

B.Tech Civil Engineering

U20MABT02 - Advanced Calculus and Complex Analysis

Course File

School of Civil and Infrastructure Engineering

Vision and Mission of the Department

Vision

The Department of Civil Engineering is striving to become as a world class academic centre for quality education and research in diverse areas of civil engineering, with a strong social commitment.

Mission

Mission of the department is to achieve international recognition by:

M1: Producing highly competent and technologically capable professionals.

M2: Providing quality education in undergraduate and post graduate levels, with strong emphasis on professional ethics and social commitment.

M3: Developing a scholastic environment for the state – of –art research, resulting in practical applications.

M4: Undertaking professional consultancy services in specialized areas of civil engineering.

Program Educational Objectives (PEOs)

PEO1: PREPARATION

Civil Engineering Graduates are in position with the knowledge of Basic Sciences in general and Civil Engineering in particular so as to impart the necessary skill to analyze, synthesize and design civil engineering structures.

PEO2: CORE COMPETENCE

Civil Engineering Graduates have competence to provide technical knowledge, skill and also to identify, comprehend and solve problems in industry, research and academics, related to recent developments in civil and environmental engineering.

PEO3: PROFESSIONALISM

Civil Engineering Graduates are successfully work in various Industrial and Government organizations, both at the National and International level, with professional competence and ethical administrative insight so as to be able to handle critical situations and meet deadlines.

PEO4: SKILL

Civil Engineering Graduates have better opportunity to become a future researchers/ scientists with good communication skills so that they may be both good team-members and leaders with innovative ideas for a sustainable development.

PEO5: ETHICS

Civil Engineering Graduates are framed to improve their technical and intellectual capabilities through life-long learning process with ethical feeling so as to become good teachers, either in a class or to juniors in industry.

PROGRAMME OUTCOMES (POs)

On completion of B.Tech in Civil Engineering Programme, Graduates will have to

- 1) Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of complex civil engineering problems
- 2) **Design/Development of Solutions:** Design solutions for complex civil engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 3) Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 4) Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 5) **Problem analysis:** Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 6) Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 7) **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 8) Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 9) Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- **10)** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- 11) Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 12) Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH

徽

Declared as Deemed to be University under section 3 of UGC act 1956 173, Agaram Main Road, Selaiyur, Chennai – 600 073,Tamil Nadu

End Semester Examinations - May/June-2023

Regulation - 2020

		Reg. No.		
Programme(s)	Batch	Term	Course Code(s)	Course Title
B. Tech – I Year	2020, 2021 &	П	U20MABT02	Advanced Calculus and
(Common to all branches)	2022			Complex Analysis

Time: Three Hours

Date: 27.07.2023 / FN

O.No	Question	BL	со
1	Evaluate the double integral $\int_{1}^{2} \int_{2}^{4} x(x+y) dx dy$.	U	CO1
2	Find the value of $\int_0^{\pi} \int_0^x \frac{\sin x}{x} dy dx$	U	CO1
3	If $\phi = x^2 + y - z - 1$ find grad ϕ at (1.0.0).	R	CO2
	State Green's Theorem.	R	CO2
5	Prove that $L[e^{-at}] = \frac{1}{s+a}$	R	CO3
6	Prove that $L[Cosat] = \frac{s}{s}$	U	CO3
7	Find the fixed points of the transformation $w = \frac{6z - 9}{z}$	U	CO4
8	Write the Milne-Thomson formula for imaginary part.	R	CO4
9	What are the poles of the function $f(z) = \frac{z}{(z+1)(z-i)}$	U	CO5
10	Classify the singularity of the function $f(z) = \frac{\sin z}{z}$.	R	CO5
	Part B – $(5 \times 4 = 20 \text{ Marks})$		
11	Find the area of first quadrant of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	AP	CO1
12	Find $\nabla \bullet \vec{F}$ and $\nabla \times \vec{F}$ of the vector point function find $\vec{F} = xz^3 \vec{i} - 2x^2 yz \vec{j} + 2yz^4 \vec{k}$ at	AP	CO2
13	Using partial fraction method to find $L^{-1}\left[\frac{s}{(s-4)(s+9)}\right]$.	AP	CO3
14	If f(z) is an analytic function, then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left f(z) \right ^p = p^2 \left f(z) \right ^{p-2} \left f'(z) \right ^2.$	U	CO4
15	Identify the nature of the singularity for $f(z) = \frac{\sin z - z}{z^3}$.	AP	

Tolentity Dasta

Max Marks: 100

	Part C- $(5 \times 12 = 60 \text{ Marks})$		
	(Answer either (a) or (b) of each questions)		
16(a)	Evaluate the double integral $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing into polar coordinate	AP	CO1
	and hence deduce that the value of $\int_0^\infty e^{-x^2} dx$		
	OR		
16(b)	Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple integral.	AP	CO 1
17(a)	Verify Stoke's theorem for the function $\vec{F} = x^2 \vec{i} + xy \vec{j}$ taken around the square bounded by the lines $x = 0$, $x = a$, $y = 0$, $y = a$	AP	CO2
	OR		
17(b)	Verify Green's theorem in the plane for $\int_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$. Where C is the	AP	CO2
	boundary of the region defined by $x = 0$, $y = 0$, $x + y = 1$.		
18(a)	Using convolution theorem, find $L^{-1}\left[\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right]$.	AP	CO3
	OR		
18(b)	Solve: $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = e^{3t}$, given that y(t)=0, $\frac{dy}{dt} = 0$ when t=0 by using Laplace Transform.	AP	CO3
19(a)	Draw the image of the region whose vertices are at $(0,0)$, $(1,0)$, $(1,2)$ and $(0,2)$ in the z-plane under the transformation $w = (1+i)z$.	U	CO4
	OR		
19(b)	Determine the region in the w-plane in which the rectangle bounded by the lines $x=0$, $y=0$, $x=2$ and $y=1$ is mapped under the transformation $w=z+2+3i$.	U	CO4
20(a)	Evaluate $f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$ as a Laurent's series if (i) $2 < z < 3$, (ii) $ z > 3$.	AP	CO5
	OR		
20(b)	Determine the poles of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residue at each pole. Hence	AP	CO5
	evaluate $\int_C \frac{z^2}{(z-1)^2(z+2)} dz$, where C is $ z = 3$.		

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Mathematics

CONTINUOUS LEARNING ASSESSMENT – IV / EXAMINATIONS

U20MABTT02 - ADVANCED CALCULUS AND COMPLEX ANALYSIS

ASSIGNMENT – CLA IV

Q.NO	Answer the Question	Weightage	CO's	Bloom's Level
1	Find $L[t^2e^{-3t}\cosh 2t]$	5	CO3	3
2	Evaluate $\int_{C} \frac{z-1}{(z+1)^2(z-2)} dz$, where C is the circle $ z = 2$	5	CO5	3

NAME : A. ASHWINI REG.NO : U20BMOID SECTION : DI SUBJECT : ACCA. SUBJECT CODE : U20MABTO2.

Assignmen T.

, * , * 26 f. f

j.

Find
$$1\left[t^{2}e^{-3t}\cosh 2t\right]$$

John:
 $1\left[t^{2}e^{-3t}\cosh 2t\right]$
 $1\left[f(t)\right] = 1\left[\cosh 2t\right] = \frac{S}{S^{2}-4}$
 $1\left[t^{2}\cosh 2t\right] = (-1)^{2} = \frac{d^{2}}{ds^{2}}\left(\frac{s}{s^{2}-4}\right)$
 $= \frac{d}{ds}\left[\frac{(S^{2}-4)(1)-s(2s)}{(s^{2}-4)^{2}}\right]$
 $= \frac{d}{ds}\left[\frac{(s^{2}-4)-2s^{2}}{(s^{2}-4)^{2}}\right]$
 $= \frac{d}{ds}\left[-\frac{-s^{2}-4}{(s^{2}-4)^{2}}\right]$
 $= \frac{(S^{2}-4)^{2}-(-2s)-(-s^{2}-4)\left[2(s^{2}-4)(2s)\right]}{(s^{2}-4)}$
 $= \frac{(s^{2}-4)\left[(s^{2}-4)(2s)-(s^{2}-4)(4s)\right]}{(s^{2}-4)^{2}}$
 $= \frac{-2s^{2}+8s+4s^{3}+16s}{(s^{2}-4)^{2}}$

$$= \cup \left[e^{st} t^{2} \cosh 2t \right] = \left[\frac{2 \cdot s^{2} + 2 \cdot 4 \cdot 5}{(s^{2} - 4)^{3}} \right]_{S=3}^{S=3} S+3$$

$$= \frac{2 \cdot (s+3)^{3} + 2 \cdot 4 \cdot (s+3)}{((s+3)^{2} - 4)^{3}}$$

$$= \frac{2 \cdot (s^{2} + 9s^{2} + 9s^{2} + 27) + 2 \cdot 4s^{2} + 72}{(s^{2} + 6s + 9 - 4)^{3}}$$

$$= \frac{2 \cdot s^{2} + 18 \cdot s^{2} + 18s^{2} + 5 \cdot 4 + 2 \cdot 4s + 72}{(s^{2} + 6s + 5)^{3}}$$

$$= \frac{2 \cdot s^{3} + 18 \cdot s^{2} + 42 \cdot 5 + 12 \cdot 6}{(s^{2} + 6s^{2} + 5)^{3}}$$

1.1

8 - 2⁸

. . . .

2. Evaluate
$$\int \frac{Z}{(Z+1)^2(Z-2)} dZ$$
; where c is the
circle $|Z| = 3$.
80ln:
 $\frac{1}{(Z+1)^2(Z-2)} = \frac{A}{(Z-2)} + \frac{B}{(Z+1)} + \frac{C}{(Z+1)^2}$
 $1 = A(Z+1)^2 + B(Z-2)(Z+1) + C(Z-2)$
Let $Z = -1$.
 $1 = A(-1+1)^2 + B(-1-2)(-1+1) + C(-1-2)$
 $1 = A(0) + B(-3)(P) + C(-3)$
 $1 = -3C$
 $C = -\frac{1}{3}$
Let $Z = 2$.
 $1 = A(2+1)^2 + B(2-2)(2+1) + C(2-2)$
 $1 = A(3)^3$
 $A = \frac{1}{9}$

.

Let
$$Z=0$$
.
 $I = A(0+1)^{2} + B(0-2)(0+1) + C(0-2)$
 $I = \frac{1}{9} + B(-2) + (-\frac{1}{3})(-2)$
 $I = \frac{1}{9} + \frac{2}{3} - 2B$
 $I = \frac{7}{9} - 2B$
 $q = -2B$
 $-B' = \frac{1}{9}$
 $B = -\frac{1}{9}$
 $\int \frac{1}{(z+1)^{2}(z-2)} dz = \frac{1}{9} \int \frac{1}{z-2} dz - \frac{1}{9} \int \frac{1}{z+1} dz$
 $= \frac{1}{3} \int \frac{1}{(z+1)^{2}} dz$

x by Z-1 on both sides.

 $\int \frac{Z-1}{(Z+1)^2(Z-2)} dz = \frac{1}{9} \int \frac{(Z-1)}{(Z-2)} dz - \frac{1}{9}$

$$\int \frac{7-1}{2+1} dz - \frac{1}{3} \int \frac{7-1}{2+1} dz.$$

$$|z| = 3$$

$$|x+iy| = 3$$

$$\chi^{2} + y^{2} = 3.$$

$$i) = \frac{1}{9} \int \frac{7-1}{2-2} dz = \int_{c} \frac{f(r)}{r^{2}-r_{o}} dz.$$

$$\begin{cases} 7_{o} = 2 \quad \text{outside circle } \\ f(r_{o}) = r_{o} \\ f(r_{o}) = 2 - 1 \\ f(r_{o}) = r_{o} \\ f(r_{o}) \\ f(r_{o}) = r_{o} \\ f(r_{o}) \\ f(r_$$

$$= \frac{2}{9} \pi i -0$$
ii) $-\frac{1}{9} \int \frac{z-1}{2t+1} dz$

 $7 - 7_0 \Rightarrow 7 + 1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1 - 1 = -2$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

 $7_0 = -1$

$$= \int \frac{7}{(7+1)^2} dz = 2\pi i f(-1)$$

$$= -4\pi i^{2}$$

$$= -4\pi$$

School of Basic Sciences

Student Register Number :

Department	:	Mathematics
Program Name/Code	:	B.Tech/Common to all Branches
Course Name/Code	:	Advanced Calculus and Complex Analysis / U20MABT02
Date/Session/Time	:	
Instructions	:	

U20MABT02 – ADVANCED CALULUS AND COMPLEX ANALYSIS

QUESTION BANK

<u>UNIT –I</u> <u>MULTIPLE INTEGRAL</u>

	Part A – $(10 \times 2 = 20 \text{ Marks})$ (Answer ALL questions)				
Q.N 0	Question	Unit	BL (R/U/Ap/A n/E/C)	СО	
1	Evaluate the double integral $\int_{1}^{2} \int_{x}^{x^{2}} x y dy dx$.	I	R	CO1	
2	Evaluate the double integral $\int_{0}^{1} \int_{2}^{3} (x^{2} + y^{2}) dx dy$.	I	U	CO1	
3	Evaluate the double integral $\int_{1}^{2} \int_{3}^{4} x(x+y) dx dy$.	I	U	CO1	
4	Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dx dy}{\sqrt{1-x^2} \sqrt{1-y^2}}$.	Ι	U	CO1	
5	Find the value of $\int_0^{\pi} \int_0^x \frac{\sin x}{x} dy dx$	I	U	CO1	
6	Evaluate the double integral $\int_{0}^{1} \int_{y}^{y^{2}} (x+y) dx dy$.	I	U	CO1	
7	Evaluate the double integral $\int_{0}^{\pi} \int_{0}^{\sin\theta} r dr d\theta$	I	U	CO1	
8	Evaluate $\iint_{s} x^{2}y^{2} dx dy$ over the region bounded by the straight line $x=0, x=3, y=0, y=3.$	I	U	CO1	
9	Evaluate $\int_{1}^{a} \int_{1}^{b} \frac{dx dy}{xy}$.	I	R	CO1	

10	Solve the double integral $\int_{0}^{\pi} \int_{0}^{a} r dr d\theta$	I	U	CO1
----	--	---	---	-----

	Part B - (10 x 4 = 40 Marks) (Answer ALL questions)				
Q.No	Question		Unit	BL (R/U/Ap/A n/E/C)	СО
11	Find the area using double integral bounded by $y = x^2$ and $y = 2x + 3$.		I	Ар	CO1
12	Find the area using double integral bounded by the lines $x=0, y=1 and y=x$		I	Ар	CO1
13	Evaluate $\iint_{R} (x - y) dx dy$, where R is the region bounded by the straight line $y = x$ and parabola $y = x^{2}$.		Ι	Ар	CO1
14	Find the area of first quadrant of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$		Ι	Ар	CO1
15	Find area of the circle $x^2 + y^2 = a^2$ using double integral.		Ι	Ар	CO1
16	Find the area between $y = x$ and $y = x^2$?		Ι	Ар	CO1
17	Find the area between parabola $y^2 = 4ax$ and $x^2 = 4ay$.		Ι	Ар	CO1
18	Find the area of the cardioid $r = a(1 + \cos \theta)$.		Ι	Ар	CO1
19	Solve the double integral $\int_{0}^{\pi} \int_{0}^{a} r dr d\theta$		I	Ар	CO1
20	Evaluate the double integral $\int_{0}^{\pi} \int_{0}^{\sin\theta} r dr d\theta$		I	Ap	CO1
	Part C – $(5 \times 12 = 60 \text{ Marks})$ (Answer ALL questions)	11-			
Q.No	Question		_	Ар	CO
21 (a)	Change the order of integration to evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2} + y^{2}} dx dy.$				
	or	I		Ap	CO1
21 (b)	Change the order of integration to evaluate $\int_{0}^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} xy dy dx$.				

CO1
COI
CO1
CO1

<u>UNIT –II</u> <u>VECTOR CALCULUS</u>

	<u>-meron endobs</u>	00		
	Part A $-$ (10 x 2 = 20 M (Answer ALL question	arks) 15)		
Q.No	Question	Unit	BL (R/U/Ap/An/ E/C)	CO
1	Find $\nabla \phi$, if $\phi = \log(x^2 + y^2 + z^2)$.	II	R	CO2
2	Find grad ϕ at (1,1,1), if $\phi = xyz$.	II	R	CO2
3	If $\phi = x^2 + y - z - 1$, find grad ϕ at (1,0,0).	II	R	CO2

Bharath Institute Of Higher Education and Research (BIHER) IQAC/ACAD/008-a

 \bigcirc

4	Find $\nabla \vec{r}$, if $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$.	II	U	CO2
5	Find the Directional Derivative of $\phi = xy + yz + zx$ at (1,2,0) in the direction of $\vec{i} + 2\vec{j} + 2\vec{k}$.	II	U	CO2
6	State Green's Theorem	II	R	CO2
7	If $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$, find $\nabla \times \vec{F}$.	II	U	CO2
8	If $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$, find $\nabla \bullet \vec{F}$	II	R	CO2
9	Find the Unit Normal Vector to the surface $\phi = x^3 - xyz + z^3 - 1$ at the point (1, 1, 1).	II	U	CO2
10	State Stoke's Theorem	II	R	CO2

	Part B – $(10 \times 4 = 40 \text{ Marks})$ (Answer ALL questions)						
Q.No	Question	Unit	BL (R/U/Ap/An/E/ C)	CO			
11	Find the Unit Normal Vector to the surface $x^2 - y^2 + z = 2$ at the point $(1, -1, 2)$.	II	Ар	CO2			
12	If $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$, prove that $\nabla r^n = nr^{n-2} \vec{r}$.	II	Ap	CO2			
13	If $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$, prove that $\nabla r = \frac{\vec{r}}{r}$.	П	Ар	CO2			
14	Find $\nabla \bullet \vec{F}$ and $\nabla \times \vec{F}$ of the vector point function find $\vec{F} = xz^3 \vec{i} - 2x^2 yz \vec{j} + 2yz^4 \vec{k}$ at the point.	II	Ар	CO2			
15	$(1, -1, 1)$. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 - z = 3$ at the point $(2, -1, 2)$.	II	Ap	CO2			
16	Find the value of "a", Show that the vector $\vec{F} = (x+3y)\vec{i} + (y-2z)\vec{j} + (x+az)\vec{k}$ is solenoidal	II	Ар	CO2			
17	Show that the vector $\vec{F} = yz \vec{i} + zx \vec{j} + xy \vec{k}$, is irrotational.	II	Ap	CO2			
18	Show that $\vec{F} = (y^2 + 2xz^2)\vec{i} + (2xy - z)\vec{j} + (2x^2z - y + 2z)\vec{k}$ is irrotational.	П	Ар	CO2			
19	Show that the vector $\vec{F} = 2xy\vec{i} + (x^2 + 2yz)\vec{j} + (y^2 + 1)\vec{k}$ is irrotational.	II	Ap	CO2			
20	Show that the vector $\vec{F} = 3y^4 z^2 \vec{i} + 4x^3 z^2 \vec{j} - 3x^2 y^2 \vec{k}$ is solenoidal.	п	Ар	CO2			
	Part C – $(5 \times 12 = 60 \text{ Marks})$ (Answer ALL questions)						
Q.No	Question		BL (R/U/Ap/An/E/	CO2			

Î.			C	_
			0,	
21(a)	Verify Green's theorem in the plane for $\int_{C} (3x-8y^2)dx + (4y-6xy)dy$. Where C is the boundary of the region defined by $x = 0, y = 0, x + y = 1$.			
	or	II	Ар	CO2
21(b)	Verify Stoke's theorem for the function $\vec{F} = x^2 \vec{i} + xy \vec{j}$ taken around the square bounded by the lines x = 0, x = a, y = 0, y = a.			
	Verify Green's theorem in the plane for			
22 (a)	$\int (x^2 - xy^3) dx + (y^2 - 2xy) dy$ taken around the square bounded by the lines $x = 0, x = 2, y = 0, y = 2$.			
		II	Ар	CO2
	<i>Or</i> Verify Green's theorem in a plane for the integral			
22 (b)	$\int_{C} (x - 2y) dx + x dy \text{ taken round the circle } x^{2} + y^{2} = 4.$			
	Verify the Gauss Divergence Theorem for			
23 (a)	$\vec{F} = 4xz \vec{i} y^2 \vec{j} + yz \vec{k}$ over the cube bounded by			
	x = 0, x = 1, y = 0, y = 1, z = 0 z = 1.	II	Ар	CO2
	<i>Or</i> Verify Green's theorem in a plane for the integral			
23(b)	$\int_{a} (x - 2y) dx + x dy \text{ taken round the circle } x^{2} + y^{2} = 1.$			
	Verify Gauss divergence theorem for			
24 (a)	$\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)$ and S is the surface of the rectangular parallelepiped bounded by x = 0, x = a, y = 0, y = b, z = 0, z = c.	п	Ар	CO2
	$\frac{\partial r}{\partial t} = \frac{1}{2} \int \left(\frac{1}{2} + \frac{1}{2} \right) dt + \frac{1}{2} dt$	11	r	
	Verify Green's theorem in a plane for $\int_C (xy + y) dx + x dy$,			
24 (b)	where C is the closed curve of the region bounded by $y = x$ and $y = x^2$.			
25(a)	Verify Green's theorem in the plane for $\int_{C} (3x^2 - 8y^2) dx + (4y - 6xy) dy.$ Where C is the boundary of the		Ар	
	region defined by $x = 0$, $y = 0$, $x + y = 1$.			000
	<i>or</i> Verify Stoke's theorem for the function	II		002
55(1)	$\overrightarrow{\nabla}$ $\begin{pmatrix} 2 & 2 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix} \xrightarrow{\rightarrow} \begin{pmatrix} 1 & 1 \\ \overrightarrow{\nabla} & 2 \end{pmatrix}$			
25(b)	$F = (x^{-} - y^{-})i + 2xy j \text{ taken around the rectangle}$ bounded by the lines $x = 0$, $x = a$, $y = 0$, $y = b$			
	bounded by the filles $x = 0$, $x = u$, $y = 0$, $y = 0$.			

<u>UNIT-III</u> LAPLACE TRANSFORMS

	Part A – (10 x 2 = 20 Marks) (Answer ALL questions)					
Q.No	Question	Unit	BL (R/U/Ap/An/ E/C)	СО		
1	Prove that $L[e^{-at}] = \frac{1}{s+a}$	III	R	CO3		
2	Prove that $L[\cos at] = \frac{s}{s^2 - a^2}$	III	R	CO3		
3	State first Shifting property.	III	R	CO3		
4	Find $L^{-1}\left[\frac{3s+2}{s^2-4}\right]$	III	U	CO3		
5	Prove that $L[Sinh at] = \frac{a}{s^2 - a^2}$	III	R	CO3		
6	Find $L^{-1}\left[\frac{s^2-3s+4}{s^3}\right]$	III	U	CO3		
7	Prove that $L[Cosh at] = \frac{s}{s^2 - a^2}$	III	R	CO3		
8	Find $L^{-1}\left[\frac{2}{s^2+9}\right]$	III	U	CO3		
9	L[f'(t)] = ii) $L[f''(t)] =$	III	R	CO3		
10	Prove that $L[Cosat] = \frac{s}{s^2 + a^2}$	III	U	CO3		

	Part B – (10 x 4 = 40 Marks) (Answer ALL questions)					
Q.No	Question	Unit	BL (R/U/Ap/An/E/C)	CO		
11	Find $L[t^2 Cos 2t]$	III	Ap	CO3		
12	Find $L[e^{-3t} Sinh 2t]$	III	Ар	CO3		
13	Find $L[e^{3t}Sin 2t]$	III	Ар	CO3		
14	Find $L[t^2 Cosh 3t]$	III		CO3		
15	Using partial fraction method to find $L^{-1}\left[\frac{s}{(s-4)(s+9)}\right]$.	III	Ap	CO3		
16	Find $L[e^{2t} + 7Sin 3t + 5 Cosh t]$	III	Ар	CO3		
17	Find $L^{-1}\left[\frac{s+1}{s(s-2)(s+3)}\right]$ using partial fraction method.	III	Ар	CO3		
18	Find $L^{-1}\left[\frac{s+2}{s^2+9}\right]_{-}$	III	Ар	CO3		
19	Find $L\left[a\sqrt{t} + \frac{b}{\sqrt{t}} + c\right]_{-}$	m	Ар	CO3		
20	Find L[Sin 5t Cos 3t]	III	Ap	CO3		

	Part C – $(5 \times 12 = 60 \text{ Marks})$ (Answer ALL questions)			
Q.No	Question		BL (R/U/Ap/An/E/C	CO
21 (a)	Find the Laplace Transform of $f(t) = \begin{cases} k , 0 < t < \frac{a}{2} \\ -k, \frac{a}{2} < t < a \end{cases}$	III	L Am	CO3
	Or	111	Ap	
21(b)	Find $L[t^2e^{-3t} Cosh 2t]$			
22 (a)	Find the Laplace Transform of $f(t) = \begin{cases} t & 0 < t < b \\ 2b - t, & b < t < 2b \end{cases}$			
	if f(t+2b) = f(t)	тт	An	CO3
	Or	111	тр	
22 (b)	Find $L^{-1} = \left[\frac{7S - 11}{(S+1)(S-2)^2}\right]$			
23(a)	Using convolution theorem, find $L^{-1}\left[\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right]$.		Ap	CO3
	Or	III		
23(b)	Find $L^{-1} = \left[\frac{4S^2 + 5S - 3}{(S+1)^2(S+2)}\right]$			
24(a)	Using Laplace Transform, solve $(D + 1)y = t^2 + 3t + 2$ given that $y(t) = 0$ when $t=0$			
	or	III	Ap	CO3
24 (b)	Using convolution theorem, find $L^{-1}\left[\frac{s^2}{(s^2+25)^2}\right]$		1	
25 (a)	Using convolution theorem, find $L^{-1}\left[\frac{s^2}{(s^2+9)^2}\right]$			
	or			000
25 (1)	Solve: $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = e^{3t}$, given that $y(t)=0, \frac{dy}{dt} = 0$ when	III	Ар	03
25 (b)	t=0 by using Laplace Transform.			

