XY+Y3whit sino = t/H From Axoy $Bin \Theta = \frac{Xy}{OY} \Rightarrow Xy = Oy Bin \Theta$ \Rightarrow Xy = 0 sing -3 (:: 0y = 0) 11y from $\Delta 20y$ sino = $\frac{y_3}{0y} = \frac{y_3}{y_3} = 0$ sino - @ Blore Drugtes MA = dsino4dsino ·· MA = 2 dsino/ N= order of difficultion, $\lambda = cually length$ O= grannig angle.

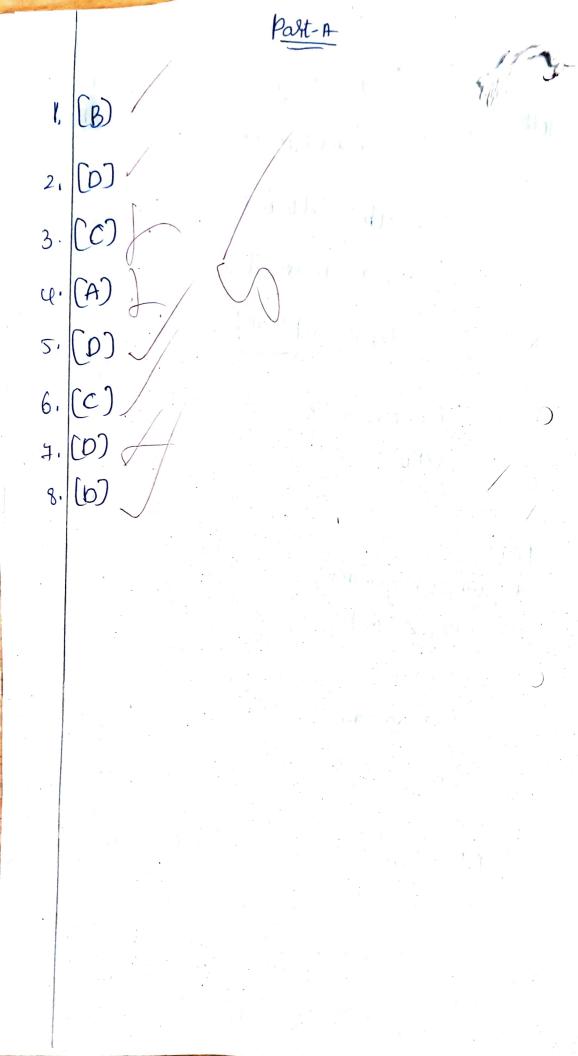
part-c (a) * Po loverability --> Ui = dE * where d is polarisability of a moliule * Polourisability is defined as the amout Of dipole moment suduced per wit strigter Of field app. Peruodii toundy: * Across the period -> The polosizibulity of a molunte is devices of * oronn the storb :--> The polarisibility of a molume is increased down the group. Tohisotion Every: * the minimum amout of erways required to remalle a valency electron from the atom is termed as the jonisation cnorgy. $ag: Mg \longrightarrow Mg^{t'} \longrightarrow Mg^{tL}$

R cg= Mg-12 Enited state FOOKJImale Mg 738 KJ/mole +L 1450KJ/mole Periodic trangs -A cruss the period -* A tomic radius decreases * I onigation Ehergy Jureasey. down the group: * Atomic radius increases * I onisation energy devease. Electronegitudy -* The tendercy of our atom to altrait scored pair of electroy towards it self in constant Bond

eg * HCJ 57 11 * in the molicule of Hal. The nucleus of the Hes chlorie altrait nighty, arrien cause the formation electron doubl aroud the cutorine atom \mathcal{O} * the nucleus of Hydrogen wearly attrate the muchang here twore is no citord formation * were polor Bord forms between H ord cl due to preserve of 5 and 8+ eg-2 E=q \circ F F * hove the best rulles altrade the elector with some enorgy. * were tool is no electron doud for pertula, outour. * nore me cloud forns in brother the atong. * wore fory won polor boud coor become more is mo st and 5-

((


10 gello Periodi trends:-ACTUOSS THE PERIOD -* Atomi roubles dereoises. * Electro regilienty & rulear enorgy. * AS nuclear energy judeass Electro regitivity juvual. down the group : * Atomic radius dures in creaky. * EN al AS A LOUIS ridoor junoses Electro Negilimity deverses.