<u>UNIT-IV</u>

ANALYTIC FUNCTIONS

	Part A – (10 x 2 = 20 Marks) (Answer ALL questions)			
Q.No	Question	Unit	BL (R/U/Ap/An/ E/C)	СО
1	Verify C-R equation of the function $f(z) = \overline{z}$.	IV	R	CO4
2	Find the invariant points of the transformation $w = \frac{3-x}{1+x}$	IV	U	CO4
3	Check whether the function $f(z) = z^2$ is analytic or not?	IV	U	CO4
4	Find the fixed points of the transformation $w = \frac{6z - 9}{z}$	IV	U	CO4
5	Show that $v = 3x^2y - y^3$ is Harmonic function	IV	U	CO4

6	Find the fixed points of the transformation $w = \frac{2z+6}{z+7}$	IV	U	CO4
7	Write the Bilinear Transformation formula.	IV	R	CO4
8	Find the critical points of the function $f(x) = \frac{x+1}{x^2+1}$	IV	U	CO4
9	Write the Milne-Thomson formula for imaginary part.	IV	R	CO4
10	Check whether the function $f(z) = z ^2$ is analytic or not?	IV	U	CO4

Part B - (10 x 4 = 40 Marks) (Answer ALL questions)						
Q.No	Question	Unit	BL (R/U/Ap/An/E/ C)	CO		
11	Construct the Analytic function $f(z)$ which the real part $e^x \cos y$	IV	U	CO4		
12	Find the critical points of the function $f(x) = \frac{x+1}{x^2+1}$	IV	U	CO4		
13	If $f(z)$ is an analytic function, then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left f(z)\right ^p = p^2 \left f(z)\right ^{p-2} \left f'(z)\right ^2.$	IV	U	CO4		
14	Find the bilinear transformation that maps the points $z = 0, -i, -1$ onto the points $w = i, 1, 0$ respectively.	IV	U	CO4		
15	If f(z) is an analytic function, then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2.$	IV	U	CO4		
16	Find the bilinear transformation that maps the points $z = -1, 0, 1$ onto the points $w = -1, -i, 1$ respectively.	IV	U	CO4		
17	Find the bilinear transformation that maps the points $\infty, i, 0$ in the z-plane onto the points $0, i, \infty$ in the w-plane	IV	U	CO4		
18	Find the image of the region bounded by $x = 0$, $y = 0$, $x = 1$ and $y = 2$, under the transformation $w = z + 2 - i$.	IV	U	CO4		
19	Find the image of the circle $ z = 1$ under the transformation $w = 4z$.	IV	U	CO4		
20	Find the image of the circle $ z = 2$ under the transformation $w = 3z$.	IV	U	CO4		
	Part C – $(5 \times 12 = 60 \text{ Marks})$ (Answer <i>Either (a) or (b)</i> of each question)					
Q.No	Question	Unit	BL (R/U/Ap/An/E/ C)	CO		
21 (a)	Find the image of $ z+1 = 1$ under the transformation w=1/z					
21(b)	<i>or</i> Find f(z), if the Imaginary part is $e^{x}(x \sin y + y \cos y)$. Also	IV	U			

		r i		6 84
	find its Conjugate			
22 (a)	Find the image of $ z-2i = 2$ under the transformation $w=1/z$			
	or			
22 (b)	Draw the image of the region whose vertices are at $(0,0)$, $(1,0)$, $(1,2)$ and $(0,2)$ in the z-plane under the transformation $w = (1+i)z$.	IV	U	CO4
	Determine the analytic function whose real part is			
23 (a)	$\sin 2x$		U	
	$v = \frac{1}{\cosh 2y - \cos 2x}$			
	0ť	IV		CO4
23	Find f(z), if the Real part is $e^{x}(x \cos y - y \sin y)$. Also find			
(b)	its Conjugate.			
244	Determine the Analytic function $f(z)$, whose real part is			
24(a)	$x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$, Also find its conjugate			
	01	IV	TI	COA
24 (b)	Determine the region in the w-plane in which the rectangle bounded by the lines $x=0$, $y=0$, $x=2$ and $y=1$ is mapped under the transformation $w=z+2+3i$			
25 (a)	If $u = \frac{\sin 2x}{\cosh 2y + \cos 2x}$, then find an analytic function $f(z)$.			
	01	w	TT	COA
25 (b)	Draw the image of the square whose vertices are at $(0,0)$, $(1,0)$, $(1,2)$ and $(0,2)$ in the z-plane under the transformation w = (1+i)z	IV	U	
	$W = (1 + i)^2$			

<u>UNIT – V</u> COMPLEX INTEGRATION

	Part A – (10 x 2 = 20 Marks) (Answer ALL questions)				
Q.No	Question	Unit	BL (R/U/Ap/An/E/ C)	со	
1	Write the Cauchy's integral formula.	V	U	CO5	
2	Evaluate $\int \frac{1}{x+2} dz$, where $ z-1 = \frac{1}{2}$	V	U	CO5	
3	What are the poles of the function $f(z) = \frac{z}{(z+1)(z-i)}$	v	U	CO5	
4	What is the singular point of the function $f(z) = \frac{1}{z+i}$.	V	R	CO5	
5	Write the formula for finding the residue of a function at a pole of order 'm'.	v	R	CO5	

6	Evaluate $\int_{c} \frac{z^2 - 3z + 5}{z + 4} dz$ where 'C' is the circle $ z =2$, using Cauchy's Residue Theorem.	v	U	CO5
7	Find the residue at $z = 0$ for $f(z) = \cot z$	V	U	CO5
8	Classify the singularity of the function $f(z) = \frac{\sin z}{z}$.	v	R	CO5
9	Evaluate $f(z) = \frac{z}{(z+1)(z+2)}$ about $z = -2$.	v	U	CO5
10	State Cauchy's residue Theorem.	V	R	CO5

Part B – (10 x 4 = 40 Marks)				
	(Answer ALL questions)		-14	
Q.No	Question	Unit	BL (R/U/Ap/An/E/ C)	со
11	Evaluate using Cauchy's Integral formula $\int_C \frac{z+1}{(z-3)(z-1)} dz$, where C is $ z = 2$.	v	Ap	CO5
12	Evaluate $\frac{1}{z-2}$ at $z=1$ in Taylor's series.	v	Ар	CO5
13	Identify the nature of the singularity for $f(z) = \frac{\sin z - z}{z^3}$.	V	Ар	CO5
14	Evaluate $\int_C \frac{4z^2 - 4z + 1}{(z^2 + 4)(z - 2)} dz$, where C is the circle $ z = 1$.	v	Ар	CO5
15	Evaluate $f(z) = \cos z$ as a Taylor's series about the point $z = 0$.	v	Ар	CO5
16	Calculate the residue of $f(z) = \frac{1 - e^{2z}}{z^3}$.	V	Ар	CO5
17	Find the residue of $f(z) = \frac{z^2}{(z-1)^2}$ where C is the $ z = 3$.	v	Ap	CO5
18	Evaluate $f(z) = \sin z$ as a Taylor's series about the point $z = 0$.	v	Ар	CO5
19	Evaluate $\int_{C} \frac{z-1}{(z+1)^2(z-2)} dz$, where C is the circle $ z = 3$.	v	Ар	CO5

Bharath Institute Of Higher Education and Research (BIHER) IQAC/ACAD/008-a

O

20	Find the singularity of $f(z) = \frac{1 - e^{z}}{z^4}$.	v	Ар	CO5
	2			

	Part C $-$ (5 x 12 = 60 Marks)			
	(Answer <i>Either (a) or (b)</i> of each question))		
Q.No	Question	Unit	BL (R/U/Ap/An/E/ C)	со
21 (a)	Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$ by using Contour Integration			
	Or	V	Ap	CO5
21 (b)	Evaluate $\int_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$, where C is a circle $ z = 3$.			
22 (a)	Evaluate $f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$ as a Laurent's series if			
	(i) $2 < z < 3$, (ii) $ z > 3$.	V	An	COS
	or		p	
22 (b)	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{5+3\cos\theta}$ by using Contour Integration			
23 (a)	Find the Laurent's series expansion of $f(z) = \frac{7z-2}{z(z-2)(z+1)}$ in			
	1 < z+1 < 3.	v	Ap	CO5
	01*	- '	r	
23 (b)	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{13+5\sin\theta}$ by using Contour Integration.			
24 (a)	Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}$ by using Contour Integration.			
	01*			
	Determine the poles of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residue at	v	Ар	CO5
24 (b)	each pole. Hence evaluate $\int_{C} \frac{z^2}{(z-1)^2(z+2)} dz$, where C is			
	z = 3.			
25 (a)	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos\theta}$ by using Contour Integration.			
	or	v	Ap	CO5
25 (b)	Evaluate $\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where C is $ z = 3$, using			
	Cauchy's Integral formula.			

CO/	Remember	Understand	Apply	Analyse	Evaluate	Create	Total Morks
Level	(K)	(0)	(Ap)	(AII)	(E)	(C)	IVIALKS
CO 1							
CO 2							
CO 3							
CO 4							
CO 5							
CO 6							
Total							
					G	rand Total	100

	2.51					TOTAL	(50 Marks)	35	36	35	35	38	50	30	36	45	35	35	50	27	50	38	40	47	38	47	44
						CLA-4	(10%)	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	Tambar		B.Tech	81	ACCA	CLA-3	(15%)	10	10	6	8	10	15	7	12	14	10	10	15	-	15	10	11	14	10	14	13
	EARC uy 2002) Solaiyur Tamii Na		rogram:]	Section:	t Name:	CLA-2	(15%)	6	6	10	12	10	15	∞	~	13	6	10	15	9	15	11	12	14	10	14	12
	RESI 1956) falsd 4 Ju Road		P		Subjec	CLA-1	(10%)	6	7	7	6	6	10	S	9	~	6	S	10	4	10	7	7	6	8	6	6
)	AND 1 UGC Act 1 UGC Act 3 Agaram ennal - 60	EORY				t (CLA-4)	Assign.2	S	S	S	S	ŝ	5	5	2	5	5	S	S	5	s	5	5	5	5	5	s
	TTON section 3 o	ARKS - TH				Assignmen	Assign.1	s	so.	22	5	S	5	5	5	5	S	S	ŝ	5	5	5	5	5	S	5	S
	DUCA Sity under n Resource D	ER NAL M				ssessment	CLA-3	20	20	18	15	19	30	13	23	27	20	20	30	14	30	20	22	28	20	28	26
	ERECTION Development	ATED INTI				Learning A	CLA-2	18	18	19	23	20	30	16	16	26	18	19	30	12	30	22	24	28	20	28	24
	HIGH Deemed-tr	ONSOLID				Continuous	CLA-1	18	20	20	19	26	30	15	18	25	18	15	30	12	30	22	22	28	24	27	26
	DIACTOR Notification No. F9-52 0146 Notification No. F9-52 0144 Notification No. F9-52 0144-22290742 / 22290125 . Tel	0	Scicene and Humanutics	2022 - 2023	e U20MABT02	Student Name		ADHISH R	AKKISETTI SAI VIGNESH	ALLAM SAI VARDHAN	REDDY	ANDE RAMA SRI	ANU TAYAL V	ARAVINDA MEERAA K	ARIVUMANIR	ASHWINI A	BANDAPALLI UDAY KIRAN	KUMAR REDDY	BUGGULA NAVEEN KUMAK REDDY	BONAGIRI SATHVIK	BUKKAM BUDI PREMKUMAR	CHEBOLU MOULI SATYASRI	CHILAKALAPUDI SHANKAR	CHILLAGORLA ISHWARYA	CHINDAM DIVYASREE	CHINNAKKA RITHWIK REDDY	CHITRA G
	Phone		School:	Year:	Subject Code	Register	Number	U22BM001	U22BM002	U22BM003	U22BM004	U22BM005	U22BM007	U22BM008	U22BM009	U22BM010	U22BM011	U22BM012	U22BM013	U22BM014	U22BM015	U22BM016	U22BM017	U22BM018	U22BM019	U22BM020	U22BM021

 \bigcirc

48	50	38	45	39	37	50	38	35	46	25	25	35	35	28	35	35	47	35	45	36	35	38	28	35	29	50	28	39	44	28	35	03
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	~	10	10	10	10	10	10	10
15	15	11	13	11	10	15	11	10	13	5	4	6	10	10	10	6	14	8	13	11	10	6	S	œ	7	15	6	11	12	9	10	15
14	15	10	13	11	10	15	10	6	14	9	5	10	6	S	10	6	14	10	13	6	10	11	×	10	s	15	7	11	13	7	6	15
10	10	7	6	7	7	10	7	9	6	4	7	9	7	3	s	7	6	7	6	9	9	×	s	7	6	10	S	7	6	5	9	10
v	2	5	S	S	s	S	s	5	S	5	S	5	5	S	2	S	5	5	S	ŝ	S	S	S	S	4	S	5	5	ŝ	5	S	v
s	s	5	ŝ	w	s	S	S	5	5	5	2	5	5	5	5	5	5	5	5	S	2	S	S	v	4	5	5	5	5	5	S	Ś
29	30	22	26	21	20	30	22	20	26	10	7	18	19	19	19	17	28	16	26	22	20	18	10	16	AB	30	AB	22	24	12	20	30
28	30	19	26	22	20	30	20	18	28	11	6	20	17	10	20	18	28	20	26	18	19	21	16	20	AB	30	AB	22	26	AB	18	30
29	30	22	26	22	20	30	22	17	28	12	22	18	20	10	16	21	28	20	26	18	17	24	14	20	26	30	14	21	27	AB	18	30
22 DANDA SAI CHARAN	23 DEVAGANI INDHU	24 DHADIGE BHANUSRI	25 K DIYA	26 DOLA KIRANMAI	027 DUDEKULA SHOYAB MALIK	28 DURGA K	29 GANTA ADI NARAYANA REDDY	30 GOMARAM DEVENDAR REDDY	31 GUBBALA BOBBY GANESH	32 GUDA NISHITHA	33 HARINI T	34 HARISH R	035 D HIMAYATH HUSSAIN	36 INAMPUDI LIKKIN BABU	137 JADA SHIVA SANKARA RAO	38 JAGILAM HARINI	339 JEREEN CHELES JOE	040 JILLEPALLI RISHI RISHI	141 JINKALA NANDINI	042 JUTLA VEERESH	043 KACHANA NIRANJAN REDDY	044 KALAKAMBAM VASANTHKUMAR	045 KALAKUNTLA SANATH RAO	047 KANDULA LAKSHMAN YASWANTH	048 KATTA MEDINI REDDY	049 KEERTHISREE BONGU	050 KETHIREDDY CHARMI	J51 KOLLA YESHVANTH REDDY	352 KONDURU SAI KUMAR RAJU	J53 KOTHAKALVA PRUDHVI	154 KUMMARI RUPAK	156 KURUBA DHARMATEJA
U22BM02	U22BM02	U22BM0;	U22BM0:	U22BM02	U22BM0	U22BM0;	U22BM0	U22BM0.	U22BM0	U22BM0;	U22BM0.	U22BM0.	U22BM0.	U22BM0;	U22BM0.	U22BM0.	U22BM0.	U22BM0 [,]	U22BM0 [,]	U22BM0	U22BM0	U22BM0	U22BM0	U22BM0	U22BM0	U22BM0	U22BM0.	U22BM0	U22BM0	U22BM0	U22BM0	U22BM0

37	35	34	42	44	35	34	40	44	35	35	40	34	48	38	35	47	27	40	45	35	40	34	41	40	34
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
10	6	6	13	12	10	6	10	13	6	6	11	10	14	11	6	14	7	11	13	~	10	80	12	12	10
11	10	10	12	14	10	10	13	14	10	10	11	6	15	6	10	14	S	12	13	10	14	10	11	12	6
9	9	S	~	œ	S	S	7	~	9	9	~	w	6	6	9	6	s	∞	6	7	9	9	8	9	5
S	5	5	S	S	S	S	S	S	5	S	vo	w	s	S	'n	5	S	w	5	S	S	S	5	5	2
S	5	5	S	vo	S	S	S	5	5	5	S	v	5	S	5	5	S	vo	5	5	5	5	5	5	5
20	18	18	26	24	19	17	20	25	18	18	22	19	28	22	18	27	AB	22	26	16	20	15	23	24	20
22	19	19	23	27	20	20	26	27	19	20	22	18	29	17	20	28	2	23	26	19	27	20	22	24	18
19	19	15	23	25	15	16	20	25	18	18	24	15	28	26	18	28	AB	23	27	22	19	19	24	17	16
MADDALA JASWANTH	MADDINENI LAKSHMANSAI	MALLELA HARIKRISHNA	MANDADI MADHURI	MANDHA KEERTHI PRIYA	MANNAVA MANOGNA	MOHAMED IRSATH M	MOHAMED JASITH	MOHAMMAD NADEEM	MUHAMMED HASEEB	MUKESH R	MUKTHAPURAM MOUNIYA	MULINTI VISHNU VARDHAN REDDY	NANDIPAMU RAVI PRAKASH	NANDIRAJU BINDU JYOTHIKA	NEELAM GEETHA MAHESWARI	NUDURUPATI CHANDRA SEKHAR	PALAPARTHI BHUVANESH	PEDDAPALLE SAMPOORNA LAKSHMI	PEDDI KARTHIK	PERAM SAI PAVAN KUMAR	POLAM HEMA MAYURI	PRADEEP C	PRAGALAPATI NAGA SIRISHA	SALOMI R	YOKESHWARAN D
U22BM057	U22BM058	U22BM059	U22BM060	U22BM061	U22BM062	U22BM064	U22BM065	U22BM066	U22BM067	U22BM068	U22BM069	U22BM070	U22BM072	U22BM073	U22BM074	U22BM075	U22BM076	U22BM077	U22BM078	U22BM079	U22BM080	U22BM081	U22BM082	U22BM091	U22BM120

 \bigcirc

Q

Point - A
1. Evaluate the drattle thequal
$$\int_{0}^{0} \int_{0}^{1} \pi (\alpha + \gamma) d\alpha d\gamma$$

Ans: $\frac{91}{12}$
2. Find the value of $\int_{0}^{T} \int_{0}^{21} \frac{\sin \gamma}{2t} d\gamma d\alpha$.
Ang: 2
3. If $\phi = \alpha^{2} + \gamma - 2 - 1$, thind grad ϕ at $(1,0,0)$
 $\forall \phi = \vec{t} \frac{9}{9\pi} \phi + \vec{J} \frac{9}{9\chi} \phi + \vec{k} \frac{9}{9\chi} \phi$
 $= a\alpha \vec{t} + \vec{J} - \vec{k}$
A. Shate Graven's theorem.
Let $p(\alpha, \gamma), \rho(\alpha, \gamma)$ be any lite Continuous function with
 $0x d\alpha$ pointial derivative value then,

$$\int p \, dn + Q \, dy = \iint \left[\frac{\partial n}{\partial n} - \frac{\partial p}{\partial y} \right] \, dn \, dy \quad , \quad \text{Region } R \text{ for } ny - phone.$$
5. Prove that $L \left[e^{\alpha t} \right] = \frac{1}{Sta}$
 $L \left[f(t) \right] = \int^{0} e^{-St} f(t) \, dt$
 $\therefore \quad A(t) = e^{\alpha t}$
 $L \left[e^{\alpha t} \right] = \frac{1}{Sta}$
b. Prove that $L \left[casat \right] = \frac{S}{S^{2} + a^{2}}$
 $L \left[f(t) \right] = \int^{0} e^{-Ut} f(t) \, dt$
 $A(t) = cot \, at$
 $L \left[cot \, at \right] = \frac{S}{S^{2} + a^{2}}$

Arst

7. Find the flaced points of the transformation
$$W = \frac{6z-q}{z}$$

 $U = f(z) = \frac{bz-q}{z}$
 $z = \frac{bz-q}{z}$
 $z^{-}-bz+q=0$
 $z = 3,3$ flaced points.
8. Write the miller-thorson formula for imagenerity port.
When the I.P is given,
P.d.W.M. to $y \neq x$ in V , we set $\frac{9V}{9Y} \times \frac{9V}{9X}$. $V_y(z_0) = \frac{1}{q_1(z_0)}$
 $f(z) = \int [f(z_1 0) + i \frac{1}{q_2}(z_1 0)] dz$
 $V_x(z_0) = \frac{1}{q_1(z_0)} = \frac{1}{q_2(z_0)}$
P. Mhat are the poles of the function $f(z) = \frac{z}{(z+1)(z-i)}$
 $z + 1=0, z - i=0$
 $z = -1, z = i$
 $\therefore z = -1, i$ are the simple poles.
10. Classify the singularity q the function $f(z) = \frac{2inz}{z}$.
 $z=0, \Rightarrow \frac{Sin(0)}{0} = \frac{0}{0}$.
 $\frac{1}{\sqrt{1-1}} = \frac{1}{\sqrt{1-1}}$
Remove the Singularity.
Part -b
11. Find the corea of first quadrant of an ellipse
$$\frac{x^3}{a^3} + \frac{y^2}{b^4} = 1$$
.
Siven $\frac{y^4}{a^4} + \frac{y^3}{b^4} = 1$
Coeffilds $y=a$ then $[2=a]$
 $\frac{y}{y=a}$ $\frac{y^4}{a^4 - a^2}$
 $\frac{y}{a=a}$ $\frac{y^4}{y=a}$ $\frac{y^4}{a^4 - a^2}$
 $\frac{y}{a=a}$ $\frac{y}{y=a}$ $\frac{y}{$

 \bigcirc

Part-c

17 (a) Verify stokes theorem for the function $\vec{F} = \chi^2 \vec{\Gamma} + \pi \gamma \vec{P}$ taken arround the square bounded by the times n=0, n=9, y=0, y=1 som

$$\int \vec{F} \cdot d\vec{r} = \int \int curl \vec{F} \cdot \vec{n} \, ds$$

$$\frac{\vec{F} \cdot \vec{F}}{curl \cdot \vec{F}} = \begin{bmatrix} \vec{F} & \vec{F} & \vec{K} \\ \vec{D} & \vec{D} & \vec{R} \\ \vec{D} & \vec{D} & \vec{T} \\ \vec{R} \cdot \vec{F} & \vec{R} \end{bmatrix} = \vec{Y} \vec{K}$$

Stoke's theorem

the Instace of the sectar gular in suy-plane Bick

$$= \iint y \, dx \, dy$$
$$= 0^{3}/_{2} - 0$$

L.H.S $\int \vec{F} \cdot d\vec{r} = \int \vec{F} \cdot d\vec{r} + \int \vec{F} \cdot d\vec{r}$ = a³/₈ + a³/₂ - a³/₈ + 0 2 a3/2 -0 H. H.S = R.H.S

(b) Visity Green's theorem in the plane for \$ (322-By2) dn+(ty-bay) dy. where G is the boundary of the region defined by 2=0, y=0, 2+4=1. If y=1. Sty (freen's theorem $\int p \, da + Q \, dy = \int \int \frac{\partial Q}{\partial x} - \frac{\partial p}{\partial y} \, da \, dy$ R N=1-y V = A V = A V = AR.H.S $\int \left(\frac{\partial \alpha}{\partial n} - \frac{\partial p}{\partial y}\right) dh dy = \int \int \int 1 dy dh dy = 573 - ED$ 420 x = 2

L.H.S

J+J+J LHS = RHS = 3/2 + 13 -2 = 9+13-12 - 16/6 = 5/2 - D

18 (a) Using Convertation theorem, and
$$L^{+}\left[\frac{s^{2}}{(s^{2}+a^{2})(s^{2}+b^{2})}\right]$$

by $L^{+}\left[\frac{s^{2}}{(s^{2}+a^{2})(s^{2}+b^{2})}\right] = L^{+}\left[\frac{s}{s^{2}+a^{2}} + \frac{a}{s^{2}+b^{2}}\right]$
 $= L^{+}\left[\frac{s}{s^{2}+a^{2}}\right] + L^{+}\left[\frac{s}{s^{2}+b^{2}}\right]$
 $= L^{+}\left[\frac{s}{s^{2}+a^{2}}\right] + L^{+}\left[\frac{s}{s^{2}+b^{2}}\right]$
 $= cosat + bright$
 $cosat + bright$
 $= \frac{1}{s}\int_{0}^{t}\left[cos(au+bt-bu) + cos(au-bt+bu)\right]$
 $= \frac{asinat - bsinbt}{a^{2}-b^{2}}$
(b) orbre $\frac{d^{2}y}{dt^{2}} + s\frac{dy}{dt} + sy = e^{st}$, given that $Y(H=o, i\frac{dy}{dt} = o$
when two by using Laplace Thankform.
More two by using Laplace Thankform.
More two by using convert
 $L[y^{1}(t)] - s_{1}[y^{1}(t)] + a_{2}([y, th)] - t[e^{2t}]$
 $g^{2}(t) - sy(0) - y^{2}(o) - s [st(y(t)) - y(b)] + a - [y(b)] = \frac{1}{s-2}$
 $y(o) = o\frac{1}{s-3}$
 $\frac{y}{s}(s^{2}-ss+a) = \frac{1}{s-3}$
 $L[y(b)] = \frac{1}{(c-s)(s^{2}-ss+a)}$
 $L[y(b)] = \frac{1}{(c-s)(s^{2}-ss+a)}$

.

 \bigcirc

Ð

19 (a) prependine the Draw the Amage of the region whose Viertices are at (0,0), (1,0), (1,2) and (0,2) in the Z-plane under for Than formation W= (1+i)2, Sim N= A(2) 1 W= 44 + iv f(2) = U+iV , Z= 20+19 W= (I+i) Z > W= (I+i) (DL+iy) N= 2-y + 1 (01+y) M= x -y 1 V= 71+4 point U=21-y (YIN) V=21+4 A(0,0) 120 (0,0) V-0 B(1,0) 421 CLII V2 C(102) U=-1 V23 (-1,3) 1) (012) 42-2 V=2 (-2,2) (0m) 1 4=2 (1,2) (-1,3) 221 2120 c4N B 7 x 420 alt w-plane, z-plane (b) betwomine the region in the woplane in which the rectangle bounded by the lines x 20, y20, x=2, y=1 is mapped under the trans formation W=12+8+82. V Som given w= z + 2+3i (21) 421 6,17 3 (4,3) Wintiv, z=outig 2100 Utiv= actig+Qt3i ħ. 420 (010) U=2(+2, V=1(4+3) 2 3 2-plane N-plane Z-plane points (P10), (210), (21) (210) N-plane postub (2,3), (+13), (+14), (+14)

Residue of
$$f(z)$$

at $z = -a$ simple pole $\int = 1t$
 $a = -a$
 $z + a$ $(z - a)$ $f(z)$
 $a = -a$
 $= 1t$
 $z - a$ $(z + 2)$ $\frac{z^{2}}{(z - 1)^{2}(2 + 2)}$
 $= \frac{1}{2}$

Z=1 pole of order 2.

Res q f(z) =
$$\frac{1}{(m+1)!} \frac{dz^{m-1}}{dz^{m-1}} (z-a)^m f(z)$$

= $\frac{1}{1!} \frac{d}{dz} \left[(z-1)^q \frac{z^q}{(z-1)^q(z+a)} \right]$
= $\frac{d}{dz} \left[\frac{z^q}{z+z} \right]$
= $\frac{5}{9} = -0$
 $\int_0^z f(z) dz = dr^2 \left[Sum q Res. q f(z) \right]$
= $ari \left[\frac{p}{q} + \frac{s}{q} \right]$

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Mathematics

CONTINUOUS LEARNING ASSESSMENT TEST-III

U20MABT02 – ADVANCED CALCULUS AND COMPLEX ANALYSIS (SET- B)

	Date : 23.06.2023			
	Academic Year / Semester : 2022-2023 / EVEN			
	Duration : 1 Hour 30 Minutes			
Q.No.	PART – A $(5 \times 2 = 10)$	Weightage	CO's	Bloom's Level
1	Find the fixed points of the transformation $w = \frac{6z - 9}{z}$	2	CO4	2
2	What are the poles of the function $f(z) = \frac{z}{(z+1)(z-i)}$	2	CO5	1
3	Find the residue at $z = 0$ for $f(z) = \cot z$	2	CO5	3
4	Classify the singularity of the function $f(z) = \frac{\sin z}{z}$.	2	CO5	1
5	Evaluate $f(z) = \frac{z}{(z+1)(z+2)}$ about the pole $z = -2$.	2	CO5	3
	PART – B ($2 \times 4 = 8$)			
6	 (a) Find the bilinear transformation that maps the points z = 0, -i, -1 onto the points w = i, 1, 0 respectively. (OR) (b) Construct the Analytic function f(z) which the real part e^x cos y. 	4	CO4	2
7	(a) Evaluate $\int_{C} \frac{4z^2 - 4z + 1}{(z^2 + 4)(z - 2)} dz$, where C is the circle $ z = 1$, Using Cauchy Integral formula. (b) Find the residue of $f(z) = \frac{z^2}{(z-1)^2}$ where C is the $ z = 3$.	4	CO5	3
	$PART - C (1 \times 12 = 12)$			
8	 (a) Find f(z), if the Real part is e^x (x cos y - y sin y). Also find its Conjugate (OR) (b) Find the image of z+1 =1 under the transformation w=1/z 	12	CO4	2

CO's	Weightage
CO 4	18
CO 5	12
Total	30

Bharath Institute Of Higher Education and Research (BIHER) IQAC/ACAD/008

THERM-B
UDONADORES - AdvanceD CALCALUS & COMPLEX ANALYSIS
CLA-B
Port-A
I. Find the fraced points of the tracesformation
$$N = \frac{62-9}{24}$$

 $Z = \frac{2}{3}/2$
 $Z = \frac{2}{3}/2$
 $Z = \frac{2}{3}/2$
 $Z = \frac{2}{3}/2$
 $Z = -2 , i$
 $Z = -1 , 2 = -2$
 $Z = -1 , 2 = -2$
 $Z = -1 , 2 = -2$
 $Z = -2 , i$
 $Z = -2 , i$

Ey miller theorem method is
full
$$\int f_{1}(z, \sigma) = if_{1}(z, n) dz$$

 $z = a^{2}z$
To find Conjugate.
 $\int bl = u + it$
 $z = a + iy$
 $u \neq fu = a^{2} (x c s o - y \le n a) + i (e^{2} x \sin b + e^{2} y c s o)$
 $\therefore dm p : e^{2} (x c \sin b + g c s o)$
(B) Find the Proope of $|z + 1| = 1$ under the Israel formation $W = 1/2$.
 $|z + 1| = 1$, $W = 1/2$
 $2t = \frac{U}{U^{2}+V^{2}}$, $Y = \frac{V}{V^{2}+V^{2}}$
 $|z + 1| = 1 \Rightarrow |z + 1y + 1 = 1$
 $(a + 1)^{2} + y^{2} = 1^{2}$
 $x^{2} + xz + y^{2} = s$
 $\int u = -V_{2}$
 $\int V$
 $\int V$
 $\int V$
 $\int u = -V_{2}$

CONTINUOUS LEARNING ASSESSMENT TEST-II U20MABT02 – ADVANCED CALCULUS AND COMPLEX ANALYSIS

Date Academic Year / Semester	: 31.05.2023 : 2022 – 2023 / Term-II	SET B
Maximum marks Instruction	: 30 Marks : Answer to ALL Questions	

Q.	PART - A (5x 2 = 10)	Weightage	CO's	Bloom's Level
1	State Gauss Divergence Theorem.	2	CO2	1
2	Prove that $L[e^{-at}] = \frac{1}{s+a}$	2	CO3	2
3	Prove that $L[Sinh at] = \frac{a}{s^2 - a^2}$	2	CO3	2
4	Find $L[1] = \frac{1}{s}$	2	CO3	2
5	Find L[Cos 4t Cos 2t]	2	CO3	2
	$PART - B (2 \times 4 = 8)$			
6	(a) Find $L[e^{-3t} - 2\cos 2t + 3\sinh 3t + 5]$ (OR) (b) Find $L[e^{-3t}(\sin 2t - \cos 3t)]$	4	CO3	3
7	(a) Find $L[e^{3t}Sin 2t]$ (b) Find $L[t^2 e^{-3t}Sin 3t]$ (OR)	4	CO3	3
	$PART - C (1 \times 12 = 12)$			
8	 (a) Verify Green's theorem in a plane for the integral ∫_c (xy + y²)dx + x²dy, where C is the closed curve of the region bounded by y = xand y = x². (OR) (b) Verify Gauss Divergence Theorem for \$\vec{F} = (x² - yz)\vec{i} + (y² - zx)\vec{j} + (z² - xy)\vec{k}\$ and S is the surface of the rectangular parallelepiped bounded by x = 0, x = a, y = 0, y = b, z = 0, z = c. 	12	CO2	3

CO's	Weightage
CO 2	14
CO 3	16
Total	30

Bharath Institute Of Higher Education and Research (BIHER)/QAC/ACAD/008

Part-A
1. Shate Graws Drivergence theorem.

$$\iint_{S} \vec{F} \cdot \vec{n} ds = \iiint_{V} \vec{F} \cdot \vec{F} dv$$
2. Prove that $\downarrow [Sinh at] = \frac{a}{s^2 - a^2}$
Sin hat $= \frac{e^D}{2} - e^D$
 $\downarrow [Sinh at] = \frac{1}{2} \downarrow [Ce^D - e^D] = \frac{a}{s^2 - a^2}$
3. Prove that $\downarrow [Ce^{-at}] = \frac{1}{s+a}$
 $\downarrow [Ce^{-at}] = \frac{1}{s}$
 $\downarrow [Ce$

D

Port-c

S. Verity (Treen's theorem in a plane for the integral J (21y+42) da + 22 dg, where C is the closed curve of the mexicon bounded by y=x and y=x2. Spom + Qdy = SS (Qn - Py) dady -to p= 24+92 Q=32 Py = x+22y Qor = 221. If (an- by) dady = -1 R (an- by) dady = -1 $\int p dn + Q dy_2 \int (Q y + y^2) dn + \chi^2 dy$ = J (Dry+42) dre + nedy + J (Dry+42) dre + nedy Cityper C2: Y2N 2 = 19/20 <u>si</u> = -1/20 2+R=-1/20 L.H.S ER.HS & Verity Gauss Divergence theorem for = (m² - 42) i + (42 - 22) i + (22 - 2(y) k' and S is the Surface of the neetangulor ponallelepiped bounded by 200, 2120, 420, 426, Z20,220. By Gauss Divergence thosem, $\iint \vec{p} \cdot \vec{p} \, ds = \iint x \cdot \vec{p} \, dy \, .$

 \bigcirc

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Mathematics

CONTINUOUS LEARNING ASSESSMENT TEST –I U20MABT02- ADVANCED CALCULUS AND COMPLEX ANALYSIS

Bloom' s Level

2

2

2

2

3

3

3

3

		SET A					
Date Acade Durati	mic Year/S	Semester : 25.04.2023 : 2022-2023/EVEN :1:30 Hours					
	Q.No.	PART A (5 X 2)= 10	Weightage	CO's			
	1	Evaluate the double integral $\int_{0}^{1} \int_{1}^{2} (x^{2} + y^{2}) dx dy$.	2	CO1			
	2	Evaluate the double integral $\int_{0}^{1} \int_{y}^{y^{2}} (x+y) dx dy$.	2	CO1			
	3	Find the value of $\int_0^{\pi} \int_0^x \frac{\sin x}{x} dy dx$	2	CO1			
	4	If $\phi = x^2 + y - z - 1$, find grad ϕ at (1,0,0).	2	CO2			
\bigcirc	5	Find the Directional Derivative of $\phi = xyz$ at (1,1,1) in the direction of $\vec{i} + \vec{j} + \vec{k}$.	2	CO2			
	PART B (2 X 4) = 8						
	6	Find the area using double integral bounded by the lines $x = 0$, $y = 1$ and $y = x$ (or) Find the area using double integral bounded by $y = x^2$ and $y = 2x + 3$.	4	C01			
24 i	7	If $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$, prove that $\nabla r = \frac{\vec{r}}{r}$. (or) Find the Unit Normal Vector to the surface $x^2 - y^2 + z = 2$ at the point $(1, -1, 2)$.	4	CO2			
		PART C (1 X 12)= 12					
Û,		Evaluate the double integral $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy$)V				

PART C (1 X 12)= 12Evaluate the double integral $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by
changing into polar coordinate and hence deduce that the
value of $\int_{0}^{\infty} e^{-x^2} dx$ 12CO18value of $\int_{0}^{\infty} e^{-x^2} dx$ 12CO1(or)
Change the order of integration to evaluate
 $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2+y^2} dx dy.$

CO's	Weightage
CO1	22
CO2	08
Total	30

TERMINE
USENARE D ADVANCED CALCULUS & CORPLEX ANALYSES
CLA-2
Prof.-A
I. Evaluate the draft physical of
$$\int_{1}^{2} (x_{1}^{2} + y^{2}) dx dy$$
.
And y_{2}
I. Evaluate the draft physical $\int_{1}^{2} \int_{1}^{y_{1}^{2}} (x_{1}^{2} + y^{2}) dx dy$.
And the value $q_{1} \int_{1}^{y_{1}^{2}} \frac{g_{1}}{x_{1}} dy dx$.
Arris 2
I. Sif $\phi: x^{2} + y - 2 - 1$, find grad ϕ at (11070)
 $Tq: C \frac{20}{9M} + 3 \frac{20}{9T} \frac{12}{9T} \frac{20}{9T}$
I. $p = \frac{31}{1} + \frac{1}{3} - \frac{12}{10}$
S. Find the Dischard Derivative $q_{1} \phi: a^{2}y_{2} x_{1}^{2}$ (1.10) In the discolution
 $e^{C} C \frac{1}{2} + \frac{1}{3} + \frac{1}{2}$.
 $\frac{1}{2} \log dx \frac{1}{2} = \sqrt{3}$.
 $\frac{1}{2} dx dy dx$
 $\frac{1}{2} dx dy dx$
 $\frac{1}{2} dx dy dx$
 $\frac{1}{2} dx dy dx$
 $\frac{1}{2} dy dx$
 $\frac{1}{2} x_{1}^{2} u^{2} \frac{1}{2} dy dx$
 $\frac{1}{2} x_{2}^{2} u^{2} \frac{1}{7} \frac{1}{7}$
(b) Find the area using double pointed bounded by the lines
 $\frac{1}{2} x_{2}^{2} u^{2} \frac{1}{7} \frac{1}{7}$
(b) Find the area using double point bounded by y: x^{2} and
 $\frac{1}{2} 20 + 3$.
 $\left[\frac{1}{2} - \frac{1}{7} - \frac{2}{7} + \frac{1}{7} \frac{1}{7} + \frac{1}{7} - \frac{1}{7} \frac{1}$

Q

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Mathematics

CONTINUOUS LEARNING ASSESSMENT - IV / EXAMINATIONS

U20MABTT02 – ADVANCED CALCULUS AND COMPLEX ANALYSIS

ASSIGNMENT - CLA IV

Q.NO	Answer the Question	Weightage	CO's	Bloom's Level
1	Find $L[t^2e^{-3t}\cosh 2t]$	5	CO3	3
2	Evaluate $\int_{C} \frac{z-1}{(z+1)^2(z-2)} dz$, where C is the circle $ z = 2$	5	CO5	3

NAME : G. CHITRA. REG.NO : WAABHOAN SECTION: BI SUBJECT : ACCA. SUBJECT CODE : WAOMABTOA. ASSIGNMENT.

find
$$L [t^2 e^{-3t} \cosh at].$$

Solution:
 $L [t^2 e^{-3t} \cosh at].$
 $Lt] = L [(\cosh at] = \frac{s}{s^2 - 4}$
 $L [t^2 \cosh at] = (-1)^2 \frac{d^2}{ds^2} (\frac{s}{s^2 - 4})$
 $= \frac{d}{ds} \left[\frac{(s^2 - 4)(1) - s(as)}{(s^2 - 4)^2} \right]$
 $= \frac{d}{ds} \left[\frac{(s^2 - 4) - as^2}{(s^2 - 4)^2} \right]$
 $= \frac{d}{ds} \left[\frac{-s^2 - 4}{(s^2 - 4)^2} \right]$
 $= \frac{(s^2 - 4)^2 - (-2s)(-(-s^2 - 4))[a(s^2 - 4)(as)]}{(s^2 - 4)}$

ι.

$$= \frac{\partial s^{2} + 18s^{2} + 42s + 126}{(s^{2} + 65 + s^{2})^{2}} /$$

2. Evaluate $\int \frac{Z - 1}{(Z + 1)^{2} (Z - 2)} dZ$, where C is the
Circle $|Z| = 0.5$.
Solution:
 $\frac{1}{(Z + 1)^{2} (Z - 2)} = \frac{A}{(Z - 2)} + \frac{B}{(Z + 1)} + \frac{C}{(Z + 1)^{2}}$
 $1 = A (Z + 1)^{2} + B (Z - 2)(Z + 1) + C (Z - 2)$
Let $Z = -1$
 $1 = A (-1 + 1)^{2} + B (-1 - 2)(-1 + 1) + C (-1 - 2)$
 $1 = -3C$
 $C = -\frac{1}{3}$

 $\int \frac{1}{(z+1)^2 (z-2)} dz = \frac{1}{9} \int \frac{1}{z-2} dz - \frac{1}{9} \int \frac{1}{z+1} dz$ $-\frac{1}{3} \int \frac{1}{(Z+1)^2} dz$ x by Z-1 on both sides. $\frac{z_{-1}}{(z_{+1})^2(z_{-2})} dz = \frac{1}{q} \left(\frac{(z_{-1})}{(z_{-2})} dz - \frac{1}{q} \right)$ $\frac{7-1}{7+1}$ dz $-\frac{1}{3}$ $\frac{7-1}{7+1}$ dz. |Z| = 3(X+iy) =3 $\chi^2 + \chi^2 = 3$ (i) $\frac{1}{9} \int \frac{z_{-1}}{z_{-2}} dz \int \frac{f(z)}{z_{-20}} dz$. (Zo=2) outside circle

$$\begin{array}{l} (10) & = \frac{1}{3} \int \frac{\overline{a} - 1}{(\overline{a} + 1)^{2}} dz \\ \overline{z} - \overline{z}_{0} = 0 \\ (\overline{z} + 1)^{2} = 0 \\ \overline{z} + 1) = 0 \\ \overline{z} = -1 \\ \hline \overline{z} = -1$$

x

QUESTION BANK

Department : MATHEMATICS

Program Name/Code : **B TECH**/ Common to all Branches Course Name/Code : Advanced Calculus and Complex Analysis / U20MABT02

Q.No	Question	Weightage	СО	Bloom's Level			
	UNIT I MULTIPLE INTEGRAL						
	PART – A						
1	Evaluate the double integral $\int_{1}^{2} \int_{3}^{4} x(x+y) dx dy$.	2	CO1	2			
2	Evaluate the double integral $\int_{0}^{1} \int_{1}^{2} (x^{2} + y^{2}) dx dy$.	2	CO1	2			
3	Evaluate the double integral $\int_{1}^{2} \int_{x}^{x^{2}} x y dy dx$.	2	CO1	2			
4	Evaluate the double integral $\int_{0}^{1} \int_{y}^{y^{2}} (x+y) dx dy.$	2	CO1	2			
5	Find the value of $\int_0^{\pi} \int_0^x \frac{\sin x}{x} dy dx$	2	CO1	2			
6	Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dx dy}{\sqrt{1-x^{2}} \sqrt{1-y^{2}}}.$	2	CO1	2			
7	Evaluate $\int_{1}^{a} \int_{1}^{b} \frac{dx dy}{xy}$.	2	CO1	2			
8	Evaluate $\iint_{s} x^{2}y^{2} dx dy$ over the region bounded by the straight line $x=0, x=3, y=0, y=3$.	2	CO1	3			
9	Evaluate the double integral $\int_{0}^{\pi} \int_{0}^{\sin\theta} r dr d\theta$	2	CO1	2			
10	Solve the double integral $\int_{0}^{\pi} \int_{0}^{a} r dr d\theta$	2	CO1	2			
	PART – B						
1	Evaluate $\iint_{R} (x - y) dx dy$, where R is the region bounded by the straight line $y = x$ and parabola $y = x^{2}$.	4	CO1	3			

Bharath Institute Of Higher Education and Research (BIHER)

2	Find the area using double integral bounded by the lines $x = 0$, $y = 1$ and $y = x$	4	CO1	3
3	Find the area using double integral bounded by $y = x^2$ and $y = 2x+3$.	4	CO1	3
4	Find the area between $y = x$ and $y = x^2$?	4	CO1	3
5	Find area of the circle $x^2 + y^2 = a^2$ using double integral.	4	CO1	3
6	Find the area of first quadrant of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	4	CO1	3
7	Find the area between parabola $y^2 = 4ax$ and $x^2 = 4ay$.	4	CO1	3
8	Evaluate the double integral $\int_{0}^{\pi} \int_{0}^{\sin\theta} r dr d\theta$	4	CO1	3
9	Solve the double integral $\int_{0}^{\pi} \int_{0}^{a} r dr d\theta$	4	CO1	3
10	Find the area of the cardioid $r = a(1 + \cos \theta)$.	4	CO1	3
	PART – C			
1	Evaluate the double integral $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing into polar coordinate and hence deduce that the value of $\int_{0}^{\infty} e^{-x^2} dx$	12	CO1	3
2	Change the order of integration to evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2} + y^{2}} dx dy.$	12	CO1	3
3	Change the order of integration to evaluate $\int_{0}^{4a} \int_{\frac{x^{2}}{4a}}^{2\sqrt{ax}} xy dy dx .$	12	C01	3
4	Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ using triple integral.	12	CO1	3
5	Evaluate the triple integral $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dz dy dx}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}.$	12	C01	3

Bharath Institute Of Higher Education and Research (BIHER)

τ Ο

6	Change the order of integration to evaluate $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{2a-x} xy dy dx.$	12	CO1	3
7	Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple integral.	12	CO1	3

Q.No	Question	Weightage	СО	Bloom's Level		
UNIT II VECTOR CALCULUS						
	PART – A					
1	If $\phi = x^2 + y - z - 1$, find grad ϕ at (1,0,0).	2	CO2	2		
2	Find grad ϕ at (1,1,1), if $\phi = xyz$.	2	CO2	1		
3	Find $\nabla \phi$, if $\phi = \log(x^2 + y^2 + z^2)$.	2	CO2	2		
4	Find $\nabla \vec{r}$, if $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$.	2	CO2	2		
5	Find the Directional Derivative of $\phi = xyz$ at (1,1,1) in the direction of $\vec{i} + \vec{j} + \vec{k}$.	2	CO2	2		
6	Find the Directional Derivative of $\phi = xy + yz + zx$ at (1,2,0) in the direction of $\vec{i} + 2\vec{j} + 2\vec{k}$.	2	CO2	2		
7	If $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$, find $\nabla \bullet \vec{F}$	2	CO2	2		
8	If $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$, find $\nabla \times \vec{F}$.	2	CO2	2		
9	Find the Unit Normal Vector to the surface $\phi = x^3 - xyz + z^3 - 1$ at the point (1, 1, 1).	2	CO2	2		
10	State Green's Theorem	2	CO2	1		
	PART – B					
1	If $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$, prove that $\nabla r = \frac{\vec{r}}{r}$.	4	CO2	3		
2	If $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$, prove that $\nabla r^n = nr^{n-2} \vec{r}$.	4	CO2	3		
3	Find the Unit Normal Vector to the surface $x^2 - y^2 + z = 2$ at the point $(1, -1, 2)$.	4	CO2	3		
4	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 - z = 3$ at the point (2, -1, 2).	4	CO2	3		
5	Find $\nabla \bullet \vec{F}$ and $\nabla \times \vec{F}$ of the vector point function find $\vec{F} = xz^3 \vec{i} - 2x^2 yz \vec{j} + 2yz^4 \vec{k}$ at the point $(1, -1, 1)$.	4	CO2	3		
6	Find the value of "a", Show that the vector $\vec{F} = (x+3y)\vec{i} + (y-2z)\vec{j} + (x+az)\vec{k}$ is solenoidal	4	CO2	3		

Bharath Institute Of Higher Education and Research (BIHER)