CLA-2 (Term-2) Todnjani U21CS024 traineering chemistary 3A106/22 AJEA [U20 CY BJOD Whan with 1(.(a) 1. Polarizability: Polarizability is defined as how much energy required for an amion to dispit of disperse the cation is called polarizability. · polarizability increase with increase in size q the atom anion. . Polarizability increase with increase in charge of anion. Periodie Torends: . Periodic tounds of polarizability are: dougs the period the column increases, when this inervalues, the cation size also increases. · down the group divienter, when this decreates the Cation rize also dureases

2. Ionization Energy: Ionization onengy is the energy sequired to remain one mole of ion from one mole of atom in the Gaseous state. peroidic tounds; · Ionization energy inervales across the period. As it increases it will be difficult to sermore the electron as the ionization energy with high. · Tonization energy decreases down the Group. do it decreases it will be easier to remove electrons as the ionezation energy to is low. 3. Electronegativity: Eductoronegativity of an atom is defined as the energy absorbed of relaxed when dectaron is added to the atom is catter in gas state is called electrohegativity.

Periodie tounds." Thouases abouts the period Not at all also · Louis the period, the electronegativity increases. · down the group, the electronegativity demakes. Part-B 10.6 Bragg law of XRD: * This is exted for the structuoial construction of the Couptalline structure. * when a beam of light X-slays falls on a upper plate few r-rays are rejected. Θ

dngle of
$$(x \circ y = 0)$$

Similarly $\frac{1}{2} y \circ z \neq 0$
distance between the stay $200 = 0 \ge 02$
Path difference = $\frac{3}{2} + \frac{1}{2} = -0$.
Path difference is defined as a integral multiple
 $1 \cdot 1 \ge \frac{3}{2} + \frac{1}{2} = -20$
Now lets the ferreral form of sino
 $\frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$
Now lets the ferreral form of sino
 $\frac{1}{2} \times \frac{1}{2} = \frac{3}{2}$
 $\frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$
 $\frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$
from $\frac{1}{2} y \ge \frac{1}{2} = \frac{1}{2}$
 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $\frac{1}{2} \ge \frac{1}{2} = \frac{1}{2}$

SET-A CLA-III WOOCYBJOI - ENGINEERING CHEMISTRY CHEMISTRY 12m Dayam. Sri Haysha (998) Name! Regid No and sec: - URICSIGG & "CSE-C' Ш PART-C Treatment of manie mater for municipal supply:-11 b, various stages in treatment of water for domestic use. 1. screening Aesation 2 sedimentation 6 3 coagulation 4 Hosping Filtration 5. sterilization on durinfection 6 stopage and supply. 7 Municipal water treatment for domestic use:purification process & water involved in following these :source of water screening Aeration sedimentation coagulation Fitration pielt' aldes reaction.

[sterilization con disinfection]

- = screening: -> the process of semaning the floating material in water is called screening.
- > The floating materials like leaves, wood, pieces are removed by screening.
- → the save water black through the screening on screen, the screen having large number of holes which setain the floating materials and passed. allow to evoter flow.
- 2 Aeration:-
- ⇒ the process of min ed water with aig to water which ongoin of and other chemical gases like co_2 , H_2 s etc.. are removed and the solls Fe^{+2} and rgn^{+2} are removed which are not dissolved hydroxide salts in water.
- => The semoving of other gas like co2, rus etc which are causing bad taste and odour to water.
- 3 sedimentation: -
- ⇒ the process of removing suspended impusities [large particles] in water which are not allow water to stand for 2-6 hours in a big tank.