7 Show that the vector $\vec{F} = 3y^4 z^2 \vec{i} + 4x^3 z^2 \vec{j} - 3x^2 y^2 \vec{k} \vec{i}$ solenoidal. 8 $\vec{F} = (y^2 + 2z^2)\vec{i} + (2zy - z)\vec{i} + (2z^2 - y + 2z)\vec{k}$ is	^{is} 4 4	CO2	3
8 $\vec{F} = (v^2 + 2rz^2)\vec{i} + (2rv - z)\vec{i} + (2r^2 z - v + 2z)\vec{k}$ is	4		
8 $\vec{F} = (v^2 + 2rz^2)\vec{i} + (2rv - z)\vec{i} + (2r^2 z - v + 2z)\vec{k}$ is	4		
$ \begin{array}{c} 1 \\ - y \\ - z \\ $		CO2	3
Show that the vector			
9 $\vec{F} = 2xy \vec{i} + (x^2 + 2yz)\vec{j} + (y^2 + 1)\vec{k}$ is irrotational.	4	CO2	3
10 Show that the vector $\vec{F} = yz \ \vec{i} + zx \ \vec{j} + xy \ \vec{k}$, is irrotational	4	CO2	3
PART - C			
Verify Green's theorem in the plane fo	or		
1 $\int_{C} (3x-8y^2)dx + (4y-6xy)dy.$ Where C is the boundary of the region defined by	ие 12 у	CO2	3
x = 0, y = 0, x + y = 1.			
Verify Stoke's theorem for the function			
2 $\vec{F} = (x^2 - y^2)\vec{i} + 2xy\vec{j}$ taken around the rectangle	e 12	CO2	3
bounded by the lines $x = 0$, $x = a$, $y = 0$, $y = b$.			
3 Verify Green's theorem in a plane for $\int_{C} (xy + y^2) dx + x^2 dy, \text{ where C is the closed curve of}$ the region bounded by $y = x$ and $y = x^2$.	12	CO2	3
Verify Gauss divergence theorem for			
4 $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy) \text{ and S is}$ the surface of the rectangular parallelepiped bounded by $x = 0, x = a, y = 0, y = b, z = 0, z = c.$	is 12	CO2	3
Verify Green's theorem in a plane for the integral			
5 $\int_{C} (x - 2y)dx + xdy \text{ taken round the circle}$ $x^{2} + y^{2} = 1.$	12	CO2	3
Verify the Gauss Divergence Theorem for			
6 $\vec{F} = 4xz \ \vec{i} \ y^2 \ \vec{j} + yz \ \vec{k}$ over the cube bounded by r = 0, r = 1, v = 0, v = 1, z = 0, z = 1	12	CO2	3
$\frac{x-0, x-1, y-0, y-1, 2-0, 2-1}{\text{Verify Stoke's theorem for the function}}$	n		
7 $\vec{F} = x^2 \vec{i} + xy \vec{j}$ taken around the square bounder by the lines $x = 0, x = a, y = 0, y = a$.	ad 12	CO2	3

Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

1

Q.No	Question	Weightage	СО	Bloom's Level				
UNIT III LAPLACE TRANSFORMS								
	PART – A							
1	Prove that $L[e^{at}] = \frac{1}{s-a}$	2	CO3	1				
2	Prove that $L[Sinat] = \frac{a}{a^2 + a^2}$	2	CO3	2				
3	State first Shifting property.	2	CO3	1				
4	Find $L^{-1}\left[\frac{s^2-3s+4}{s}\right]$	2	CO3	2				
5	Prove that $L[Sinh at] = \frac{a}{a^2 - a^2}$	2	CO3	2				
6	Find $L^{-1}\begin{bmatrix} \frac{3s+2}{2} \end{bmatrix}$	2	CO3	2				
7	Prove that $L[Cosh at] = \frac{s}{2}$	2	CO3	2				
8	Prove that $L[Cosat] = \frac{s}{s^2 - a^2}$	2	CO3	2				
9	$L[f'(t)] = \qquad \qquad \text{ii)} L[f''(t)] =$	2	CO3	1				
10	Find $L^{-1}\begin{bmatrix} 2\\ -2 \end{bmatrix}$	2	CO3	2				
	PART – B							
1	Find $L[e^{3t}Sin 2t]$	4	CO3	3				
2	Find $L[t^2 Cosh 3t]$	4	CO3	3				
3	Find $L[t^2 \cos 2t]$	4	CO3	3				
4	Find $L[e^{-3t} Sinh 2t]$	4	CO3	3				
5	Find $L[e^{2t} + 7Sin 3t + 5 Cosh t]$	4	CO3	3				
6	Using partial fraction method to find $L^{-1}\left[\frac{s}{(s-4)(s+9)}\right]$.	4	CO3	3				
7	Find $L^{-1}\left[\frac{s+1}{s(s-2)(s+3)}\right]$ using partial fraction method.	4	CO3	3				
8	Find $L\left[a\sqrt{t}+\frac{b}{c}+c\right]$	4	CO3	3				
9	Find $L[Sin 5t Cos 3t]$	4	CO3	3				
10	Find $L^{-1} \begin{bmatrix} s+2\\ s^2+2 \end{bmatrix}$	4	CO3	3				
	PART – C		h.	h,				
1	Find the Laplace Transform of $f(t) = \begin{cases} t , 0 < t < b \\ 2b - t, b < t < 2b \end{cases}$ if $f(t + 2b) = f(t)$	12	CO3	3				
2	Find $L[t^2e^{-3t} Cosh 2t]$	12	CO3	3				
3	Find the Laplace Transform of $f(t) = \begin{cases} k , 0 < t < \frac{a}{2} \\ -k, \frac{a}{2} < t < a \end{cases}$	12	CO3	3				
4	Find $L^{-1} = \left[\frac{4S^2 + 5S - 3}{(S+1)^2(S+2)}\right]$	12	CO3	3				

Bharath Institute Of Higher Education and Research (BIHER)

5	Solve: $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = e^{3t}$, given that y(t)=0, $\frac{dy}{dt} = 0$ when t=0 by using Laplace Transform.	12	CO3	3
6	Find $L^{-1} = \left[\frac{7S - 11}{(S+1)(S-2)^2}\right]$	12	CO3	3
7	Using convolution theorem, find $L^{-1}\left[\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right].$	12	CO3	3

.No	Question	Weightage	СО	Bloom's Level					
UNIT IV ANALYTIC FUNCTIONS									
	PART – A								
1	Check whether the function $f(z) = z^2$ is analytic or not?	2	CO4	2					
2	Find the fixed points of the transformation $w = \frac{6z-9}{z}$	2	CO4	2					
3	Verify C-R equation of the function $f(z) = \overline{z}$.	2	CO4	1					
4	Find the invariant points of the transformation $w = \frac{3-z}{1+z}$	2	CO4	2					
5	Check whether the function $f(z) = z ^2$ is analytic or not?	2	CO4	2					
6	Find the fixed points of the transformation $w = \frac{2z+6}{z+7}$	2	CO4	2					
7	Write the Milne-Thomson formula for imaginary part.	2	CO4	1					
8	Show that $v = 3x^2y - y^3$ is Harmonic function	2	CO4	2					
9	Write the Bilinear Transformation formula.	2	CO4	1					
10	Find the critical points of the function $f(x) = \frac{x+1}{x^2+1}$	2	CO4	2					
	PART – B			1					
1	Find the bilinear transformation that maps the points $z = 0, -i, -1$ onto the points $w = i, 1, 0$ respectively.	4	CO4	2					
2	Find the bilinear transformation that maps the points $\infty, i, 0$ in the z-plane onto the points $0, i, \infty$ in the w-plane of the points $0, i, \infty$ in the w-plane of the points $0, i, \infty$ in the w-plane of the points $0, i, \infty$ is the points $0, i, \infty$ is the w-plane of the points $0, i, \infty$ is th	4	CO4	2					
3	If $f(z)$ is an analytic function, then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left f(z) \right ^p = p^2 \left f(z) \right ^{p-2} \left f'(z) \right ^2.$	4	CO4	2					
4	Construct the Analytic function $f(z)$ which the real part $e^x \cos y$	4	CO4	2					
5	Find the bilinear transformation that maps the points $z = -1, 0, 1$ onto the points $w = -1, -i, 1$ respectively.	4	CO4	2					
6	If $f(z)$ is an analytic function, then prove that	4	CO4	2					

Bharath Institute Of Higher Education and Research (BIHER)

			······································	
	$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left f(z)\right ^2 = 4 \left f'(z)\right ^2.$			
7	Show that an analytic function with constant real part is also constant.	4	CO4	2
8	Find the image of the circle $ z = 2$ under the transformation $w = 3z$.	4	CO4	2
9	Find the image of the circle $ z = 1$ under the transformation $w_{z} = 4z$	4	CO4	2
10	Find the image of the region bounded by x = 0, y = 0, x = 1 and y = 2, under the transformation w = z + 2 - i.	4	CO4	2
	PART – C			
1	Find f(z), if the Imaginary part is $e^{x}(x \sin y + y \cos y)$. Also find its Conjugate	12	CO4	2
2	Find the image of $ z+1 = 1$ under the transformation w=1/z	12	CO4	2
3	Find f(z), if the Real part is $e^{x}(x \cos y - y \sin y)$. Also find its Conjugate.	12	CO4	2
4	Draw the image of the region whose vertices are at $(0,0)$, $(1,0)$, $(1,2)$ and $(0,2)$ in the z-plane under the transformation $w = (1+i)z$.	12	CO4	2
5	Determine the Analytic function $f(z)$, whose real part is $x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$, Also find its conjugate	12	CO4	2
6	Find the image of $ z-2i = 2$ under the transformation w=1/z	12	CO4	2
7	If $u = \frac{\sin 2x}{\cosh 2y + \cos 2x}$, then find an analytic function $f(z)$.	12	CO4	2

Q.No	Question	Weightage	СО	Bloom's Level						
	UNIT V COMPLEX INTEGRATION									
	PART – A									
1	Write the Cauchy's integral formula for Derivatives.	2	CO5	1						
2	What are the poles of the function $f(z) = \frac{z}{(z+1)(z-i)}$	2	CO5	2						
3	Evaluate $\int \frac{1}{z+2} dz$, where $ z-1 = \frac{1}{2}$	2	CO5	2						
4	What is the singular point of the function $f(z) = \frac{1}{z+i}$.	2	CO5	2						
5	Write the formula for finding the residue of a function at a pole of order 'm'.	2	CO5	1						

Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

12

6	Evaluate $\int_{c} \frac{z^2 - 3z + 5}{z + 4} dz$ where 'C' is the circle $ z = 2$, using Cauchy's Residue Theorem	2	CO5	2
7	Find the residue at $z = 0$ for $f(z) = \cot z$	2	CO5	2
8	Classify the singularity of the function $f(z) = \frac{\sin z}{z}$.	2	CO5	2
9	Evaluate $f(z) = \frac{z}{(z+1)(z+2)}$ about $z = -2$.	2	CO5	2
10	State Cauchy's residue Theorem.	2	CO5	1
	PART – B	1		
1	Evaluate using Cauchy's Integral formula $\int_{C} \frac{z+1}{(z-3)(z-1)} dz$, where C is $ z = 2$.	4	CO5	3
2	Evaluate $\frac{1}{z-2}$ at $z = 1$ in Taylor's series.	4	CO5	3
3	Identify the nature of the singularity for $f(z) = \frac{\sin z - z}{z^3}$.	4	CO5	3
4	Evaluate $\int_C \frac{4z^2 - 4z + 1}{(z^2 + 4)(z - 2)} dz$, where C is the circle $ z = 1$.	4	CO5	3
5	Evaluate $f(z) = \cos z$ as a Taylor's series about the point $z = 0$.	4	CO5	3
6	Calculate the residue of $f(z) = \frac{1 - e^{2z}}{z^3}$.	4	CO5	3
7	Find the residue of $f(z) = \frac{z^2}{(z-1)^2}$ where C is the $ z = 3$.	4	CO5	3
8	Evaluate $f(z) = \sin z$ as a Taylor's series about the point $z = 0$.	4	CO5	3
9	Evaluate $\int_C \frac{z-1}{(z+1)^2(z-2)} dz$, where C is the circle $ z = 2$.	4	CO5	3
10	Find the singularity of $f(z) = \frac{1 - e^z}{z^4}$.	4	CO5	3
	PART – C			
1	Evaluate $\int_{C} \frac{\cos \pi z^2}{(z-1)(z-2)} dz$, where C is a circle $ z = 3$.	12	CO5	3
2	Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$ by using Contour Integration	12	CO5	3
3	Evaluate $f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$ as a Laurent's series if (i) $2 < z < 3$, (ii) $ z > 3$.	12	CO5	3
1				· · · · · · · · · · · · · · · · · · ·

Bharath Institute Of Higher Education and Research (BIHER)

4	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{5+3\cos\theta}$ by using Contour Integration	12	CO5	3
5	Find the Laurent's series expansion of $f(z) = \frac{7z - 2}{z(z - 2)(z + 1)} \text{ in } 1 < z + 1 < 3.$	12	CO5	3
6	Evaluate $\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where C is $ z = 3$, using Cauchy's Integral formula.	12	CO5	3
7	Determine the poles of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residue at each pole. Hence evaluate $\int_C \frac{z^2}{(z-1)^2(z+2)} dz$, where C is $ z = 3$.	12	CO5	3

BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH I YEAR, B.TECH, 2022 - 2023, TERM I SECTION A1

Subject Name : Advanced calculus and Complex Analysis

SL				CLA 2	CLA 3	CLA 4	TOTAL
NO.	REG.NO	STUDENT NAME	(10)	(15)	(15)	(10)	(50)
1	U22AE001	AKELLA PRAKASH	8	13	11	10	42
2	U22AE002	ASHWINTH A	9	13	14	10	46
3	U22AE003	CHIKATE SUMEDHA ISHWAR	8	15	13	10	46
4	U22AE004	CHINTHA HARIKA	10	15	15	10	50
5	U22AE005	GULIPELLI VISHWA TEJA	8	9	10	10	37
6	U22AE006	GOPI M	7	12	11	10	40
7	U22AE007	GURRAM ARUN KUMAR	8	12	13	10	43
8	U22AE008	HIRTHICK N	9	13	14	10	46
9	U22AE009	S ISWARYA	10	15	15	10	50
10	U22AE010	JANNATUL NAYEM KOLY	8	11	12	10	41
11	U22AE011	JAYASHREE M	8	15	13	10	46
12	U22AE012	KAVIPRIYA A	6	14	14	10	44
13	U22AE013	KEDRAKA PRAHALADHUDU	9	14	15	10	48
14	U22AE014	KOJJA NARENDRA	10	15	15	10	50
15	U22AE015	KOLIKAR THARUN SAI	7	7	13	10	37
16	U22AE016	KOTHAMANGALA K S HARIKA	10	15	15	10	50
17	U22AE017	KUNCHAM BHAVYA	10	15	14	10	49
18	U22AE018	MADIREDDY BHARAT KUMAR	5	8	9	10	32
19	U22AE020	MUGENTH RASHID M R	6	13	13	10	42
20	U22AE021	MURALI KRISHNA	5	13	15	10	43
21	U22AE022	NEHA JANA	10	15	15	10	50
22	U22AE023	NERELLA LOKESH BABU	8	13	14	10	45
23	U22AE024	NIROSHINI S	5	15	12	10	42
24	U22AE025	OBADAH AKRAM A	8	10	13	10	41
25	U22AE026	PANUGANTI SAI KRISHNA	7	15	10	10	42
26	U22AE027	PENNADA PRUDHVI NAGARJUNA	10	15	15	10	50
27	U22AE028	PINDIPOLU SANJAY	10	15	15	10	50
28	U22AE029	N RAJASEKHAR REDDY	10	15	15	10	50
29	U22AE030	REVANTH BOTUKA	6	8	8	10	32
30	U22AE031	SANJAY P	8	10	11	10	39
31	U22AE032	SHAIK ABDUL RAZAK	8	10	12	10	40
32	U22AE033	SHANMUGAPRIYA S	10	13	13	10	46
33	U22AE034	SHINODH G KURUP	7	12	11	10	40
34	U22AE035	SIVA RAJA PANDIAN S	8	12	11	10	41
35	U22AE036	SUSEENDAR R	8	13	13	10	44
36	U22AE037	SWARNIM KUMAR KAIWARTYA	10	15	15	10	50
37	U22AE038	TAVVA SIVANADHA REDDY	8	11	12	10	41

		TIRUMALARAJU VENKATA		11	10	10	25
38	U22AE039	NARASIMHA RAJU	6	11	10	10	37
39	U22AE040	UTLA GNANA DURGA MAHESH RAJU	10	15	15	10	50
40	U22AE041	VENU RACHAKONDA	7	11	11	10	39
41	U22AE042	YARRA HEMANTH	7	12	9	10	38
42	U22AS001	ADISHWAR R S P	7	11	10	10	38
43	U22AS002	AROKYA NISHA S	10	15	15	10	50
44	U22AS003	ARUNKUMAR D	9	11	10	10	40
45	U22AS004	BALAJI R	7	13	13	10	43
46	U22AS005	BAYAMUTHAKA DHANUNJAYA	8	15	12	10	45
47	U22AS006	CHINNAKARKALA SATISH REDDY	8	14	14	10	46
48	U22AS007	EROTHI MOHIT SAI SARVANANDH	10	15	15	10	50
49	U22AS008	HEIJINI B	10	15	15	10	50
50	U22AS009	JAYASURYA V	8	13	13	10	44
51	U22AS010	KADALI SHAHANYU	5	15	15	10	45
52	U22AS011	KARTHIK Y	10	15	15	10	50
53	U22AS012	KHUSHI BHATTA	10	15	15	10	50
54	U22AS013	KHUSHI SINGH	8	14	14	10	46
55	U22AS014	MOHAMED ZAIM M	10	15	15	10	50
56	U22AS015	MOHAMMED IBRAHIM A	9	15	14	10	48
57	U22AS016	MONIKA M	10	15	15	10	50
58	U22AS017	MURUGANANDAN GOKHUL SHANKAR	8	13	15	10	46
59	U22AS018	NIKHIL V	8	13	14	10	45
60	U22AS019	POTHIRAJA M	10	15	15	10	50
61	U22AS020	PRIYADARSHAN S	8	15	15	10	48
62	U22AS021	ROWENA MARY A	0	0	0	0	0
63	U22AS022	K SANJAY KUMAR REDDY	10	15	15	10	50
64	U22AS023	SARAN R	6	11	6	10	33
65	U22AS024	SAURABH KUMAR	8	13	14	10	45
66	U22AS025	SHIVA B	10	15	15	10	50
67	U22AS026	SNEHA J L	8	12	12	10	42
68	U22AS027	T S SRI SURYA TEJA	9	15	15	10	49
69	U22AS028	THOLUCHURI MANIKANTA	7	15	13	10	45
70	U22AS029	TORLAPATI ABHILASH	9	15	13	10	47
71	U22AS030	VARUN ESWARAN B	6	11	12	10	39
72	U22AS031	VEDAVARSHAA P	9	15	15	10	49
73	U22AS032	VIGNESH G	10	15	11	10	46
74	U22AS033	VISHALI J	9	15	15	10	49
75	U22AS034	YOGENDIRAN R	10	15	15	10	50
76	U22AS035	PRIYADARSHINI A	8	13	15	10	46

()

COURSE FILE 2022 - 2023TERM – II ACCA / U20MABT02

STAFF NAME: Dr. R. ANBU

DEPARTMENT OF MATHEMATICS

DA HR	I 9.00- 9.50	II 9.50- 10.40	в	III 10.50- 11.40	IV 11.40- 12.30	В	V 1.30- 2.20	VI 2.20-3.10	VII 3.10-4.00
MON			R		ACCA SEC B1	R			
TUES	ACCA SEC B1		E			E			
WED			A			A C	ACCA SEC B1		
THUR			K			К			ACCA SEC B1
FRI								ACCA SEC B1	
BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Mathematics

CONTINUOUS LEARNING ASSESSMENT TEST-III U20MABT02 – ADVANCED CALCULUS AND COMPLEX ANALYSIS

SET-A

Date & Session	: 31.01.2023 & FN
Academic Year / Term	: 2022-2023 / I
Duration	: 1 Hour 30 Minutes
Maximum marks	: 30 Marks
Instructions	: Answer to ALL questions

Q.No.	PART – A $(5 \times 2 = 10)$ Answer to All Questions	Weightage	CO's	Bloom's Level
1	Find the fixed points of the transformation $w = \frac{6z - 9}{z}$	2	CO4	2
2	Write the Cauchy's integral formula for Derivatives.	2	CO5	1
3	What is the singular point of the function $f(z) = \frac{1}{z+i}$.	2	CO5	1
4	Evaluate $f(z) = \frac{z}{(z+1)(z+2)}$ about $z = -2$.	2	CO5	3
5	Find the residue at $z = 0$ for $f(z) = \cot z$	2	CO5	3
	PART – B ($2 \times 4 = 8$) Answer to All Ques	tions		
6	 (a) Determine the Analytic function f(z), whose real part is x³-3xy²+3x²-3y²+1 (OR) (b) Find the bilinear transformation that maps the points z = 0, -i, -1 onto the points w = i, 1, 0 respectively. 	4	CO4	2
7	(a). Evaluate $f(z) = \cos z$ as a Taylor's series about the point $z = 0$. (OR) (b) Evaluate $\int_C \frac{4z^2 - 4z + 1}{(z^2 + 4)(z - 2)} dz$, where C is the circle $ z = 1$	4	CO5	3
PART – C (1 x $12 = 12$) Answer to All Questions				
8	 (a) Find f(z), if the Imaginary part is e^x (x sin y + y cos y). Also find its conjugate. (OR) (b) Find the image of z-2i =2 under the transformation w=1/z 	12	CO4	2

CO's	Weightage
CO 4	18
CO 5	12
Total	30

Bharath Institute Of Higher Education and Research (BIHER) IQAC/ACAD/008

TERM-I
UDOMABTED : ADVANCED CELLOUUS & COMPLES ANALYSIS
CLA-T.
Prot-A
1. Find the fixed pts q the boundformation we be a

$$2 = 3_{13}$$

2. Minis the Cauchyls integral formula for Derivatives.
Alaps $\frac{1}{2\pi}\int \frac{4\pi s}{2-2\epsilon} d2$
 $f(2) = \frac{11}{2\pi}\int \frac{4\pi s}{(2-2\epsilon)} d2$
:
5. What is the Singular bt of the function $f(2) = \frac{1}{2+1}$
 $2 + i = \frac{2}{2\epsilon - i}$
4. Evaluate $f(2) : \frac{2}{(2+1)(2+5)}$ about $2 = -2$.
:
 $\frac{2}{2+1}$
 $2 + i = \frac{2}{2+1}$
 $2 + i = \frac{2}{2+1}$
 $2 + i = \frac{2}{2}$
J Art
5. Find the vestidue at $z = 0$ for $f(2)$: $cot 2$.
 $f(2) = 3\pi i f(-2)$
 $z = 4\pi i$
5. Find the vestidue at $z = 0$ for $f(2)$: $cot 2$.
 $f(2) = 0$ of $2 - 2 \frac{6\pi i}{2\pi} - \frac{6\pi i}{2\pi} = \frac{6\pi i}{2\pi} - \frac{6\pi i}{2\pi} = \frac{6\pi i}{2$

$$\begin{array}{rcl} 14 & u \ge x^{3} - 3xy^{4} + 3xt^{4} - 3yt^{2} + 3yt^{2} - 6yt^{2} + 6x \\ \frac{9y}{18} & = 9x^{2} - 6yt^{2} + 6x \\ \frac{9y}{19} & = 0 - 6xty + 0 - 6ytt \\ \frac{9y}{19} & = 9xt^{2} - 6yt^{2} + 6x \\ \frac{9y}{19} & = 0 - 6xty + 0 - 6ytt \\ \frac{9y}{19} & = 0 \\ \frac{9y}{10} & = 0$$

(8) Find the image of
$$|z-2^{n}| \neq n$$
 under the
trace from $w=1/2$.
 $|z-n|=2$, $w=1/2$
 $z=n+iy$,
 $f(z)=u+i0$
 $u+iv: n-iy$
 $n+iy: u+iv$
 $u+iv: n+iv$
 $u+iv$
 $2=\frac{n}{w+v}$, $y=\frac{-v}{w+v}$
 $|z-ai|=2$
 $|n+iy-n|=2$
 $|n+iy-n|=2$
 $|n+iy-n|=2$
 $(\pi-0)^{2}+(y+n)^{2}=y$
 $x^{n}+y^{n}-Ay+y=y$
 $a^{2}+y^{n}-Ay+y=y$
 $a^{2}+y^{n}-Ay+y=y$
 $a^{2}+y^{n}-Ay+y=y$
 $a^{2}+y^{n}-Ay+y=y$
 $x^{n}+y^{n}-Ay+y=y$
 $x^{n}+y^{n}-Ay+y=y$
 $x^{n}+y^{n}-Ay+y=y$
 $x^{n}+y^{n}-Ay+y=y$
 $x^{n}+y^{n}-Ay+y=y$
 $x^{n}+y^{n}-Ay+y=y$
 $x^{n}+y^{n}-Ay+y=y$
 $(w-y)^{2}+(w-y)^{2}-4(-w-y)=x$
 $(w-y)^{n}+(w-y)^{n}-4(-w-y)=x$
 $(w-y)^{n}+(w-y)^{n}-4(-w-y)=x$
 $(w-y)^{n}+(w-y)^{n}+(w-y)^{n}-4(-w-y)=x$
 $(w-y)^{n}+(w-y)^{n}+(w-y)^{n}+(w-y)=x$
 $(w-y)^{n}+(w$

CONTINUOUS LEARNING ASSESSMENT TEST-II U20MABT02 – ADVANCED CALCULUS AND COMPLEX ANALYSIS SET - B

Date Academic Year / Semester	: 23.12.2022 : 2022 – 2023 / ODD
Maximum marks	: 30 Marks
Instruction	: Answer to ALL questions

Q. No.	PART - A (5 x 2 = 10)	Weightage	CO's	Bloom's Level
1	State Gauss Divergence Theorem.	2	CO2	1
2	Prove that $L[Sinh at] = \frac{a}{s^2 - a^2}$	2	CO3	2
3	Find $L\left[a\sqrt{t} + \frac{b}{\sqrt{t}} + c\right]$	2	CO3	2
4	Find L[Sin 5t Cos 3t]	2	CO3	2
5	Find $L^{-1} \left[\frac{3s+2}{s^2-4} \right]$	2	CO3	2

$PART - B (2 \times 4 = 8)$				
6	(a) Find $L[e^{3t}Sin 2t]$ (OR)	4	CO3	3
	$(0) \operatorname{Fild} L[t = 0 \operatorname{Sit} \operatorname{St}]$			
	(a) Using convolution theorem, find $L^{-1}\left[\frac{3}{(s^2+25)^2}\right]$.			
7	(OR)	4	CO3	3
	(b) Using partial fraction method to find $L^{-1}\left[\frac{s+2}{s(s+4)(s-9)}\right]$.			
	$PART - C (1 \times 12 = 12)$			
	(a) Verify Green's theorem in a plane for the integral			
	$\int_{C} (xy + y^2) dx + x^2 dy$, where C is the closed curve of the			
	region bounded by $y = x$ and $y = x^2$.			
8	(OR)	12	CO2	3
	 (b) Verify Gauss Divergence Theorem for \$\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}\$ and S is the surface of the rectangular parallelepiped bounded by \$x = 0\$, \$x = a\$, \$y = 0\$, \$y = b\$, \$z = 0\$, \$z = c\$. 			

CO's	Weightage
CO 2	14
CO 3	16
Total	30

Bharath Institute Of Higher Education and Research (BIHER)/QAC/ACAD/008

TECH-I
UDONADETOD-ADVANCED CALCULUS A COMPLEX ANALYSIS
(LA-I
Ford-A
State Finus: Divergence theorem:
If
$$\vec{r}$$
 is a vector pt function
 $\iint \vec{r}$. \vec{n} ds : $\iint \vec{r}$. \vec{r} . $dv \quad [:: dv = dadydz]$
2. Prove that $\lim Sinhal : \frac{a}{S^2 - a^2}$
 $: \frac{1}{2} \begin{bmatrix} c^{at} - e^{-at} \end{bmatrix}$
 $: \frac{a}{S^2 - a^2}$
5. Find $\lim L[AFF + \frac{b}{FF} + e]$
 $\Rightarrow altit[Te] + bL [t^{-V_2}] + L [c]$
 $\Rightarrow altit[Te] + bL [t^{-V_2}] + L [c]$
 $\Rightarrow altit[Te] + bL [t^{-V_2}]$
 $z = \frac{g}{c^2 + b + \frac{c^2}{s^2 + A}}$
 $z = S(ashat + Sinhat)$
 $find L [aBF + \frac{a}{S^2 - A}]$
 $z = S(ashat + Sinhat)$
 $find L [c^{3t} Sin 2t]$
 $find = \frac{a}{c^2 + a^2} = \frac{2}{c^2 + A}$
 $c^{3t} Sinot = \frac{a}{(c-3)^2 + t}$
 $c^{3t} Sinot = \frac{a}{(c-3)^2 + t}$

(b) Find
$$L [t^{2} \cosh st]$$

 $L [\cosh st] = \frac{S}{S^{2}-9} = F(S)$
 $L [t^{2} \cosh st] = (-1)^{2} \frac{d^{2}}{ds^{2}} [\frac{s}{s^{2}-9}]$
 $= \frac{as^{3}+5ys}{(s^{2}-9)^{3}}$

Į.

7 (A) Using Convolution theorem, And
$$L^{2}\left[\frac{s^{2}}{(s^{2}+2s)^{2}}\right]$$

$$L^{-1}\left[\frac{s^{2}}{(s^{2}+5^{2})^{2}}\right] = L^{-1}\left[\frac{s}{s^{2}+s^{2}}\right] + L^{-1}\left[\frac{s}{s^{2}+s^{2}}\right]$$

$$= b S St + b Los St$$

$$= \frac{1}{2} \left[t cos St + \frac{2}{10} S in St \right]$$

$$t^{-1} \left[\frac{s^{2}}{(s^{2} + 2s)^{4}} \right] = \frac{1}{2} \left[t cos St + \frac{1}{5} S in St \right]$$

$$(B) Using Powertial foraction method to find the stand to solve the solve to so$$

8 (A) Verify (free2) theorem
$$\int (uy+y^{4}) du+z^{2} dy$$
, where G is
He closed (unve of the region bounded by year and $y=x^{2}$.
(freen's theorem,
 $\int uda+ vdy = \iint (\frac{2v}{2\pi} - \frac{2v}{2g}) dudy.$
U: $xy+y^{2}$ $\frac{dy}{2\pi} = 2\pi$, $\frac{2v}{2g} = x+xy$
 $v = x^{2}$ $\frac{dy}{2\pi} = 2\pi$, $\frac{2v}{2g} = x+xy$
 $v = x^{2}$ $\frac{dy}{2\pi} = 2\pi$, $\frac{dy}{2g} = x+xy$
(i) $A \log 0 \quad (y=z^{2}), \frac{dy}{d\pi} = 2\pi \quad dy = 2\pi da)$
 $\int (2\pi - x - 2g) dx dy = -\frac{1}{20}$.
1.443
 $\int uda + vdy$
(i) $A \log 0 \quad (y=z^{2}), \frac{dy}{d\pi} = 2\pi \quad dy = 2\pi da)$
 $\int (2\pi - x - 2g) dx dy = -\frac{1}{20}$.
(ii) $A \log 0 \quad (y=\pi \quad dy=2\pi)$
 $\int (2\pi - x - 2g) dx dy = -1$
Now $adAling 0 + Q$
 $\frac{14}{20} + z \quad \frac{19}{20} = -1$
Now $adAling 0 + Q$
 $\frac{14}{20} + z \quad \frac{19}{20} = z^{-1/2\pi}$
 \therefore Lithes = Riths
(b) Vinify (frame Divergence theorem for $F'_{-1}(x^{2} - xy)T + (y^{2} - 2\pi)T + (x^{2} - xy)T + (x^{2} - 2\pi)T + (x^{2}$

P.HS

$$\overline{V}, \overline{f} = \left(\frac{2}{9\pi} \overline{L} + \frac{2}{9y} \overline{J} + \frac{2}{92} \overline{L}^{2}\right), \overline{F}^{2}$$

 $= 2\pi + 2y + 2z$
 $\iiint \overline{V}, \overline{F}^{2}, dv : \iiint [2\pi + 2y + 2z] da dy dz$
 $= abc (a+b+c)$
L.H.S
1) Along AbF(7:
 $a^{2}bc - \frac{b^{2}c^{2}}{4}$
(i) Along bCDE!
 $\frac{b^{2}c^{1}}{4}$
(ii) Along bCDQ
 $a^{2}B^{2}c - \frac{a^{2}c^{2}}{4}$
(iv) $OAFE$:
 $\frac{a^{2}B^{2}c}{4}$
(v) Along DEFN
 $abc^{2} - \frac{a^{2}c^{2}}{4}$
(v) Along Abco
 $\frac{a^{2}B^{2}}{4}$
 $\frac{a^{2}B^{2}}{4}$
(v) Along Abco
 $\frac{a^{2}B^{2}}{4}$
 $\frac{c}{4}$
(vi) Along Abco
 $\frac{a^{2}B^{2}}{4}$
 $\frac{c}{4}$
 $\frac{1}{5} \overline{F}, \overline{F}, d\overline{s} = abc (a+b+c)_{y}$
 $\frac{c}{2} L.H.s = R.H.S$
Gauss Divergence theorem privel

W Find Image of circle 12-291=2 unclea-the -Irans-Por mation W= 1 $|=-2^{\circ}|=2$, $\omega=\frac{1}{2}$ (b):- $(\omega = \pm \rightarrow 0)$ 2=2+14 $\omega = f(z)$ D = F(z) -F(z) = (1 + i) $) \rightarrow u + iv = \frac{1}{\chi + iu}$ $\chi + iy = \frac{1}{(1+i)} \times \frac{u-iv}{(1-i)}$ $\chi + iy = \frac{U - iv}{v}$ $\chi_{+iy} = \frac{u}{u^{\nu} + v^{\nu}} - \frac{v}{u^{\nu} + v^{\nu}}$ $x_{+}iy = \frac{1}{u^{+}+v^{+}} + i \frac{(-v)}{u^{+}+v^{+}}$ $\mathcal{N} = \frac{10}{10^{14}}, \quad \mathcal{Y} = \frac{-1}{10^{14}}, \quad \mathcal{Y} = \frac{-1}{10^{14}}, \quad \mathcal{Y} = \frac{1}{10^{14}}, \quad \mathcal$ 12-211=2 (xi+iy-2?1=2. |x+i(y-2)| = 2 $\gamma (2 + (y - 2)) = 4$ pr-DN+Cy-2N=21 => circle · Tres Centre (0,2), Radius=2

$$(x-o)^{n} + (y-1)^{n} = 2^{n} = 1$$

$$(x-o)^{n} + (y-1)^{n} = 2^{n} = 1$$

$$(x+y^{n} - 2ny = 0)$$

$$(\frac{1}{(1^{n}+1^{n})} + (\frac{-v}{(1^{n}+1^{n})}) - 4(\frac{-v}{(1^{n}+1^{n})}) - 0$$

$$(\frac{1^{n}+1^{n}}{(1^{n}+1^{n})} + \frac{4v}{(1^{n}+1^{n})}) - 1$$

$$(\frac{1^{n}+1^{n}}{(1^{n}+1^{n})} + \frac{4v}{(1^{n}+1^{n})}) - 0$$

$$(\frac{1^{n}+1^{n}}{(1^{n}+1^{n})} + \frac{4v}{(1^{n}+1^{n})}) - 1$$

$$(\frac{1^{n}+1^{n}}{(1^{n}+1^{n})} + \frac{1^{n}+1^{n}}{(1^{n}+1^{n})} + \frac$$

Considerition of Analytic Function by Milline Theoretion matrix

$$F(x) = u + v$$

$$F(z) = u(x_{i}y_{i}) + iv(x_{i}y)$$

$$(1) u(x_{i}y) given
$$x_{i}y \rightarrow \text{Independent Variable}$$

$$u \rightarrow \text{dependent Variable}$$

$$u \rightarrow \text{dependent Variable}$$

$$u_{x_{i}}, u_{y}$$

$$\frac{du}{dx} & \frac{du}{dy} exsts$$

$$F(z) = u + iv$$

$$f(z) = u(x_{i}y_{i}) + iv(x_{i}y_{i})$$

$$Known unknown$$

$$(cse^{-i} f'(z) = (d_{x_{i}}(x_{i}y_{i}) + iv_{x_{i}}(x_{i}y_{i})$$

$$f(z) = (d_{x_{i}}(x_{i}y_{i}) + iv_{x_{i}}(x_{i}y_{i})$$

$$f'(z) = (d_{x_{i}}(x_{i}y_{i}) - iu_{y_{i}}(x_{i}y_{i})$$

$$f'(z) = (d_{x_{i}}(x_{i}y_{i}) - iu_{y_{i}}(x_{i}y_{i}))$$

$$f'(z) = (f'(z))dz = \int [(u_{x_{i}}(z_{i}o) - iu_{y_{i}}(z_{i}o)]dz$$

$$f'(z) = \int [(u_{x_{i}}(z_{i}o) - iu_{y_{i}}(z_{i}o)]dz$$$$

Q

Q

Assume: $f(z) = u(x_{iy}) + iv(x_{iy})$ $f(z) = u(x_{iy}) + iv(x_{iy})$ unknown $f'(z) = u_{x}(x_{iy}) + iv_{x}(x_{iy})$

$$f'(z) = u_{n}(u_{n}y) + u_{n}(u_{n}y)$$

$$f'(z) = u_{n}(x_{n}y) + iv_{n}(x_{n}y)$$

$$f'(z) = u_{n}(x_{n}y) + iv_{n}(x_{n}y)$$

$$(R eqn \left[u_{n} = -v_{n} + v_{n} + v_{n}(x_{n}y) + iv_{n}(x_{n}y) \right]$$

$$\left[f'(z) = v_{n}(x_{n}y) + iv_{n}(x_{n}y) \right]$$

$$\left[f'(z) = \int \left[v_{n}(x_{n}y) + iv_{n}(x_{n}y) \right] dz$$

$$\int \frac{d}{dz} \left[f(z) \right] dz = \int \left[V_{y}(z, 0) + V_{x}(z, 0) \right] dz$$

$$\left[f(z) = \int \left[V_{y}(z, 0) + V_{x}(z, 0) \right] dz$$

$$\int P^{2} F(z) = \left[V_{y}(x, y) + V_{y}(z, 0) \right] dz$$

$$\int P^{2} F(z) = \left[U_{y}(x, y) + V_{y}(x, y) + P^{2} V_{y}(x, y) + P^{2} V_{y}(x, y) \right] dz$$

$$\int -f^{2}(z) = \int \left[-V_{x}(z, 0) + P^{2} V_{y}(z, 0) \right] dz$$

$$Problems:$$

$$\left[O \quad Construct the \quad Onely +P^{2} c \quad Punctfon, with f(z) with Year Part is \quad e^{2} Cosy.$$

$$\int color = V_{x}(z, 0) = e^{2} coso = e^{2}$$

$$\frac{du}{dx} = e^{2} (cosy = 2) U_{x}(z, 0) = e^{2} coso = e^{2}$$

$$\frac{du}{dy} = e^{2} (-Siny) = e^{2} Siny = U_{y}(z, 0) = -e^{2} Sino = 0$$

$$CR \quad eon \int U_{x} = V_{y}$$

$$f^{2}(z) = (U_{x} + V_{y})$$

$$f^{2}(z) = (U_{x} + V_{y})$$

$$f(z) = \iint (u_x(z, 0) - iu_y(z, 0)] dz$$

$$f(z) = \int [e^z - i(0)] dz$$

$$f(z) = \int e^z dz$$

$$\int \frac{f(z) = e^z}{e^z}$$

$$f(z) = e^{-x} + i^y = e^x e^{0y}$$

$$(u + i^y = e^x (asy + i^s) i_y)$$

$$(u + i^y = e^x (asy + i^s) i_y)$$

$$(u + i^y = e^x (asy + i^s) i_y)$$

$$(u = e^x (asy)$$

(4*) Show-that
$$u = 2x - x^{2} + 3xy^{2}$$
 is harmould
Solit

$$\frac{du}{dx} = 2 - 3x^{2} + 3y^{2} \left| \frac{du}{dy} = 0 - 0 + 3x + 6xy - \frac{du}{dy^{2}} = 6x + 6x + 3y^{2} - 6x + 6x = 0$$

$$\frac{du}{dx^{2}} = -6x + 6x = 0$$

$$\frac{du}{dy^{2}} = 6x + 6x = 0$$

$$\frac{du}{$$

$$= \frac{2(1+\cos_{2}z)}{(1+\cos_{2}z)}$$

$$= \frac{2}{(1+\cos_{2}z)}$$

U.

$$V_{ij} = \frac{S(n_{2i}(-1))}{((osh_{2ij} - (os_{2ik}))} (S(n_{2ik}))(z)}$$

$$V_{ij} = 0$$

$$(z_{i0})$$

$$F(z) = tax transform (GR equin)$$

$$F(z) = -V_{ik} + iv_{ij}$$

$$F(z) = -V_{ik} + iv_{ij}$$

$$F(z) = -V_{ik} + iv_{ij}$$

$$F(z) = \int [-V_{ik}(z_{i0}) + iv_{ij}(z_{i0})]dz$$

$$(unknown Term)$$

$$= \int [(cosec^{2}z + i(c))]dz$$

$$F(z) = -Cotz$$

(*) Determine the analytic function whose real Part is $u = \chi^3 - 3\pi y^7 + 3\pi^2 - 3y^7$ also find Complex Conjugate

$$S_{1}^{2} = \frac{d}{dx}(u) = 3n^{2} - 3y^{2} + 6x - 0$$

$$Un = 3n^{2} - 3y^{2} + 6x$$

$$Un (2x,0) = 3x^{2} - 0 + 6z$$

$$Un (2x,0) = 3x^{2} + 6z$$

$$Un (2x,0) = 3x^{2} + 6z$$

$$Un (2x,0) = -3n(2y) + 0 - 6y$$

$$= -6ny - 6y$$

betermine the analytic function whose imaginary
part is
$$3\pi y - y^3 + 6\pi y$$
 also find complex
conjugate 'u'.
V= $3\pi y - y^3 + 6\pi y$
 $V_{\pi} = 6\pi y + 6y$
 $V_{\pi} = 6\pi y + 6y$
 $V_{\pi} = 6\pi y + 6y$
 $V_{\pi} = 3\pi^2 - 3y^2 + 6\pi$
 $V_{y} (z, 0) = 3z^2 - 0 + 6z$
 $= 3z^2 + 6z$
 $f(z) = \int (V_{y} + iv_{\pi}) dz$
 $= \int [3z^2 + 6z + i(0)] dz$
 $= \int [3z^2 + 6z + i(0)] dz$
 $= \frac{3z^2}{3} + \frac{3z^2}{3}$
 $f(z) = z^3 + 3z^2$.
 $z = \pi + 3y$.
 $z = \pi + 3$

(*) Construct an analytic imaginary part is er (rising +y cosy) guv = u grv+v gru V(ny) = ex. x Siny + ex. y Cosy Solt Vn(ny)= Siny[er(0+xer]+ycosy.ex 128 + 1210 A = 101 $V_{\kappa}(z_{10}) = 0$ A to an D + Gard 14 $V_{y}(x,y) = e^{\chi} \cdot \chi \cos y + e^{\chi} \left[4 \left(-\sin y \right) + \left(\cos y \left(1 \right) \right) \right]$ $V_{y}(z_{1}o) = e^{\overline{z}} \cdot \overline{z}(\cos(o) + e^{\overline{z}}[\cos(o)] = e^{\overline{z}} \cdot \overline{z}(\cos(o) + e^{\overline{z}}[\cos(o)]) = e^{\overline{z}} \cdot \overline{z}(\cos(o)) = e^{\overline{z}} \cdot \overline{$ $= 2e^{2}(i) + e^{2}(i)$ $= ze^{z} + e^{z} + i \left(y (i + y i) \right) = (r)^{2}.$ $V_{y}(2,0) = e^{2}(2+1)$ $f(z) = \int (v_y + iv_x) dz$ $= \left(e^{2} (2+1) + i(0) \right) d = 2 + i = i = 1$ $f(z) = \int (z+1)e^{2}dz$ Udv= Qv- Judu NO F WARE FOR $= \left[2e^{2}d_{2} + \left[e^{2}d_{2} \right] \right]$ $= [2e^{2} - (1)e^{2}] + e^{2}$ $= 7e^2 - e^2 + e^2$ $f(z) = ze^{z}$

$$z = \pi t^{-1} y$$

$$p(z) = (x + hy) e^{x} \cdot e^{y}$$

$$= (x + hy) e^{x} \cdot e^{y}$$

$$= (x + hy) e^{x} (\cos y + ie^{x} \sin y)$$

$$= (x + hy) (e^{x} (\cos y + ie^{x} \sin y))$$

$$= x e^{x} (\cos y + ixe^{x} \sin y + iye^{x} \cos y + (iye^{x} \sin y))$$

$$= x e^{x} (\cos y - ye^{x} \sin y + iye^{x} \cos y + (iye^{x} \sin y))$$

$$= x e^{x} (\cos y - ye^{x} \sin y + iye^{x} \cos y + (iye^{x} \sin y))$$

$$= x e^{x} (\cos y - ye^{x} \sin y + iye^{x} \cos y) + (iye^{x} \sin y)$$

$$= x e^{x} (\cos y - ye^{x} \sin y + iye^{x} \cos y)$$

$$= (x + y) + x e^{x} (\cos y - ye^{x} \sin y)$$

$$= x e^{x} (\cos y - ye^{x} \sin y)$$

$$= (x + y) + x e^{x} (\cos y - ye^{x} \sin y)$$

$$= (x + y) + x e^{x} (\cos y - ye^{x} \sin y)$$

$$= (x + (x + y)) = x e^{x} (\cos y - ye^{x} \sin y)$$

$$= (x + (x + y)) = x e^{x} (\cos y - ye^{x} \sin y)$$

$$= (y + (x + y)) = x e^{x} (-s \sin y) - e^{x} (y (\cos y) + \sin y \sin y)$$

$$= (y (x + y)) = x e^{x} (-s \sin y) - e^{x} (y (\cos y) + \sin y \sin y)$$

$$= 0$$

$$= ((x + e^{x} - i(x)) - i(y (z + e^{x}))) + (x + i(x + e^{x} - e^{x} + e^{x})$$

$$= (y (z + e^{x} + e^{x} + e^{x} + e^{x})$$

$$= (y (z + e^{x} - i(x)) - e^{x} (y (z + e^{x} + e^{x}))$$

f(=)= 1 ze= Phar College - Co Z= x+14 ex) IF F(z) is analytic function the prove that $\left(\frac{\partial^{2}}{\partial x}+\frac{\partial^{2}}{\partial y}\right)|\varphi(z)|^{P}=p^{2}|\varphi(z)|^{P-2}|\varphi(z)|^{2}$ Sol- Consider $\left(\frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2}\right) = 4 + \frac{\delta^2}{\delta z \partial \overline{z}} \rightarrow 0$ eq 1) multiply by [F(z)] Plant $\left(\frac{\partial v}{\partial x^{\nu}} + \frac{\partial^{\nu}}{\partial y^{\nu}}\right) | \mathcal{P}(z)|^{P} = 4 \frac{\partial^{\nu}}{\partial z} | \mathcal{P}(z)|^{P}$ $= 4 \frac{\delta}{4\pi 4\pi} \left(\left| \cdot \mathbf{P}(\mathbf{z})^{*} \right| \right)^{\mathbf{P}(\mathbf{z}) \cdot \mathbf{v}} + \left| \cdot \mathbf{z} \right|^{2} = \mathbf{z} \mathbf{z}$ $= 4 \frac{\partial}{\partial z_0} \left(\left| F(z) F(\overline{z}) \right|^{n} \right)^{\frac{1}{2}}$ = 4. $\frac{\delta'}{dz dz} (f(z))^{P/2} (f(z))^{P/2$ Provide (Par) and = $4 \cdot \frac{d}{dz} (P(z))^{P/2} \cdot \frac{d}{dz} (P(z))^{P/2}$ $= \frac{P}{Z} \left(\frac{P(z)}{Z} \right)^{\frac{D}{2}-1} \frac{P}{Z} \left(\frac{P(z)}{Z} \right)^{\frac{D}{2}-1} \frac{P(z)}{Z} \frac{P$ $= P^{(f(z))^{2}} (f(z))^{2} f(z)^{2} f(z) = f(z) f(z)$ ~/pr-1 -1 -1 -1

 $= p^{\nu} \left(|f(z)|^{\nu} \right)^{\frac{p}{2}} |f'(z)|^{\nu}$ $= P^{\gamma} |F(z)|^{P-2} |F'(z)|^{\gamma} = R.H.S //$

Unit-5
Complex Integration
The taylor Series:
The Taylor Series expansion for

$$f(z) = f(\alpha) + \frac{(z-\alpha)}{1!} p'(\alpha) + \frac{(z-\alpha)^2}{2!} p''(\alpha) + \frac{(z-\alpha)^3}{3!} p''(\alpha)$$

 $f(z) = \frac{\infty}{1!} \frac{(z-\alpha)^n}{1!} p''(\alpha) + \frac{(z-\alpha)^2}{4!} p''(\alpha) + \dots$
 $f(z) = \sum_{n=0}^{\infty} \frac{(z-\alpha)^n \times p''(\alpha)}{n!}$

Put 2=0 a= 00

The Taylor Series above at Z=0 is called Meclaurén Series.

$$f(z) = f(0) \neq \frac{2}{1!} f'(0) + \frac{2}{2!} f'(0) + \frac{23}{3!} f''(0) + \frac{24}{4!} f'(0) + \frac{24}{4!} f'(0)$$