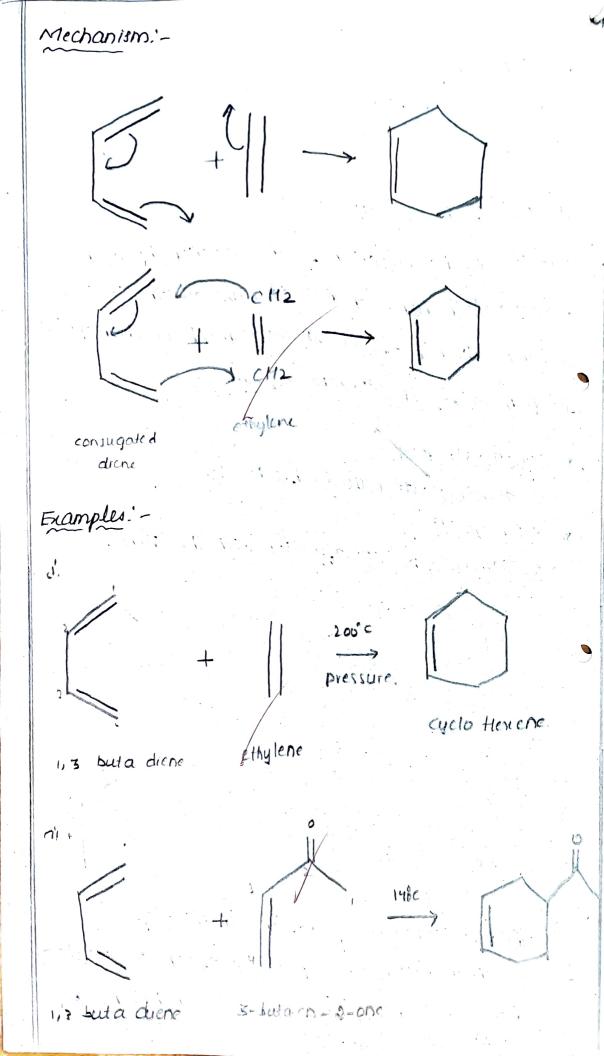
The suspended pasticles are settled down at the bottom and the force of gravity, it can be removed.