	1	
f(z) = Sin z	Q+ Z=0	Z= <u>Ĥ</u>
fcz) = Sinz	f(0) = sino = 0	$f(\overline{H}) = Sin \overline{H} = \frac{1}{\overline{H}}$
f'(z) = Corz	$e^{1}(0) = (0.00) = 1$	$e^{I}(\Xi)=(0;\Xi-1)$
f''(z) = -sinz	$f^{(0)} = -S^{0}n0 = 0$	$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$
$P^{111}(z) = -\cos z$	$f^{(0)} = -\cos 2 = -1$	$+ (-q) = -sin(-q) = -\frac{1}{4}$
$f^{(v)}(z) = Sinz$	$f^{(v)}(0) = Sino = 0$	$F^{m}(\frac{\pi}{4}) = -\cos \frac{\pi}{4} = \frac{1}{52}$
f'(z) = cosz	$e^{v}(o) = cos o = 1$	F (-1) = STN = = = = = = = = = = = = = = = = = = =
$P^{VI}(z) = -sinz$	$P^{(V)}(0) = -Sino = 0$	$(\overline{4}) = \cos \frac{\pi}{4} = \frac{\pi}{12}$

$$Toylers Series exploration Q+ z=0 is given by
The Toylers Series exploration Q+ z=0 is given by
$$T_{12} = f(0) + \frac{2}{16} f'(0) + \frac{2}{21} f''(0) + \frac{2}{31} f'''(0) + \frac{2}{31} f'''(0) + \frac{2}{41} f'(0) + \frac$$$$

at z=0 $f(z) = f(z) + \frac{(z-a)}{1!} f(z) + \frac{f(z-a)}{2!} f'(z)$ $+ (\frac{z-\alpha)^{2}}{8!} + \frac{1}{8!} +$ $= \pm(0) + \frac{(z)}{11} \pm^{1}(0) + \frac{(z)}{21} \pm^{11}(0) + \frac{z^{3}}{31} \pm^{111}(0)$ = 1 + 2 (1) + 2 (1) + 23 (1) 17 $= 1 + \frac{2}{1}(0) + \frac{2^{2}}{2}(-1) + \frac{2^{3}}{3!}(0)$ $= 1 - \frac{2^{2}}{2} + \frac{2^{4}}{4!} - \frac{2^{6}}{6!} + \frac{2^{8}}{8!} - \frac{2^{10}}{10!} + \cdots$

a de la companya

71 T - 2 WHAT THE Cauchy Integral Theorem: IF f(2) is analytic P'(2) is continuous then. f(z)dz=0 (auchy Integral Formula: IF F(2) is analytic inside and on a simple closed Curve C'. Let a be a Singular point of for) and if for, is not analytic at z=a' and Paras then the Cauchy integral formula is given by $\int \frac{f(z)dz}{z-a} = 2\pi i f(a)$ auchy integral formula for derivatives: IF F(z) is analytic inside and on a Simple closed Curve'c'. Let a be a Singular point of f(z) then the Cauchy integral formula is given Ьу $\int \frac{f(z)dz}{(z-z)^{n+1}} = \frac{2\pi i^{\circ}}{n!} e^{n}(a)$ (ro) $f^{n}(a) = \frac{n!}{2\pi i} \int \frac{f(z)}{(z-a)^{n+1}} dz$ Put n=0 $f(a) = F(a) = \frac{1}{2\pi^2} \int \frac{f(z)dz}{(z-a)}$

$$n=1, f'(0) = \frac{1}{2\pi i} \int_{C} \frac{f'(2)d2}{(2-0)^{2}}$$

$$n=2, f'(0) = \frac{2i}{2\pi i} \int_{C} \frac{f'(2)}{(2-0)^{2+1}} d\frac{2i}{2\pi i}$$

$$n=3, p'''(0) = \frac{3i}{2\pi i} \int_{C} \frac{f'(2)}{(2-0)^{2+1}} d\frac{2i}{2\pi i}$$

$$n=3, p'''(0) = \frac{3i}{2\pi i} \int_{C} \frac{f'(2)}{(2-0)^{2+1}} d\frac{2i}{2\pi i}$$

$$f''(0) = \frac{3i}{2\pi i} \int_{C} \frac{f'(2)}{(2-0)^{2+1}} d\frac{2i}{2\pi i}$$

$$f''(0) = \frac{3i}{2\pi i} \int_{C} \frac{f'(2)}{(2-0)^{2+1}} d\frac{2i}{2}$$

$$f''(0) = \frac{3i}{2\pi i} \int_{C} \frac{f'(2)}{(2-0)^{2+1}} d\frac{2i}{2}$$

$$f''(0) = \frac{3i}{2\pi i} \int_{C} \frac{f'(2)}{(2-0)^{2+3}} d\frac{2i}{2}$$

$$f''(0) = \frac{3i}{2\pi i} \int_{C} \frac{f'(2)}{(2-0)^{2+3}} d\frac{2i}{2} \int_{C} \frac{f'(2)}{(2-0)^{2+3}} d\frac{2i}{2}$$

$$f''(0) = \frac{2i}{2\pi i} \int_{C} \frac{f'(2)}{(2-0)^{2}} d\frac{2i}{2} \int_{C} \frac{f'(2)}{(2-0)^{2}} d\frac{2i}{2}$$

$$f''(0) = \frac{2i}{2} \int_{C} \frac{f'(2)}{(2-0)^{2}} d\frac{2i}{2} \int_{C} \frac{f'(2)}{(2-1)^{2}} d\frac{2i}{2} \int_{C} \frac{1}{(2-i)^{2}} \int_{C} \frac{f'(2)}{(2-i)^{2}} d\frac{2i}{2}$$

$$f''(0) = \frac{1}{2} \int_{C} \frac{f'(2)}{(2-i)^{2}} d\frac{2i}{2} \int_{C} \frac{1}{(2-i)^{2}} \int_{C} \frac{f'(2)}{(2-i)^{2}} d\frac{2i}{2}$$

$$f''(0) = \frac{1}{2} \int_{C} \frac{1}{(2-i)^{2}} \int_{C}$$

$$F(z) = (z+1)$$

$$F(z)$$

$$f(z) = \int f(z) dz = 2\pi i f(z) + 2\pi i f(z) = -2\pi i f(z) + 2\pi i f(z) = -1$$

$$f(z) = \int (2\pi i z) f(z) = -2\pi i f(z) + 2\pi i f(z) + 2\pi i f(z) = -1$$

$$f(z) = \int (2\pi i z) f(z) = -2\pi i f(z) + 2\pi i f(z) + 2\pi i f(z) = -2\pi i f(z) + 2\pi i f$$

Enguleer point Z==2 -P(2) Ps not Onalythe 0+ Z=a => 1 is not analytic $a \neq z = -2 \left(\frac{1}{-2+2} = \overline{0} = \infty \right)$ 12-11=1 12-a1= ~ x. Centre 1, Y=12 Centre 1+10 -3 -2 -1 -1Point- (1.0) -2 lies outside $|z-1| = \frac{1}{2}$ $|2 - 1| < \frac{1}{2}$ By Cauchy Fundamental theorem 1-1-2-2-1-1 Cinquelonity: 1 2 < 2 < 3 Types of Singularity: 1.26 O Removal Singularity 2 Poies @ Essential Sigularity NULE: O Lt f(z) = finite (? form/indeterminate z-ra Case OLE f(z) = 0 -> Pole -> Single pole & Multiple Pole

En:
$$\frac{1+}{2-3i} = \frac{1}{2-1}$$

(3) $\frac{1+}{2-3i} = \frac{1+}{2-3i} = \frac{1}{(2-i)(2-2)}$
(4) $\frac{1}{2-3i} = \frac{1+}{2-3i} = \frac{1}{(2-i)(2-2)}$
(5) $\frac{1+}{2-3i} = \frac{1}{(2-i)(2-i)}$
(6) $\frac{1+}{2-3i} = \frac{2}{(2+i)(2-i)}$
(7) $\frac{1+}{2-i} = \frac{2}{(2+i)(2-i)}$
(8) $\frac{1+}{2-i} = \frac{2}{(2+i)(2-i)}$
(9) $\frac{1+}{2-i} = \frac{2}{(2+i)(2-i)}$
(9) $\frac{1+}{2-i} = \frac{2}{(2+i)(2-i)}$
(1) $\frac{1+}{2-i} = \frac{2}{(2+i)(2-i)}$
(1) $\frac{1+}{2-i} = \frac{2}{(2+i)(2-i)}$
(1) $\frac{1+}{2-i} = \frac{2}{(2+i)(2-i)}$
(2) $\frac{1}{2-i} = \frac{2}{(2+i)(2-i)}$
(2) $\frac{1}{2-i} = \frac{2}{(2-i)(2-i)}$
(3) $\frac{1}{2-i} = \frac{2}{(2-i)(2-i)}$
(4) $\frac{1}{2-i} = \frac{2}{(2-i)(2-i)}$
(4) $\frac{1}{2-i} = \frac{2}{(2-i)(2-i)}$
(5) $\frac{1}{2-i} = \frac{2}{(2-i)(2-i)}$
(7) $\frac{1}{2-i} = \frac{2}{(2-i)(2-i)}$
(8) $\frac{1}{2-i} = \frac{2}{(2-i)(2-i)(2-i)}$
(8) $\frac{1}{2-i} = \frac{2}{($

0

 \bigcirc

$$z = -1 + 1 \stackrel{\circ}{,} \stackrel{\circ}{,} \stackrel{\circ}{,} \stackrel{\circ}{,} \stackrel{\circ}{,} pole of order 2.$$

$$f(z) = \frac{1}{z+i} \left(= \frac{1}{0} + \infty \right)$$

$$z + f = 0$$

$$z = -i \stackrel{\circ}{,} \stackrel{\circ}$$

(b)
$$F(z) = \frac{1}{z^{2}-z}$$
 (= $\frac{1}{z} = \frac{1}{z}$)
Solt $z^{2}-z=0$ $f(z_{0}) = \frac{1}{(z_{0})^{2}-z} = \frac{1}{0} = \infty$
 $z^{2}=z$ $F(-z_{0}) = \frac{1}{(-z_{0})^{2}-z} = \frac{1}{z} = \frac{1}{z^{2}-z}$
 $z = +\sqrt{z}, -\sqrt{z}$
 $c_{1} = -\sqrt{z}$
 $c_{2} = -\sqrt{z}, -\sqrt{z}$
 $c_{1} = -\sqrt{z}$
 $c_{2} = -\sqrt{z}$
 $c_{2} = -\sqrt{z}$
 $c_{2} = -\sqrt{z}$
 $z(z-1) = 0$
 $z = 0 | z = 1$ are Simple Pole.

$$\begin{array}{l} \textcircledleft & \overbrace{z-a}^{n} \left(\overleftarrow{z-a} \right) \left(\overleftarrow{z-a} \right) \\ z-a & z-a \\ z-a & z-a \\ \hline z-a \\ f(z) &= \frac{z^{n} - a^{n}}{z-a} \\ Ar & z=a \\ \pounds r(z) &= \frac{a^{n} - a^{n}}{a-a} \\ = \frac{a}{a-a} \\ \overbrace{z-a}^{n} &= \frac{a}{z-a} \\ \hline z-a \\ \hline$$

Removable Singularity.

$$g_{1} den APy the nature of Singularity
$$g_{2} = \frac{S fn z - z}{z^{3}}$$

$$g_{1} = \frac{z^{3}}{z^{3}} = 0$$

$$z = 0 \quad (3 times)$$

$$f(x) = \frac{0}{x} form$$

$$g_{1} = \frac{0}{x} form$$

$$g_{2} = \frac{0}{x} form$$

$$g_{1} = \frac{0}{x} form$$

$$g_{2} = \frac{0}{x} form$$

$$g(z) = \frac{\cos z - 1}{3z^{2}}$$

$$g(z) = \frac{\cos z - 1}{3z^{2}}$$

$$g(z) = \frac{\cos z - 1}{3z^{2}}$$

$$g(z) = \frac{\cos z - 1}{5z^{2}}$$

$$g(z) = -\frac{\sin z}{5z}$$

$$h(z) = -\frac{\sin z}{5z}$$

$$h(z) = -\frac{\sin z}{5z}$$

$$h(z) = -\frac{\sin z}{5z}$$

$$h(z) = -\frac{\cos z}{5z}$$

$$h(z) = -\frac{1}{5}$$

$$\frac{\sin z - 1}{z^{3}} Ps Removable Singularity$$

$$g(z) = -\frac{1}{z^{3}}$$$$

(a)
$$F(z) = \frac{1-e^2}{z^4} (z = \frac{1}{6} = \infty)$$

Solf $z = 0$
 $z = 0 (4 - t^2 mes)$
 $F(z) = \frac{1-e^0}{(z)^4} = \frac{1-1}{0} = \frac{0}{0}$
 $g(z) = \frac{0-e^2}{4z^2} = -\frac{e^2}{4z^2}$
 $z = 0$ $g(z) = -\frac{e^0}{4z^2} = -\frac{1}{4z^2}$
 $z = 0$ $fs = 0$ Pole of order z
 $For = g(z) = -\frac{e^2}{4z^2}$
(b) $F(z) = e^{1/z}$
 $for = (1 + \frac{x}{16} + \frac{x^0}{21} + \frac{x^3}{31} + \dots)$
 $f(z) = e^{1/z} = 1 + \frac{1}{21} + \frac{1}{21} + \frac{1}{21} + \frac{1}{21} + \frac{1}{21} + \dots$
 $z = 0$ $z = 1 + \frac{1}{211} + \frac{1}{221} + \frac{1}{231} + \dots$
 $f(z) = e^{1/z} = 1 + \frac{1}{211} + \frac{1}{221} + \frac{1}{231} + \dots$
 $z = 0$ $z = 1 + \infty + \infty + \infty + \infty + \infty$
 $f(z) = 0$ $z = 1 + \infty + \infty + \infty + \infty + \infty$
 $f(z) = 0$ $z = 1 + \infty + \infty + \infty + \infty + \infty$
 $f(z) = 0$ $z = 1 + \infty + \infty + \infty + \infty + \infty$

Foundations:
Training pole is computations:
Simple pole | Dole of order in:
training pole | Dole of order in:
training pole | Dole of order in:
training pole of f(z) at
$$2 = 4t (z-a) f(z)$$

multiple pole:
Residue of P(z) at $3 = 4t (z-a) f(z)$
multiple pole:
Residue of P(z) at $3 = 4t (z-a) f(z)$
 $z=a$ fs a pole of order $t_{1} = 2z + a (z-a) f(z)$
 $z=a$ fs a pole of order $t_{2} = 2z + a (z-a) f(z)$
 $z=a$ fs a pole of $f(z) = \frac{z}{(z-a)} = (\frac{1}{a-a})$
 $f(z)^{2}$
 $f(z)^{2}$
 $f(z)^{2}$
 $f(z)^{2}$
 $f(z)^{2} = 0$
 $(z-1)^{2} = 0$
 $f(z)^{2} = 1 fs a pole of order 2$
Residue of $f(z)$ of $f(z)^{2} = \frac{1}{(m-1)} \left\{ \frac{d^{m-1}}{dz^{m-1}} (z-a)^{m} \cdot f(z) \right\}$
 $f(z)^{m-1} = \frac{1}{(2-1)!} \frac{d^{2-1}}{dz^{2-1}} \left\{ (z-1)^{2} - \frac{z^{m}}{(z-1)!} \right\}$
 $= \frac{1}{(2-1)!} \frac{d^{2-1}}{dz^{2}} \left\{ (z-1)^{2} - \frac{z^{m}}{(z-1)!} \right\}$
 $= \frac{1}{(2-1)!} \frac{d^{2-1}}{dz^{2}} \left\{ (z-1)^{2} - \frac{z^{m}}{(z-1)!} \right\}$
 $= \frac{1}{(2-1)!} \frac{d^{2-1}}{dz^{2}} \left\{ (z-1)^{2} - \frac{z^{m}}{(z-1)!} \right\}$
 $= 2z = 2(1) = 2$

 $(\overline{2})$ +(2): 2 (240(242) Sol:-(2+1)(2+12)=0 5-1 5-150 f(-1) = (-1+1)(1+2) $-P(-2) = \frac{-2}{(-2+1)(-2+2)} = N^{2}$: 2 = -1-2 is a Simple pole $= 2 + (24) - \frac{2}{(24)(2+2)}$ $=\frac{-1}{-1+2}=\frac{-1}{1}=-1$ 2=---Residue OF FCZ) OF $2 = (t f(z-(-2)) - \frac{z}{(z+1)(z+2)})$ z = -2 is a Simple pole $\int z \to -2 (z+1)(z+2)$ $= \frac{1}{2-\gamma-2} \left(\frac{1}{2} + \frac{1}{2} \right) \frac{1}{(2+1)(2+1)} \frac{1}{(2+1)(2+1)}$ $= \frac{1}{2} + \frac{1}{2} = \frac{-2}{-2} = \frac{-2}{$

Find the restidue of
$$f(z) = cotz$$
 of $z=0$
 $f(z) = \frac{SRz}{cosz} \frac{cosz}{sinz}$
 $f(z) = \frac{coso}{SRz} \frac{cosz}{sinz}$
 $f(z) = \frac{f(z)}{SRz} = \frac{1}{0} = \infty$
 $f(z) = \frac{f(z)}{h'(z)}$
Let $f(z) = cosz$
 $Rz(z) = SRz$
 $h'(z) = cosz$

 $festidue \ of \ f(z) = lf \ g(z)$ $a + z = 0 \qquad f(z) = z \to 0 \quad h(z)$

$$= \frac{1}{2} + \frac{\cos 2}{\cos 2}$$
$$= \frac{1}{\cos 2} = \frac{1}{1} = 1$$

auchy's Residue Theorem: Statement:

Let f(z) is analytic inside and on a Simple closed Curve 'C' and $z_0, z_1, z_2, ..., z_n$ te a finite no. OF Sigular point insurde and cn'c' then the residue OF f(z) is given by $\int f(z) dz = z \pi i \begin{bmatrix} Sum oF + he residue oF f(c) at \\ z = z_0, z_1, ..., z_n \\ inside and \\ on c \end{bmatrix}$

$$= 2\pi i^{2} \left[\begin{array}{c} \operatorname{Res}^{\circ} & \operatorname{op} & \operatorname{F}(z) \\ \Omega + z = z_{0} \\ \end{array} \right] \xrightarrow{} \alpha_{1} z = z_{1} \\ \alpha_{2} z = z_{2} \\ \alpha_{1} z = z_{2} \\ \alpha_{2} z = z_{1} \\ \alpha_{2} z = z_{2} \\ \alpha_{1} z = z_{2} \\ \alpha_{2} z = z_{1} \\ \alpha_{2} z = z_{2} \\ \alpha_{1} z = z_{2} \\ \alpha_{2} z = z_{1} \\ \alpha_{2} z = z_{2} \\ \alpha_{1} z = z_{2} \\ \alpha_{2} z = z_{2} \\ \alpha_{1} z = z_{2} \\ \alpha_{1} z = z_{2} \\ \alpha_{2} z = z_{2} \\ \alpha_{1} z = z_{2} \\ \alpha_{1} z = z_{2} \\ \alpha_{2} z = z_{2} \\ \alpha_{1} z = z_{2} \\ \alpha_{2} z = z_{1} \\ \alpha_{1} \\ \alpha_{2} \\ \alpha_{1} \\ \alpha_{1} \\ \alpha_{2} \\ \alpha_{1} \\ \alpha_{2} \\ \alpha_{1} \\ \alpha_{1} \\ \alpha_{1} \\ \alpha_{1} \\ \alpha_{2} \\ \alpha_{1} \\ \alpha_{2} \\ \alpha_{1} \\ \alpha_{1}$$

U

$$\frac{1}{1!} \frac{d}{dz} \left[(2 + 0)^{2} \frac{z^{n}}{(z+2)} \right]_{z=1}^{z=1}$$

$$= \frac{d}{(12)} \left[(2 + 2)^{n} \frac{z^{n}}{(z+2)} \right]_{z=1}^{z=1}$$

$$= \frac{G-1}{q} = \frac{5}{q}$$

$$\int f(z) dz = \int \frac{z^{n}}{(z+1)^{n}} dz$$

$$= 2\pi i^{n} \left[\frac{\text{Res. of}}{\text{Res. of}} + \frac{\text{Res. of}}{\text{Res. of}} \right]$$

$$= 2\pi i^{n} \left[\frac{\text{Res. of}}{\text{Res. of}} + \frac{\text{Res. of}}{\text{Res. of}} \right]$$

$$= 2\pi i^{n} \left[\frac{4}{7} + \frac{5}{7} \right]$$

$$= 2\pi i^{n} \left[\frac{4}$$

ļ

 $\frac{z^{2}}{(z-1)^{2}}dz = UTII^{2} p$ Evoluare the Residue Value of f(z) = 2 (z+1)(z+2) 1 22-32-15 dz, 121=2 $\int \frac{z}{z+4} = \int \frac{z}{z+4} =$ $f(z) = \frac{z^2 - 3z + 5}{z + 4}$ 2 + 4 = 02=-4 Z=-4isa Simple Pole Singular Point z=-4 lier outside 121=2 => No need to complete residue value , ang 14 a. By Cauchy Residue Theorem JE(z)dz = 2TTi [Sum OF the residue OF E(z) inside c = $2\pi^{\circ}$ [Res. of f(z) at z = -4] lies outside |z|=2 $= 2\pi i(0)$ $\frac{2^{2}-32+5}{2+4}$ dz = 0

$$F(z) = \frac{1 - e^{2z}}{z^{3}}$$

$$F(z) = \frac{1 - e^{2z}}{0^{3}} = \frac{1 - 1}{0} = \frac{0}{0}$$

$$F(z) = \frac{1 - e^{2z}}{0^{3}} = \frac{1 - 1}{0} = \frac{0}{0}$$

$$F(z) = \frac{1 - e^{2z}}{z^{3}}$$

$$g(z) = \frac{0 - e^{2z}(z)}{3z^{2}}$$

$$g(z) = 0 - \frac{2e^{2z}(z)}{3z^{2}}$$

$$F(z) = \frac{1 - e^{2z}(z)}{z^{3}}$$

Pole of order 2

Res. of $f(z) = \frac{1}{2} = \frac{1}{2} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ is pole of order m $\int = \frac{1}{2} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{$

L'auventz's Series Expansion: Apply a Taylors Series expansion for for f(2)= <u>2-1</u> 121<2 & Lourentz Series (2+2)(2+3) prepansion 2 < 121<3 Consider, $\frac{z^{2}-1}{(z+2)(z+3)} = \frac{1+\Delta}{z+2} + \frac{B}{(z+3)}$ $\frac{z^{2}-1}{(z+2)(z+3)} = \frac{(z+2)(z+3) + A(z+3) + B(z+2)}{(z+2)(z+3)}$ $-\frac{1}{2} = (2+2)(2+3) + A(2+3) + B(2+2)$ z = -2= 4 - 1 = 0 + A(-2 + 3) $\left|A=3\right|$ 2=73 9-1 = 0 + 0 + B(3+2) $\begin{array}{c|c} \overline{B} & \overline{B} & \overline{B} \\ \hline B & \overline{B} & \overline{B} \\ \hline \end{array}$ $\frac{2^{1}}{(2+2)(2+3)} = 1 + \frac{3}{(2+2)} - \frac{8}{(2+3)}$ $\begin{vmatrix} 2| < 2 \\ | = 2 \\ | = 2 \\ | = 2 \\ (2+2)(2+3) \\ | = 1 + \frac{3}{2(\frac{2}{2}+1)} = \frac{8}{2(\frac{2}{2}+1)}$

$$= 1 + \frac{3}{2} \left(1 + \frac{2}{2} \right)^{-\frac{9}{2}} \frac{\left[(1 + \frac{1}{2})^{\frac{1}{2}} + 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right]^{-\frac{1}{2}} + \frac{1}{2} + \frac{$$

)

$$f_{1} = \frac{1}{2 + 11} < g_{2} = \frac{1}{2 + 11} = \frac{1}{2 +$$

(k) Evoluate J do by Contour Integration $e^{i}\theta = (0s\theta + isin\theta$ Selt 5+30000 $c_{010} = e_{00} = \overline{e_{00}}$ $\frac{27}{2} = \frac{1}{2} = 020$ $\frac{27}{2} = \frac{1}{2} = \frac{1}{2$ $\operatorname{Sin} \theta = \frac{1}{2!} \left(\frac{2}{2!/2} \right)$ $2\pi \qquad \frac{dz}{z_1^2}$ $= \int \frac{dz}{5+3z_1^2+3}$ $e^{i\theta}id\theta = dz$ $d \theta = \frac{dz}{\theta^0 \theta}$ $= \int \frac{dz}{z^2} \times \frac{2z}{3z^2 + 10z + 3}$ $d\theta = \frac{dz}{z}$ $= \frac{2\pi}{2} \int \frac{dz}{(z+3)(z+\frac{1}{3})}$ Here, Z= -3, -1 are Singular of f(z) 2=-3 is lies outside of Circle 2=-1 is lies inside of circle Izl=1 Res. of f(z) $\begin{array}{c} a_{F} z_{z} = \frac{1}{3} \hat{s}_{s} \\ Simple pole \end{array} = \begin{array}{c} LF \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \\ z_{z} = \frac{1}{3} \left(z_{F} \frac{1}{3} \right) \left(z_{$ Simple pole J 2-)-' $= -\frac{1}{3(-\frac{1}{2}+3)} = \frac{1}{10}$

By Couchy
Res. theorem =
$$2\pi i^{\circ} \begin{bmatrix} Sum of the Yesche] \\ of f(z) \\ Prescheren \\ = \frac{2}{7} \left[2\pi i^{\circ} \left(\operatorname{Res. of } f(z) \\ a_{+} z = -3 \right) \right] \\ = \frac{2}{7} \left[\frac{2\pi i^{\circ}}{8} \right] = \frac{4\pi n^{\circ}}{8^{\circ}} \\ = \frac{4\pi n}{8^{\circ}} \\ = \frac{4\pi}{8} \\ = \frac{4\pi}{8} \\ = \frac{7\pi}{2} \\ \int \frac{d\theta}{5 + 2005\theta} = \frac{7\pi}{2} \\ \int \frac{d\theta}{5 + 2005\theta} = \frac{7\pi}{2} \\ \frac{1}{2} \int \frac{d\theta}{6(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \log \operatorname{consider} \quad Only \quad Positive \quad Potes \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > deg \cdot of \quad Prade \\ \int \frac{P(x)}{a(x)} deg \cdot of \quad a(x) > de$$

jfeedd 2=271° [Sum of residues] $-f(z) = \frac{z}{(zY_{11})(zY_{11})} = (z)^{-1}$ (2-41) (2-41)=0 $z^{2} = -1$ | $z^{2} = -4$ $z^{2} = -1$ | $z^{2} = \pm 2^{2}$ フェナパ 2=1,-1,21,-21 Z= î1 2î lies upper Semi circle z = -i - 2i lies below x - axisTo find residue of fail at 2=i, +2i (Simple Pole) Res. of f(z) at z=a is a simple pole = lt (z-a) f(z) azi $= \frac{1}{2} \frac{$ $= L + (z < i) z^{2}$ $Z - \gamma^{2} + (z + i) (z + i) (z + 2i) (z - 2i)$ $=\frac{1}{2^{0}(3^{0}(-i))}=\frac{-1}{6^{0}(-i)}$ $= \frac{-1}{6?} = \frac{-1}{6?}$ Res. OF FG2) QF $2 = 2^{\circ} is Simple Pole J = (+ (z-2^{\circ}) z^{2^{\circ}})(z+2^{\circ})(z+$

S. DEBRACCE

 \bigcap

 $= \frac{(2^{2})^{2}}{2^{2}(2^{2})(1^{2})} = \frac{-4}{12(-2^{2})} = \frac{1}{2^{2}}$ (2) By Jordon Lemen $\int \frac{z^{2}d^{2}}{(z^{2}+1)(z^{2}+u)} = 0$ $\int \frac{z^{2}dz}{(z^{2}+1)(z^{2}+1)} = \int \frac{x^{2}dx}{(x^{2}+1)(x^{2}+1)(x^{2}+1)} = 3$ (3) $\int \frac{z'dz}{(z'+1)(z'+u)} = 2\pii \left[Sum op - the residue \right]$ $= 2 \operatorname{Til} \left(\frac{-1}{6} + \frac{1}{2} \right)$ $= 2\pi i \left(\frac{-3i+6i}{18i} \right)$ $= 2\pii \left[\frac{3i}{180} \right]$ - 6π 2² - 18 2² $l_{\mathcal{K}} = \frac{1}{3}$ $3 \int \frac{z^2 dz}{(z^2 + 1)(z^2 + u)} = \frac{\pi}{3}$ $\Rightarrow \int \frac{m H}{(m + 1)(m + u)} = \frac{T}{3}$

-

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY

CONTINUOUSLEARNINGASSESSMEN TEST – I U20MABT02- ADVANCED CALCULUS AND COMPLEX ANALYSIS (SETB)

Date Academic Year/Semester :22.11.2022 20222022/ODD

Ouration	n :1:30Hours PART-A(5X2=10)		CO1-	Bloom's
2.110.		weightage	CU's	Level
1.	Evaluate the double integral $\int_{1}^{2} \int_{x}^{x^{2}} x y dy dx$.	2	CO1	2
2.	Evaluate $\int_{1}^{a} \int_{1}^{b} \frac{dx dy}{xy}.$	2	CO1	2
3.	Evaluate $\iint_{s} x^{2}y^{2} dx dy$ over the region bounded by the straight line $x=0, x=3, y=0, y=3.$	2	CO1	2
4.	Find the grad ϕ if $\phi = xyz$ at (1,1,1)	2	CO2	2
5.	Find the unit normal vector to the surface $x^2 - y^2 + z = 2$ at the point (1, -1, 2)	2	CO2	3

	PART-B(2X4=8)			
6.	 (A). Find the area using double integral bounded by the lines x = 0, y = 1 and y = x (OR) (B). Find the area of first quadrant of an ellipse x²/a² + y²/b² = 1 	4	CO1	3
7	(A).If $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$, find $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$ (OR) (B) If $\vec{r}' = x\vec{i} + y\vec{j} + z\vec{k}$, prove that $\nabla r^n = nr^{n-2}\vec{r}$	4	CO2	3
	PARTC(1X12=12)			
8.	(A) Change the order of integration to evaluate $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{2a-x} xy dy dx$. (OR) (B). Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1$ using triple integral.	12	CO1	3

CO's	Weightage
CO1	22
CO2	08
Total	30

Bharath InstituteOfHigherEducationandResearch(BIHER)

IQAC/ACAD/008

TSRH-I
UDMARTOZ-ADVANCED CALCULUS & COMPREA ANALYSIE
OLA-2 -ANSWER KEY
2. Evaluate the double the lograd
$$\int_{2}^{3} \int_{2}^{21} \alpha_{23} dndy$$
: Ans: dt/s
2. Evaluate $\iint_{3} \alpha_{23}^{22} dady$ over the previous bounded by the line $x \cos x$ y = on
Ansi. 91 Sq. units.
3. Evaluate $\iint_{3} \int_{2}^{5} \frac{\partial ady}{2x}$; Ansi $(\log n) (\log 4)$
4. Find the grad $\oint_{1}^{2} if \frac{\partial a}{2x}$ at $O(1/1)$
 $T d = i \frac{\partial a}{\partial x} + i \frac{\partial a}{\partial y}$
 $= ii y_{2} + j (z_{2}) + i^{2} (\alpha y)$
 $d = O(1/1)$, $= 7 + j + i^{2}$
 $= ii y_{2} + j (z_{2}) + i^{2} (\alpha y)$
 $d = O(1/1)$, $= 7 + j + i^{2}$
 $= ii y_{2} + j (z_{2}) + i^{2} (\alpha y)$
 $d = O(1/1)$, $= 7 + j^{2} + i^{2}$
 $= i \frac{\partial a}{\partial x} + i^{2}$, $(t \neq i) = (\pi = 3)$
 $h = \frac{T}{1 + i^{4}} = \frac{2P + 2i + i^{2}}{2}$
 $h = i + i^{4}$
 $i = \frac{2P + 2i + i^{2}}{2}$
 $h = i + i^{4}$
 $i = \frac{1}{2} [y_{2}]_{1}^{2} da$
 $i = \int_{3}^{3} [(y_{2}]_{1}]_{2}^{2} da$
 $i = \int_{3}^{3} [(y_{2}]_{1}]_{2}^{2} da$
 $i = \int_{3}^{3} (1-x) da = (\alpha - \frac{2^{2}}{2})_{3}^{3}$

6. (B). Find the area of first quadrant of an ellipse
$$\frac{2^{2}}{4^{2}} + \frac{y^{2}}{4^{2}} = 1$$
.
1c) He ellipse $\frac{\pi^{2}}{4^{2}} + \frac{y^{2}}{4^{2}} = 1$
 $\left[\pi = \pm \alpha\right] \quad \left[y = \pm b\sqrt{1 - \frac{\pi^{2}}{4^{2}}}\right]$
 $\left[\pi = \pm \alpha\right] \quad \left[y = \pm b\sqrt{1 - \frac{\pi^{2}}{4^{2}}}\right]$
 $\left[\pi = \frac{\pi}{4}\right] \quad \left[\frac{\pi}{4}\right] \quad \left[\frac{\pi}{4$

$$\int_{0}^{a} \int_{0}^{\sqrt{y_{a}}} \frac{y_{a}}{2y} dx dy + \int_{0}^{2a} \int_{0}^{2a-y} \frac{y_{a}}{2y} dx dy$$

$$\Rightarrow \int_{0}^{a} \frac{y_{a}^{2}}{2} dy + \int_{0}^{2a} \frac{(a_{a}-y)^{2}xy}{2} dy$$

$$\Rightarrow \frac{a^{4}}{b} + \frac{a^{4}}{2a}$$

$$\Rightarrow \frac{a^{4}}{2a}$$

$$\Rightarrow \frac{a^{4}}{2a}$$

$$\Rightarrow \frac{a^{4}}{2a}$$

$$\Rightarrow \frac{a^{4}}{2a}$$

$$\Rightarrow \frac{a^{4}}{2a}$$

$$\Rightarrow \frac{a^{2}}{2a}$$

$$\Rightarrow \frac{a^{2}}{2a$$

Ð

 $\langle \rangle$

Q

Il F?.n°ds = j (Z=0 Q = [](zx)d=dx $= \int \left[\frac{z}{2} x\right]_{0}^{c} dx$ $= \int \frac{c^{v}}{2} x dx$ PER T = 022 $\iint \vec{F} \cdot \vec{n} \, ds = \iint (\vec{C} - \pi y) \, dy \, dx$ 7=0 y=0 $= \int \left(c^{Y}y - \frac{y_{y}y^{Y}}{2} \right) dx$ $= \int \left(c^{*}b - \frac{xa^{*}}{2} \right) dx$ $= \left(\frac{cbx}{2a}, -\frac{cb^{*}}{2a}\right)_{0}^{a}$ $= cbe^{*} abc^{*}, \frac{a^{*}b^{*}}{4}$ (i)

 $P.\pi^2 ds = \int \int (xy) dy dx$ $x=0 \ y=0$ $= \int \left(\frac{x y^{v}}{2} \right)_{0}^{0} dx$ 1 100 - 1 - 1 TO - 4 $= \int_{2}^{a} \frac{b^{2}x}{2} dx$ この111231111 $= \frac{b^{\nu}(\tilde{\chi})}{2}$ $= \frac{a^{2}b^{2}}{4}$ $\iint \vec{P} \cdot \vec{n} \, ds = \vec{a} \cdot cb - \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{c} + \vec{b} \cdot ca - \vec{c} \cdot \vec{b} + \vec{d} \cdot \vec{c}$ $+ abc^{-} - 2b^{+} + a^{+} b^{+}$ = a'cb + b'ca + abc~ : SI P. m'ds = abc (a+b+c) Safet market

.. Gauss Druergence Theorem is Veriffed.

let 's' be an open Surface bounded by a Stokes Thegrene (et is be an off if is a Vector Follow Runs) Closed Curve ic if if is a Vector Follow Runs acting inside and on the Surface 's' then \$ = d= = { for \$, Tids g ₽.dv = ∬ (pxF) n'ds 'c' is a Simple closed Curve in Anticher direction R'95 unit ourword normal Vector to the G. Surface ええ $\xrightarrow{\mathcal{P}}$ デースデーサイブ デースデーサデーのボ $\iint \left(\frac{\partial q}{\partial n} - \frac{\partial P}{\partial y}\right) dx dy = \int F dx + 0 dy$ 0 Green's Theorem is a particular lose of sme -theorem when the 30 open object can be Sor Converted into 20 image : R=0 Let, $F = P_1^2 + \overline{q_1^2}$ d== dx =+ dy = F).dr)= (PP70]) (dx72+dy]) F?. dr? = Pax+ady

A water and To Find DXF PXF = 2 + 4 OR ALT AT Q $P \times \vec{F} = \vec{v} \left(0 - \frac{d}{dz} \right) - \vec{J} \left(0 - \frac{d}{dz} \right) + \vec{\kappa} \left(\frac{d}{dz} - \frac{dF}{dy} \right)$ n= k (n 95 the anit outward normal vector to xy plane which & parallel to Z-anis) $P \times \overline{F}^{2}]. \hat{n} = \frac{dO}{dT} - \frac{dP}{dT} (\widehat{R}.\widehat{R}=1)$ $\oint \vec{F} \cdot \vec{n} ds = \iint (\nabla x \vec{F}) \cdot \hat{n} ds \rightarrow \text{Stokes theorem}$ $c \qquad S \qquad (30 \text{ open object})$ => & Pdx+ady = \in (da - dP) dxdy -> Gireen's -theorem 20 "mage Ronvy On XY-Plane Plane D Verify Stokes Theorem F= (2+4) ?- 2x45 taken around the rectangle n=±a, y=0,y=b $p_{i} = \int \vec{r} \cdot \vec{n} ds = \int (\vec{r} \cdot \vec{r} \cdot \vec{r} \cdot ds) ds$ PXF= マンマン Cab (0,6) (n+y)-2ny 0

46

$$\begin{aligned} f(x,y) = f(x) - f(x,y) - f(y) - f(y) - f(x,y) + f(x,y$$
4= \$ = . d== [(N(4+y))dx - 2xy dy 0 4=0, x=a => [dx=0 4=0 $= \int 0 - 2ay = -2ab^{2} = -ab^{2}$ "- (""+")dr - "xy dy n=a, y=b [dy=0] $= \int (\chi + b^{\gamma}) d\chi - 0 = \int \frac{\chi 3}{2} \int + b^{\gamma} D \sqrt{2} d\chi$ $= -\frac{a^3}{2} - \frac{a^3}{3} - b^{v}(-2a)$ $= -\frac{2a^3}{2} + 2ab^2$ = (nx+y)dx - 2xydy 4=10, x=-a [dx=0] = $\left[-2(-\alpha)y \, dy = 2\alpha \left[\frac{y}{2}\right]_{b}^{o}\right]$ $= 2a\left(0 - \frac{b^{\vee}}{2}\right) = -\frac{2ab^{\vee}}{2} = -ab^{\vee}$ $C_1 + C_2 + C_3 + C_4 = -ab^2 - \frac{2a^3}{2} - \frac{2ab^2}{2} + \frac{2ab^2}{2} - \frac{2ab^2}{2}$ =-4052

Laplace Transform Technique Laplace Ler F(F) be a function defined on the Interval [0,00] [0< t200] then $\mathcal{L}[F(H)] = \int_{0}^{\infty} e^{-SH}F(H)dF; t \ge 0$ Where, L- Laplacian operator S - Parameter Application OF L.T.T :-O To Solve System of Ordinary differential 2 Evaluate System reliability. 3 Used in Digital Signal Processing. 4 Wireless Network. OFINA L[I] = Jest code AND LAND OL $= \left(\frac{\overline{e}^{S+}}{\overline{e}}\right)^{\infty} = -\frac{1}{S} \left[\overline{e}^{S+}\right]^{\infty}_{0}$ $= -\frac{1}{5} \left((-1) \right)^{-1} \left((-1) \right)^{-1} = -\frac{1}{5} \left((-1) \right)^{-1} = -\frac{$ = 1

$$\begin{aligned} & \sum_{k=1}^{\infty} \left[e^{\alpha k} \right] \\ & \sum_{k=1}^{\infty} \left[e^{\alpha k} \right] = \int_{0}^{\infty} \overline{e}^{sk} e^{(k)} dk \\ & \widehat{e}(k) = e^{\alpha k} \\ & \sum_{k=1}^{\infty} \left[e^{\alpha k} \right] = \int_{0}^{\infty} \overline{e}^{\beta k} e^{\alpha k} dk = \frac{1}{2} \int_{0}^{\infty} \overline{e}^{(k)} dk \\ & \int \overline{e}^{2k} dk = \frac{e^{2k}}{-1} \\ & \int \overline{e}^{2k} dk = \frac{e^{2k}}{-2} \end{aligned} \end{aligned} = \begin{aligned} & \left(\frac{e^{2k} (s-\alpha) + 1}{2(s-\alpha)} \right)_{0}^{\infty} = \left[\frac{(-1)^{2}}{(s-\alpha)} \left(\frac{1}{e^{2k}} (s-\alpha) + \frac{1}{2} \right) \right] \\ & = -\frac{1}{2(s-\alpha)} \left[\left(\frac{1}{2} (s-\alpha) - \frac{1}{2} \right) \right] \\ & = -\frac{1}{2(s-\alpha)} \left[\left(\frac{1}{2} (s-\alpha) - \frac{1}{2} \right) \right] \\ & = -\frac{1}{2(s-\alpha)} \left[\left(\frac{1}{2} (s-\alpha) - \frac{1}{2(s-\alpha)} \right) \right] \\ & \sum_{k=1}^{\infty} \left[\frac{1}{2(s-\alpha)} - \frac{1}{2(s-\alpha)} \right] \\ & \sum_{k=1}^{\infty} \left[\frac{1}{$$

ALC: NO

$$F_{ind} L[t^{n}] = \int_{0}^{\infty} e^{st} e^{(t)} dt$$

$$f(t) = t^{n}$$

$$L[t^{n}] = \int_{0}^{\infty} e^{st} t^{n} dt$$

$$L[t^{n}] = \int_{0}^{\infty} e^{st} t^{n} dt$$

$$L[t^{n}] = \int_{0}^{\infty} e^{st} t^{n} dt$$

$$dt = \frac{du}{s}$$

$$f(t) = 0 = 0 = 0$$

$$L[t^{n}] = \int_{0}^{\infty} e^{u} (\frac{u}{s})^{n} \frac{du}{s}$$

$$= \int_{0}^{\infty} \frac{e^{u} (u^{n} du}{s^{n} s}$$

$$f(t) = \int_{0}^{\infty} e^{u} (\frac{u^{n} du}{s^{n} s})$$

$$= \frac{1}{s^{n+1}} \int_{0}^{\infty} e^{u} (\frac{u^{n} du}{s^{n} s})$$

$$= \frac{1}{s^{n+1}} \int_{0}^{\infty} e^{u} (\frac{u^{n} du}{s^{n} s})$$

$$= \frac{1}{s^{n+1}} \int_{0}^{\infty} e^{u} (\frac{u^{n} du}{s^{n} s})$$

 $\mathscr{B}_{L}[t^{n}] = [(n+1)]$ IP n-rational) (Fractiona) Value) cn+1 $= \frac{n!}{Q^{n+1}} \rightarrow \text{integer}^{n}$ \rightarrow [(n+D = n ln · · ·]= $\sqrt{\pi}$ (= 1) = $\sqrt{2}$ (3) $\rightarrow \widehat{(3|2)} = \widehat{(1/2+i)} = \frac{1}{2} \overline{12} = \frac{1}{2} \sqrt{11} \sqrt{12}$ $\rightarrow \overline{512} = \overline{321} = 3\overline{32} = 3\overline{121} = 3\overline{121}$ =1 25 13 +1 = 35 3 3 IF n-Integer $\overline{n+1} = n\overline{n} = nl$ 12 = 111 = 111 = 1 $\overline{3} = \overline{12+1} = 2\sqrt{2} = 2\overline{11+1} = 2.1\overline{11} = 2$ 4 = 13 + 1 = 313 = 312 + 1 = 3212 = 6 = 31

$$L = \frac{1}{S-2} + \frac{2}{S+3} - \frac{8}{S^{V}-q^{V}} + \frac{5}{S^{V}-q^{V}}$$

Find L[ave + b +c] 412.5 $= L\left[a\sqrt{E}\right] + L\left[\frac{b}{\sqrt{E}}\right] + L\left[c\right]$ $= a \lfloor t'' \rfloor + b \lfloor \left(\frac{1}{t'' 2} \right) + \lfloor \left(C \rfloor \right)$ $= \alpha \frac{\sqrt{\pi}}{2s^{3/2}} + b \sqrt{\frac{\pi}{s}} + cl[1]$ $= \frac{2\sqrt{\pi}}{2s^{31}} + \frac{5}{3} + \frac{c}{3} + \frac{c}{3}$ $O \left(t^{4} + 3t^{3} - 5t^{4} + 2t - 4 \right)$ $L[t^n] = \frac{n!}{S^{n+1}}$ $= L[t^{4}] + L[3t^{3}] - L[5t^{3}] + L[2t] - L[4]$ $= \frac{41}{S^{4+1}} \neq 3\left(\frac{31}{S^{3+1}}\right) - 5\left(\frac{21}{S^{2+1}}\right) + 2\left(\frac{11}{S^{1+1}}\right) + \left(\frac{-4(11)}{S^{1+1}}\right)$ $= \frac{24}{8^5} + \frac{18}{8^4} - \frac{10}{8^3} + \frac{2}{8^7} - \frac{4}{8}$ (F) $L[t^3+2t^2-t-10]$ $= \frac{3!}{3!} + 2\left(\frac{2!}{5!}\right) - \frac{1!}{5!} - \frac{10}{5!}$ $= \frac{6}{84} + \frac{4}{8^3} - \frac{11}{8^2} - \frac{10}{8}$

Programme Burger 3 L(1+1)3) $= L[t^3] - 3L[t^3] + 3L[t] - L[1]$ $= \frac{3!}{C^{3+1}} - 3\left(\frac{\frac{7!}{c}}{c^{2+1}}\right) + 3\left(\frac{1!}{S^{1+1}}\right) - \frac{1}{C}$ $= \frac{6}{64} - \frac{6}{63} + \frac{3}{67} - \frac{1}{5} + \frac{1}{67} + \frac{1}{6}$ $= \frac{3!}{3!} + 3\left(\frac{2!}{3!}\right) + 3\left(\frac{2!}{3!}\right) - \frac{1}{3!} = \frac{3!}{3!} + \frac{3!}$ $= \frac{6}{5^4} + \frac{6}{5^3} + \frac{3}{5^2} + \frac{1}{5^2}$ $Formala \left(\frac{1}{1+1} \right) = \left($ $S_{in}^{*} = \frac{1 - \cos 20}{2}$ $S_{in}^{*} = 0^{*} = 0$ $S_{in}^{*} = 0^{*} = 0$ $S_{in}^{*} = 0^{*} = 0$ (10) $L[Sin^{3}t] = L\left[\frac{1-\cos 6t}{2}\right]$ $= \frac{1}{2} L \left[1 - CoseL \right]$ $= \frac{1}{2} \left[L \left[1 \right] - L \left[\cos 6 \right] \right]$ $=\frac{1}{2}\left[\frac{1}{5}-\frac{5}{5+6^{2}}\right]=\frac{1}{2}\left[\frac{1}{5}-\frac{5}{5+3^{2}}\right]$

$$\begin{array}{l} \underbrace{ \left[\left[\cos^{2}(4t) \right] = \left(\left[\frac{1+\cos_{2}t}{2} \right] \right] \right] \\ = \frac{1}{2} \left[\left(\left[1+\cos_{2}t \right] \right] \right] \\ = \frac{1}{2} \left[\left(\frac{1}{2} \right] + \left[\left[\cos_{2}t \right] \right] \right] \\ = \frac{1}{2} \left[\left(\frac{1}{2} + \frac{5}{5^{2} + 64} \right) \right] \\ \end{array} \right] \\ \begin{array}{l} \begin{array}{l} Formula: \\ = \frac{1}{2} \left[\left(\frac{1}{5} + \frac{5}{5^{2} + 64} \right) \right] \\ \end{array} \\ \hline Formula: \\ \begin{array}{l} \left[\frac{1}{5^{2} + \frac{5}{5^{2} + 64}} \right] \\ \hline Formula: \\ \left[\frac{1}{5^{2} + \frac{5}{5^{2} + 64}} \right] \\ \hline Formula: \\ \begin{array}{l} \left[\frac{1}{5^{2} + \frac{5}{5^{2} + 64}} \right] \\ \hline Formula: \\ \hline \\ S^{1}n (A + B) = S^{1}n A \cos_{2}B + \cos_{2}A \sin_{2}B \rightarrow 0 \\ \hline \\ S^{1}n (A - B) = \left(\cos_{2}A \cos_{2}B - \sin_{2}A \sin_{2}B \rightarrow 0 \right) \\ \hline \\ Cos (A + B) = \left(\cos_{2}A \cos_{2}B - \sin_{2}A \sin_{2}B \rightarrow 0 \right) \\ \hline \\ Cos (A - B) = \left(\cos_{2}A \cos_{2}B + \sin_{2}A \sin_{2}B \rightarrow 0 \right) \\ \hline \\ Add (0 + 0) \\ \hline \\ S^{1}n (A + B) + S^{1}n (A - B) = 2S^{1}nA \cos_{2}B \\ \hline \\ S^{1}n A \cos_{2}B = \frac{5^{1}n (A + B) + 5^{1}n (A - B)}{2} \\ \hline \\ \\ \\ \begin{array}{l} \left[\frac{1}{2} \left[s^{1}n st + \cos_{2}t \right] \right] \\ \hline \\ = \frac{1}{2} \left[\frac{1}{2} \left[s^{1}n st + s^{1}n 2t \right] \\ \\ \end{array} \\ = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{3^{2} + e4} + \frac{2}{3^{2} + 4} \right] \\ \hline \\ \end{array} \right] \end{array}$$