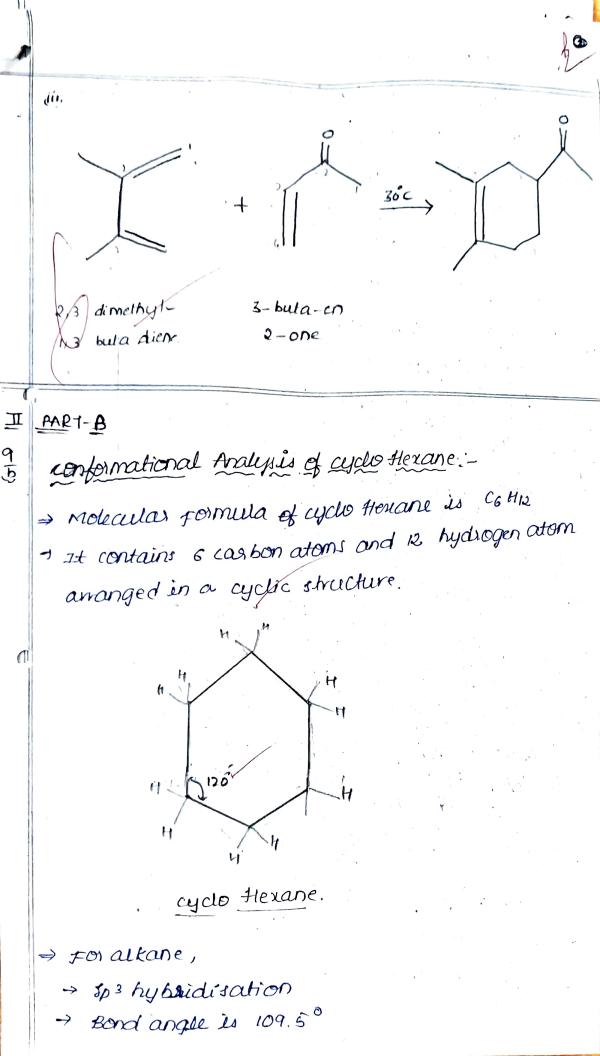

=> set sedementation process removing only 45%

4 coagulation:-

- > Finely divided sand, soil and particles which are not removed by sedimentation.
- > the find Finely divided suspended particles can be removed by zoagulation.
- In Nates, chemical agents are added called coagulants, like alum, Alzender etc....
 The alum (0), other exaculants added to Wales, the it hydrolises to Al(OH)3
- ⇒ The AI(OH)3 reacts with suspended particles and settle down at the bottom.
- ⇒ By applying the force of gravity, the suspended
 particles in the bottom (precipitate) get removed.
 ⇒ so, the process of removing Finely divided suspended
 particles is called coagulation.

5. Filtration: -

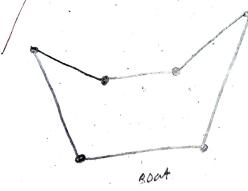

-> The process of removing mixture of collocial particles and scupended particles in water



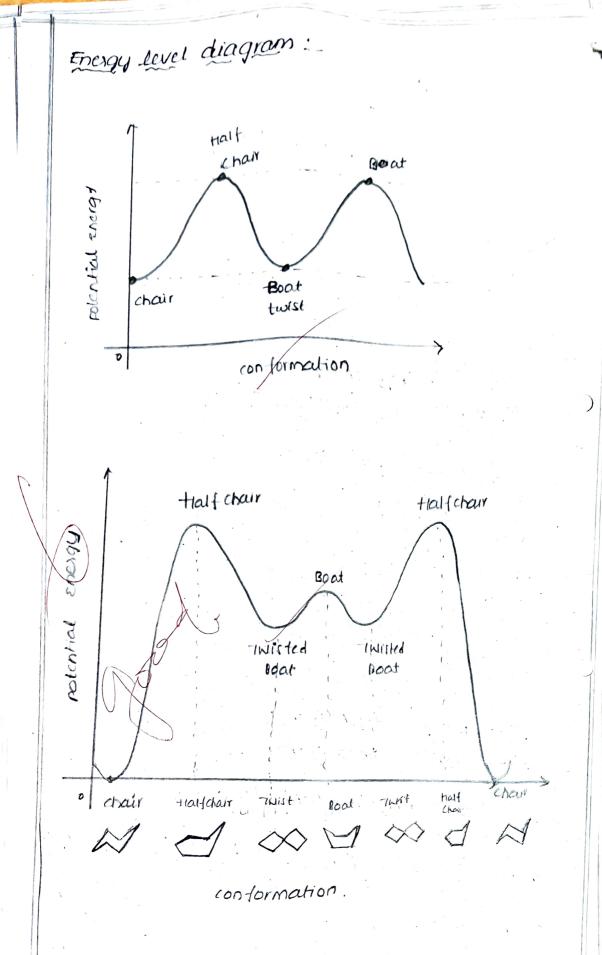
1 3 4 is Boiling Water in ozonisation I 10 Diel's-Alder reaction:_ e, Diel's - Alder reaction is the reaction between conjugated diene and a stimulated substituted alkene which is known as on termed as dienophile to form a cyclic Hexane system. + conjugate Diene -> Having alternate double bonds + pienophile -> Having love on affection with the diene. + cyclo Herene Sicnophile conjugated diene > the reaction takes place in single step. so, the reaction takes place between conjugated \rightarrow diene and dienophile to form cyclo herene is

pielt aldes neaction.

E



> retrahedial in shape. Here, cyclo hexane bond ange is 128. 30, ayolo hexare having angle strain. ⇒ In order to reduce the angle strain of cyclo hexane to angle of tetrahedral of 109.5°. doing conformation. Types of conformation:-1. chais conformation 2. Boat conformation revisted boat conformation 3, thalf-chairs conformation. 9.


1. chais conformation: -

chair form

⇒ tow energy
⇒ tughly stable.
⇒ staggered form
2. Boat conformation:
⇒ tugh energy
⇒ tess stable
⇒ eclippsed form

3 -ruisted Boat conformation:-3 ⇒ carbons in different plane. ſ so, they having angle shain -> 4 tay-chais conformation:-0 tial-1 chair form tess energy fligh Energy \Rightarrow Mose stable. Less stable According to stability order, chair > Twisted boat > boat > Half chair Low stable High stable < According to energy !chair < twisted boat < boat < that chair

PART-A:-[B] Internal Energy. Isothermal, d7=0 150 baric, df=0 I so choric, due o adiabatic, Frontoloss cyclic - dq = a[D] pressure cooker 2 open system :- water heater, rea cup. fsolated system : Thermoflask. closed system 1- pressure cooker, utensil [c] crt6 According to spectrophennied: [a] A [4] C-4 constitutional isomers H-EH-C-EC-04 H-E-C-E-C-04 5 Butanol CH3-CH2-CH2-CH2-OH Butanol сн3 - СН2 - СН- СН3 $CH_3 - \frac{OH}{C} - CH_3$ CHI

 $CH_3 - CH - CH_2 - CH_2$ CH2 OH

3

4

[b] (s)-isomer 0 - High oxidat atomic / 1 m 20004 но Не clock while - R Anticlactimate-S. 3CH3 clock hitse direction - R isomer but it is in thorizontal plane It convert into vertical plane by flipping. (R) isomer \longrightarrow (S) isomer . 50 [d] Tertiary. $\frac{cH_3}{F} + \frac{1}{4}c - \frac{1}{2}c - \frac{1}{4}c - \frac{1}{4}$ More stable => 3°>2°>1°> methyl cubo cation. DZ PPC strong

LINHY

NaBHY

Pd

M2 104 H2 Cr04

8

grudesing agents - bcc

Reducing agents!-

T

6

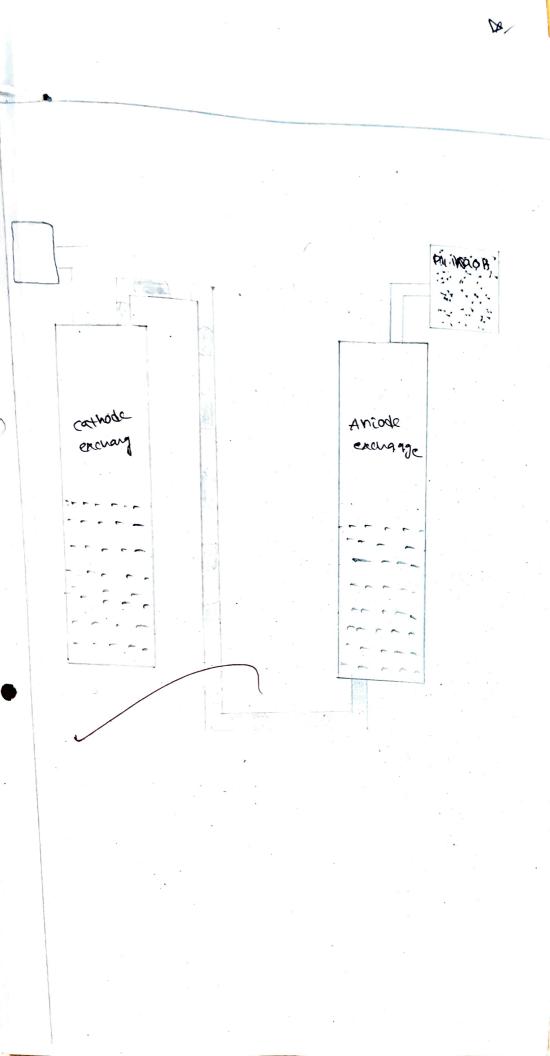
U21054-71 M. Ramanjarep reddy CSE-6 CHEMIS Eng. Chemistry (Dach $471+1+0+1+1+0+1 \Rightarrow (6)$ PART-C 9a 2 "q) wet corrosion: => It is also known electro cyphicod corrosion. such that it is due to from dot freetrom from the anodic and cathodic through the corrosion. wet cox) electro chemical corrosion * wet corrosion accurs under the following conditions: => when the dissimilar metals occurs by the one part of anodicious another part of the cathode by the aquous solution presence in the corrosion section. =) condition for the covet corrosion: as The above following conditions to occur wet corrosion. The one part of the anodic through the another part of the exact cathodic.

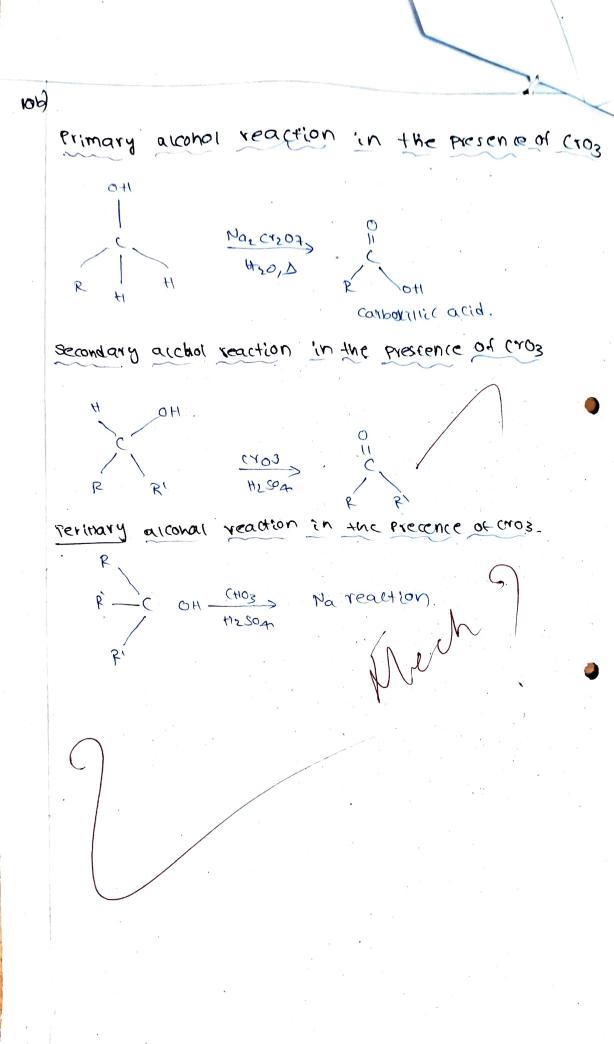
'cation exchange:

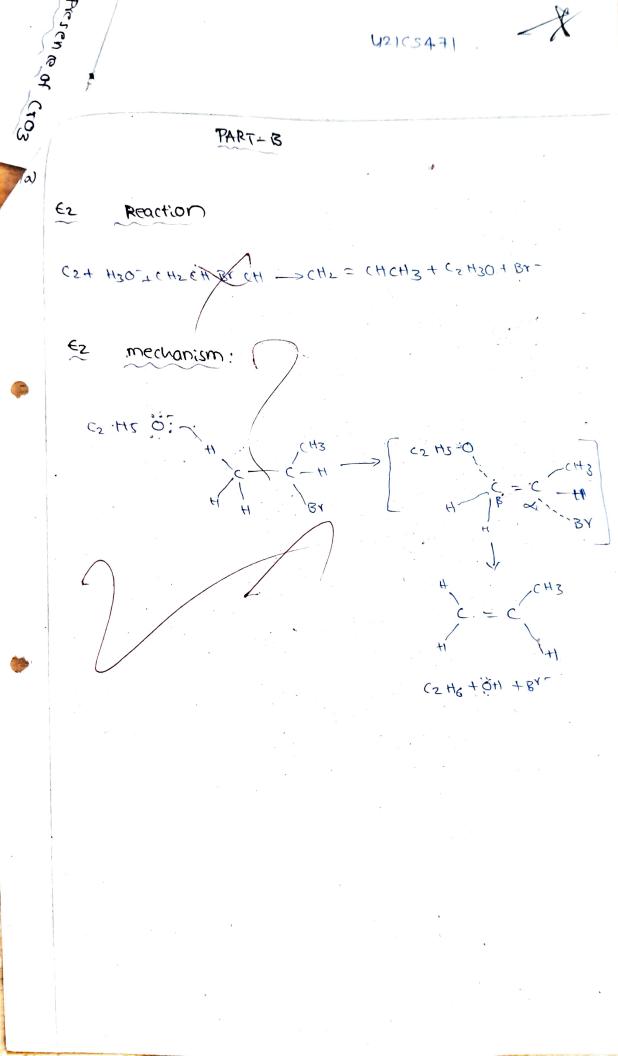
and that is dillarid.

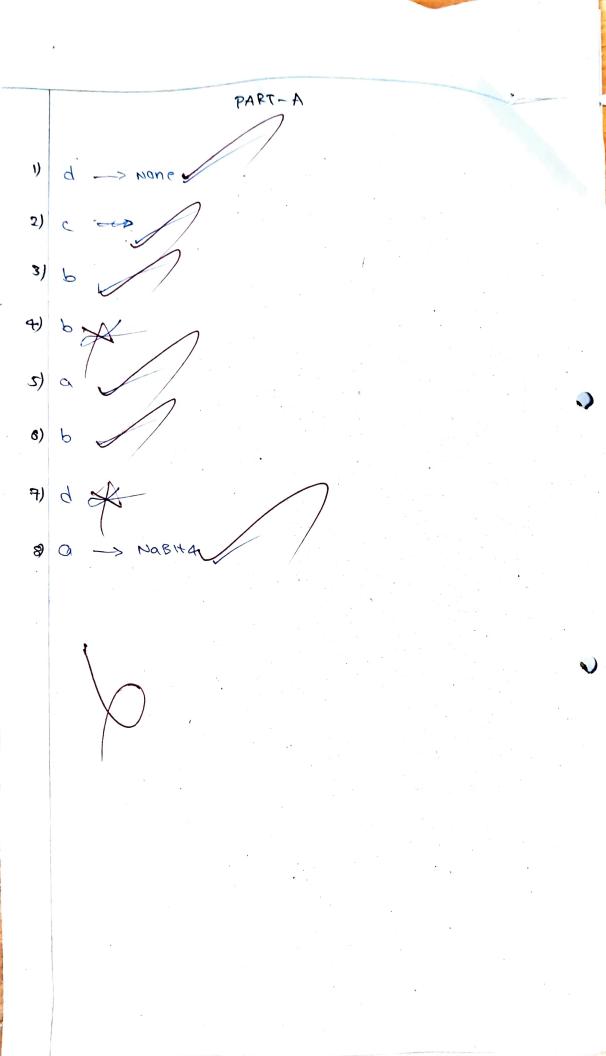
Then PH3 compand React with Chloride and sulphide forms acid this process is known as catholic exchange.

i) RHL + CaCH2 -> RCa +2HCL 2) RHL + HgSon -> RMJ + Pl2SOT 3) RHL + Nacl -> RNa + HCJ


Anion exchange!


¢,-


Anion are involved in this process =) In the detertants : products are water and


Base

ex -Rich + 2420 RCOH)2+2H(1

173, Agaram Main Rd., Selaiyur, Chennai, Tamil Nadu 600073

www.bharathuniv.ac.in