 \cap

 \cup

2 [Sthut. Sthat] (3) Cas (A-B) - (as (A-B) = Dis in A sin B SinA SinB = 5 [Car (A-B) - Cas (A+B)] 2 [sinur. Singr] = 1 [cos[4+-6+] - cos[4+-16+] : Daney = - + COS2+ - COSIOH $= \frac{1}{2} \left[\frac{1S}{S'+4} - \frac{S}{S'+100} \right]$ Carl Ball to and a work wind Shipping Property: Stallonal: · .11 1515/ If L[P(H)] = P(S), then L[e] = P(J)] = F(S-G) $2\left[e^{\alpha + 2\left[e^{\gamma}\right]} = F(s+q)\right]$ Proof. $\Gamma[E(F)] = \left[\frac{1}{2} e_{F} + E(F) q + \frac{1}{2} + \frac{1}{2} q + \frac{1}{2} \right]$ $L\left[e^{\alpha r} \neq (r)\right] = \int \overline{e}^{Sr} \left[e^{\alpha r} \neq (r)\right] dr$ $-\int_{0}^{\infty} \overline{e}(St-\alpha t)$ f(t) dt $=\int e^{-(s-a)t} P(t) dt = F(s-a)$

$$L\left[\overline{e}^{a^{+}} p(t)\right] = \int_{0}^{\infty} \overline{e}^{(S+a)t} p(t)dt$$

$$= F(S+a)$$

$$U\left[e^{2t}(csh_{2}t)\right] = L\left[e^{4t}p(t)\right]$$

$$Q = 2, \quad f(t) = csh_{3}t$$

$$L\left[f(t)\right] = L\left[csh_{3}t\right]$$

$$= \left[\frac{Q}{S^{2}\phi_{1}}\right] = F(s)$$

$$L\left[e^{2t}(csh_{2}t)\right] = \left[\frac{Q}{S^{2}\phi_{1}}\right] = \frac{Q}{S^{2}-2}, \quad \left[\frac{S-2}{(S-2)^{2}-9}\right]$$

$$L\left[e^{2t}(csh_{2}t)\right] = L\left[e^{-2t}p(t)\right]$$

$$Q = 3, \quad f'(t) = sh_{4}t$$

$$L\left[e^{2t}sh_{4}t\right] = L\left[e^{-2t}p(t)\right]$$

$$Q = 3, \quad f'(t) = sh_{4}t$$

$$L\left[f(t)\right] = L\left[sh_{4}t\right]$$

$$P(s) = \frac{4}{s^{2}+16}$$

$$L\left[e^{3t}sh_{4}t\right] = k\left[f(s)\right]_{S^{2}\rightarrow S+a}$$

$$= \frac{4}{s^{2}+16}$$

$$= \frac{4}{(S+3)^{2}+16}$$

 \cup

$$\begin{aligned} & S_{al}^{h} g \ Property \ OF \ C.T.T; \\ & IF \ c(F(r)] = F(G) ; then \ c(F(ar)) = \frac{1}{4} F(\frac{1}{4}) \\ & = \int_{0}^{\infty} \frac{1}{6} S^{r} F(r) dr \\ & L(F(r)) = F(G) \\ & = \int_{0}^{\infty} \frac{1}{6} S^{r} F(r) dr \\ & L(F(ar)) = \int_{0}^{\infty} \frac{1}{6} S^{r} F(r) dr \\ & L(F(ar)) = \int_{0}^{\infty} \frac{1}{6} S^{r} F(r) dr \\ & L(F(ar)) = \int_{0}^{\infty} \frac{1}{6} S(\frac{1}{4}) \\ & L(F(ar)) = L(F(ar)) = \frac{1}{4} F(\frac{1}{4}) \\ & L(F(ar)) = L(F(ar)) = \frac{1}{4} F(\frac{1}{4}) \\ & L(F(ar)) = F(S) = \int_{0}^{\infty} \frac{1}{6} S^{r} F(r) dr \\ & L(F(ar)) = F(S) = \int_{0}^{\infty} \frac{1}{6} S^{r} F(r) dr \\ & \frac{1}{6} [F(S)] = \frac{1}{6} [\int_{0}^{\infty} \frac{1}{6} S^{r} F(r) dr \end{aligned}$$

$$= \int_{0}^{\infty} \left[\frac{d}{ds} \left(e^{st} \right) \right] P(t) dt$$

$$= \int_{0}^{\infty} e^{st} (e^{t}) e^{t} dt$$

$$= e^{st} \frac{d}{ds} (e^{st})$$

$$= \int_{0}^{\infty} e^{st} (e^{t}) e^{t} dt$$

$$= e^{st} \frac{d}{ds} (e^{st})$$

$$= \int_{0}^{\infty} e^{st} (e^{t}) e^{t} dt$$

$$= e^{st} (e^{t}) e^{t} dt$$

$$= e^{st} (e^{t}) dt$$

$$= e^{st} (e^{st}) dt$$

0

•--

$$\begin{split} & \left| \left(L^{n} p(x) \right) = (-1)^{n} \frac{d^{n}}{ds^{n}} \left\{ p(x) \right\} = \frac{d^{n}}{ds^{n}} \left(\frac{s}{s^{n}} \right) \\ & = \frac{d}{ds} \left[\frac{d}{ds} \right] \frac{s}{s^{n}} \right] \\ & = \frac{d}{ds} \left[\frac{d}{ds} \right] \frac{s}{s^{n}} \right] \\ & = \frac{d}{ds} \left[\frac{d}{ds} \right] \frac{s}{s^{n}} \\ & = \frac{d}{ds} \left[\frac{d}{ds} \right] \frac{s}{s^{n}} \\ & = \frac{d}{ds} \left[\frac{d}{s^{n}} \right] \\ & = \frac{d}{ds} \left[\frac{s}{s^{n}} \right] \\ & = \frac{d}{s^{n}} \left[\frac{s}{s^{n}} \right] \\ & = \frac{d}{s^{n}} \left[\frac{s}{s^{n}} \right] \frac{s}{s^{n}} \left[\frac{s}{s^{n}} \right] \frac{s}{s^{n}} \\ & = \frac{d}{s^{n}} \left[\frac{s}{s^{n}} \right] \frac{s}{s^{n}} \\ & = \frac{d}{s^{n}} \left[\frac{s}{s^{n}} \right] \frac{s}{s^{n}} \frac{s}{s^{n}} \\ & = \frac{d}{s^{n}} \left[\frac{s}{s^{n}} \right] \frac{s}{s^{n}} \\ & = \frac{d}{s^{n}} \left[\frac{s}{s^{n}} \right] \frac{s}{s^{n}} \frac{s}{s^{n}} \\ & = \frac{d}{s^{n}} \left[\frac{s}{s^{n}} \right] \frac{s}{s^{n}} \frac{s}{s^{n}} \frac{s}{s^{n}} \\ & = \frac{s}{s^{n}} \left[\frac{s}{s^{n}} \frac{s}{s^{n}} \right] \frac{s}{s$$

$$\begin{aligned}
 \mathcal{P} & \sum_{i=1}^{n} \left\{ \frac{1}{i} \left\{ \frac{1}{i} \left\{ \frac{1}{i} + \frac{1}{i} \left\{ \frac{1}{i} \right\} \right\} = \left[\frac{1}{i} \left\{ \frac{1}{i} \right\} = \left[\frac{1}{i} \left\{ \frac{1}{i} \right\} + \left[\frac{1}{i} \right\} + \left[\frac{1}{i} \left\{ \frac{1}{i} \right\} + \left[\frac{1}{i} \right\} + \left[\frac{1}{i} \left\{ \frac{1}{i} \right\} + \left[\frac{1}{i} \right\} + \left[\frac{1}{i} \left\{ \frac{1}{i} \left\{ \frac{1}{i} \left\{ \frac{1}{i} \right\} + \left[\frac{1}{i} \left\{ \frac{1}{i} \left\{ \frac{1}{i} \right\} + \left[\frac{1}{i} \left\{ \frac{1}{i} \left\{ \frac{1}{i} \left\{ \frac{1}{i} \right\} + \left[\frac{1}{i} \left\{ \frac{1}{i} \left\{ \frac{1}{i} \left\{ \frac{1}{i} \right\} + \left[\frac{1}{i} \left\{ \frac{1}{i} \left\{ \frac{1}{i} \right\} + \left[\frac{1}{i} \left\{ \frac{1}{i}$$

$$= - \left[\frac{(S^{2}-q)^{\nu}(2S) - 4S(S^{2}+q)(S^{\mu}-q)}{(S^{\nu}-q)^{4}} \right]$$

$$= - \left[\frac{(S^{\nu}-q)^{\nu}}{(S^{\nu}-q)^{4}} \right]$$

$$= - \left[\frac{2S(S^{\nu}-q) - 4S(S^{2}+q)}{(S^{\nu}-q)^{3}} \right]$$

$$= - \left[\frac{2S^{3}-(8S-4S^{3}+3CS)}{(S^{\nu}-q)^{3}} \right]$$

$$= - \left[\frac{2S^{3}-(8S-4S^{3}+3CS)}{(S^{\nu}-q)^{3}} \right]$$

$$= - \left[\frac{-2S^{3}+D-54S}{(S^{\nu}-q)^{3}} \right]$$

$$= \frac{54S+2S^{3}}{(S^{\nu}-q)^{3}} \right]$$

$$= \frac{54S+2S^{3}}{(S^{\nu}-q)^{3}}$$
Inverse $\angle \alpha plone \quad Tvans-form$:
IP $L[P(t+)] = F(S)$ then to $Pind \ P(t+1)$

$$= L[P(t+1)] = T^{\nu}[P(t+1)] = T^{\nu}[P(t+1)]$$

$$= T^{\nu}[P(t+1)] = T^{\nu}[P(t+1)] = T^{\nu}[P(t+1)]$$

To find
$$f(t)$$
 then $Z'[t(s)] given:$
Note:
() $F(t) = \frac{1}{1 \text{ transform}} L[F(t)] = F(s)$
() $F(s) = \frac{1}{20 \text{ plane}} T'[F(s)] = F(s)$
() $F(s) = \frac{1}{20 \text{ plane}} T'[F(s)] = F(t)$
() $F(s) = \frac{1}{20 \text{ plane}} T'[F(s)] = F(t)$
() $F(t) = \frac{1}{20 \text{ plane}} T'[s] = \frac{1}{20 \text{ p$

$$\frac{t^{1/2}}{t^{1/2}} = \frac{t^{1/2}}{2s^{3/2}} = \frac{t^{1/2}}{2s^{3/2}}$$

$$\begin{bmatrix} \zeta_{1} = \zeta_{2} + \zeta_{2} + \zeta_{3} + \zeta_$$

$$= \frac{1}{(1)} (1) = \frac{1}{26} e^{4t} + \frac{11}{112} e^{9t}$$

$$= \frac{1}{(1)} (1) = \frac{1}{26} e^{4t} + \frac{11}{112} e^{9t}$$

$$= \frac{1}{(1)} (\frac{5}{(1)} + \frac{5}{(1)} +$$

$$O = \frac{1}{2} \left[\frac{S+1}{S(S-2)(S-3)} \right]$$

$$S+1 = \frac{A}{S} + \frac{B}{(S-2)} + \frac{C}{S-3}$$

$$S(S-1)(S-3) = A (S-2)(S-3) + B (S)(S-2) + C (S)(S-2)$$

$$S+1 = A (S-2)(S-3) + B (S)(S-2) + C (S)(S-2)$$

$$Pur = 2$$

$$S = 2$$

$$S = B(2)(2-3)$$

$$S = 3$$

$$Q = C(2)(2-3)$$

$$Q = 3C$$

$$Q = 3C$$

$$Q = 4$$

$$Q = 3$$

$$1 = A(-2)(-3)$$

$$6A = 1$$

$$\left(A = \frac{1}{6}\right)$$

 $\frac{S+1}{S(S-2)(S-2)} = \frac{1}{6S} + \frac{(-3)}{2(S-2)} + \frac{1}{2(S-3)}$

$$\frac{1}{2}\left(\frac{S+1}{S(s-2)(S-3)}\right) = \frac{1}{6}\frac{1}{5}\left[\frac{1}{6s} - \frac{3}{2(S-2)} + \frac{4}{3(S-3)}\right]$$
$$= \frac{1}{6}\frac{1}{5}\left[\frac{1}{5}\right] - \frac{3}{2}\frac{1}{5}\left[\frac{1}{5-2}\right] + \frac{4}{3}\left[\frac{1}{5-3}\right]$$
$$= \frac{1}{6}-\frac{3}{2}e^{2t} + \frac{4}{3}e^{3t}$$

$$Droblems$$

$$Droblems$$

$$D = Pind = L' \left(\frac{S^{v}}{(S^{v}+a^{v})(S^{v}+b^{v})} \right) using Convolusion$$

$$S_{pl}^{pl} = L' \left[\frac{S}{(S^{v}+a^{v})(S^{v}+b^{v})} \right] = L' \left[\frac{S}{S^{v}+a^{v}}, \frac{S}{S^{v}+b^{v}} \right]$$

$$= L' \left[\frac{S}{S^{v}+a^{v}} \right] * \frac{L' \left[\frac{S}{S^{v}+b^{v}} \right]}{L' \left[\frac{S}{S^{v}+b^{v}} \right]}$$

$$= Cosot * Cosbr \\ L = Cosot | f(u) = Cosou \\ g(u) = Cosb(t-u)$$

$$\begin{array}{l} (\operatorname{MVeluition} \operatorname{OP} Lapla e + \operatorname{Hausform}; \\ f(H) + g(H) = \int F(u) g(H-u) du \\ \\ (H) + g(H) = \int F(u) g(H-u) du \\ \\ (H) + g(H) = \int F(u) g(H) = \int \left[F(u) \right] + \left[g(H) \right] \\ \\ (H) + g(H) = \int \left[F(H) \right] = L \left[F(H) \right] + \left[g(H) \right] \\ \\ (H) + \left[F(H) \right] + g(H) \right] = L \left[F(H) \right] + \left[g(H) \right] \\ \\ (H) + \left[F(H) \right] = \left[F(H) \right] = \left[F(H) \right] + \left[f(H) \right] \\ \\ (H) + \left[F(H) \right] = \left[F(H) \right] = \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) \right] = \left[F(H) \right] + \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) \right] = \left[F(H) \right] + \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) \right] = \left[F(H) \right] + \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) \right] + \left[F(H) \right] + \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) \right] + \left[F(H) \right] + \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) \right] + \left[F(H) \right] + \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] + \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] + \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] + \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H) + \left[F(H) \right] \\ \\ (H) + \left[F(H) + \left[F(H)$$

$$= \int_{0}^{1} \frac{2^{n}(u)}{(u+u)} \frac{1}{(u+u)} \frac{1}{(u+u$$

$$= \frac{1}{2} \left[\frac{S^{in} \alpha t \left(\frac{\alpha - \beta + \alpha + \beta}{\alpha^{2} + \alpha^{2} + \beta^{2}} \right) + S^{in} b t \left(\frac{\alpha - b - \alpha^{2} + b}{\alpha^{2} + b^{2}} \right) \right]$$

$$= \frac{1}{2} \left[\frac{S^{in} \alpha t \left(2\alpha \right)}{\alpha^{2} - b^{2}} + \frac{S^{in} b t \left(-2b \right)}{\alpha^{2} - b^{2}} \right]$$

$$= \frac{\alpha S^{in} \alpha t - b S^{in} b t}{\alpha^{2} - b^{2}}$$

$$= \frac{\alpha S^{in} \alpha t - b S^{in} b t}{\alpha^{2} - b^{2}}$$

$$\left[\bigoplus_{i=1}^{N} T^{i} \left[\frac{S^{in}}{(S^{2} + 2S)^{2}} \right] + \frac{1}{\alpha^{2}} \left[\frac{S}{(S^{2} + 2S)^{2}} \right]$$

$$= \frac{1}{2} \left[\frac{S^{in}}{(S^{2} + 2S)^{2}} \right] + \frac{1}{2} \left[\frac{S}{(S^{2} + 2S)^{2}} \right]$$

$$\left[\bigoplus_{i=1}^{N} T^{i} \left[\frac{S^{in}}{(S^{2} + 2S)^{2}} \right] + \frac{1}{2} \left[\frac{S}{(S^{2} + 2S)^{2}} \right]$$

$$\left[= \frac{1}{2} \left[\frac{F(t)}{S^{2} + 2S} \right] + \frac{1}{2} \left[\frac{S}{(S^{2} + 2S)^{2}} \right]$$

$$\left[= \frac{1}{2} \left[\frac{F(t)}{S^{2} + 2S} \right] + \frac{1}{2} \left[\frac{S}{(S^{2} + 2S)^{2}} \right]$$

$$\left[\sum_{i=1}^{N} \frac{F(t)}{(S^{2} + 2S)^{2}} \right] + \frac{1}{2} \left[\frac{S}{(S^{2} + 2S)^{2}} \right]$$

$$\left[\sum_{i=1}^{N} \frac{F(t)}{S^{2} + 2S} \right]$$

$$\left[\sum_{i=1}^{N} \frac{F(t)}{S^{2}$$

O

$$= \frac{1}{2} \left[\int_{0}^{L} \cos(gu + 5k - gu) + \cos(5u - 5k + 6u) \right] d_{1}$$

$$= \frac{1}{2} \left[\int_{0}^{L} \cos 5k + \cos(10u - 5k) d_{1} \right]$$

$$= \frac{1}{2} \left[\int_{0}^{L} \cos 5k + \cos(10u - 5k) d_{1} \right]$$

$$= \frac{1}{2} \left[\cos 5k + \frac{50n}{10} (10k - 5k) d_{1} \right]$$

$$= \frac{1}{2} \left[\cos 5k + \frac{50n}{10} (10k - 5k) d_{1} \right]$$

$$= \frac{1}{2} \left[4\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right] + \left[\frac{2}{6k} \right]$$

$$= \frac{1}{2} \left[4\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right] + \left[\frac{2}{6k} \right]$$

$$= \frac{1}{2} \left[4\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right] + \left[\frac{2}{6k} \right]$$

$$= \frac{1}{2} \left[4\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right] + \left[\frac{2}{6k} \right]$$

$$= \frac{1}{2} \left[4\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right]$$

$$= \frac{1}{2} \left[4\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right]$$

$$= \frac{1}{2} \left[\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right]$$

$$= \frac{1}{2} \left[\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right]$$

$$= \frac{1}{2} \left[\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right]$$

$$= \frac{1}{2} \left[\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right]$$

$$= \frac{1}{2} \left[\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right]$$

$$= \frac{1}{2} \left[\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right]$$

$$= \frac{1}{2} \left[\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right]$$

$$= \frac{1}{2} \left[\cos 5k + \frac{50n}{10} 5k + \frac{50n}{10} 5k \right]$$

$$\begin{aligned} \mathcal{P}(t) &= \left(OS_{2}t \right) \quad \# g(t) = \left(OS_{2}t \right) \\ \mathcal{P}(u) &= \left(OS_{2}u \right) \quad g(t+u) = \left(OS_{2}t(t+u) \right) \\ = \int_{0}^{t} \left(OS_{2}u \cdot COS(2(t+u)) du \right) \\ = \int_{0}^{t} \left(OS_{2}u \cdot COS(2(t+2u)) du \right) \\ COSA COSB &= \frac{\left(OS(A+B) + COS(A-B) \right)}{2} \\ = \frac{1}{2} \left[\int_{0}^{t} \left(COS(2(t+2t+2u)) + COS(2u-2t+2u) \right) du \right] \\ = \frac{1}{2} \left[\int_{0}^{t} COS(2(t+2t+2u)) + COS(2u-2t+2u) \right] du \\ = \frac{1}{2} \left[\left(COS(2t) + du \right) + \int_{0}^{t} COS(4u-2t) du \right] \\ = \frac{1}{2} \left[\left(COS(2t) + du \right) + \left(\frac{S(n}{4}u - 2t) \right)_{0}^{t} \right] \\ = \frac{1}{2} \left[\left(COS(2t) + \frac{S(n+2t)}{4} - \frac{S(n-2t)}{4} \right) \right] \\ = \frac{1}{2} \left[\left(COS(2t) + \frac{S(n+2t)}{4} - \frac{S(n-2t-2t)}{4} \right) \right] \\ = \frac{1}{2} \left[\left(COS(2t) + \frac{1}{2} S(n+2t) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S(s+5)} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S(s+5)} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} \cdot \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} \cdot \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} \cdot \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S} - \frac{1}{S+5} \right) \right] \\ = \frac{1}{2} \left[\left(\frac{1}{S+5} \right) \right] \\ = \frac{$$

O

₽(E) * 9(E) $\overline{c'}\left[\overline{e^{\alpha F}}\right] = \frac{1}{S+\alpha}$ $= 1 \times \overline{e^{5t}} = \overline{e^{5t}} \times \overline{1}$ $= \int f(u) g(t-u) du$ $= \int \overline{e^{5t}} = \overline{e^{5t}} \times \overline{1}$ $= \int \overline{e^{5t}} = \overline{e^{5t}} \times \overline{1}$ $= \int \overline{e^{5t}} = \overline{e^{5t}} \times \overline{1}$ $= \int \overline{e^{5t}} = \overline{e^{5t}} + \overline{1}$ +(H) = e du 9 $= -\frac{1}{E}(\overline{e}^{5t} - \overline{e}^{0})$ = - - (25-)

4. Analytic purchank
()
$$z = \chi + i \eta$$

() $F(z) = u + i v$
() $\omega = F(z)$
() $\omega = (u + i v)$
() $f(z) = u + i v$
() $f(z) = u + i v \chi$
() $f(z) = u + i v \chi$
() $f'(z) = u + i v \chi$
() $f'(z) = \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}$
() $f(z) = u + i v$
 $= u (\chi, \eta) + i v (\chi, \eta)$
() $auch \eta - \frac{P_{Pemann}}{p_{Pemann}} \frac{Equation!}{p_{V}}$
() $f(z) = u + i v$
 $f'(z) = u + i v \eta$
 $f'(z) = u + i v \eta$

ł

Redivative OF F(2)

A function F(=) is differentiable at Z=== then the desirative of F(=) is given by

f'(z): 11: F(z)-F(z) cuit.

It is denoted by d Far-f'(Z) dz

Refine analylic Function

* Function F(Z) is differentiable at Z=Z and the neighbours hood points of to is called analytic function

A Function F(E) is Analytic in a Domain D(Fis difference of where all points in D) then F(E) is analytic in D

F(e) is analytic at Z=Zo, Z, Z, Z, - Zn b)

Fler: 11: F(z)-F(z.) exists 2-20 2-20

Alegenza files and the flash and files Alegenza files and files and files Alegenza files and files and files alegenza files and files files alegenza files and files alegenza files

Problems:
(D) Test the fluxetion
$$f(z)$$
 is Analytic (or) nor
CR agin $\int_{-\infty}^{\infty} u_{1} = u_{1}$
 $\int_{-\infty}^{\infty} (u_{2} = u_{1}) \int_{-\infty}^{\infty} (u_{2} = u_{2}) \int$

CREAN & Un = Vy Ly = - Vn lex = Vy = 2x $Uy = -Vx \Rightarrow -2y = -2y$ + F(2) is on analytic function 3 f(z)= ez -> (1) 2=2+14 Solt $F(z) = u + iv = e^{z}$ $e^2 = u + iV$ $e^{\chi_{+}iy} = u^{+}iv$ or eig = utiv er ((ogy+is iny)=utiv er cosy +iersiny = u+iv $u = e^{\pi} \cos y$ $| v = e^{\pi} \sin y$ $u_{n} = e^{n} (asy | V_{n} = e^{n} siny$ uy = - exsiny 1 Vy = excosy CREQUE S UX = VYUY = -VMUn=Uy= Oxcosy (1y =- Vn =) - ensiny = - ensiny -. F(z) is an analytic function. A BARRIER BRANN BRANN BRANN AND A STREET

the point of, P.O. Find the point 0, i, as of the W-Plane. - Z, Z, Z2 Z3 SI? $(z-z_1)(z_2-z_3) = (\omega_-\omega_1)(\omega_2-\omega_3)$ $(\omega - \omega_3)(\omega_1 - \omega_2)$ $(z-z_3)(z-z_2)$ $= \frac{1}{2} \left(\frac{2}{2} - 1 \right) \left(\frac{2}{2} - \frac{2}{2} \right) \left(\frac{2}{2} - \frac{2}{2} \right) \left(\frac{1}{2} - \frac{2}{2} \right)$ (2-23) $Z_{1}(1-\frac{72}{2})$ $(\omega-\omega_{3})(1-\frac{\omega_{2}}{\omega_{1}})$ $= (10-101) (23) (\frac{102}{102}-1)$ $\omega_3(\omega_{-1})(\omega_{-1}\omega_2)$ $=)\left(\frac{1}{2}-1\right)\left(\begin{array}{c}0\\1-0\end{array}\right)=\left(\begin{array}{c}0\\0\end{array}\right)\left(\begin{array}{c}0\\0\end{array}\right)\left(\begin{array}{c}0\\0\end{array}\right)$ $(z-0)(1-\frac{1}{\infty})$ $(\frac{1}{\sqrt{2}}-1)(0-\frac{1}{\sqrt{2}})$ $\frac{(0-1)(2)}{Z(1-0)} = \frac{(0)(-1)}{(-1)(-1)}$ $\frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2}$ Verification . $Z = \infty$, $\omega = -\frac{1}{2} = 0$ $\frac{1}{100} = \frac{1}{100} = 0$ z = 0, $\omega = -\frac{1}{2} \times \frac{1}{2}$ 2=0 m=-1-m

#) Find the Bilinear that maps the point
$$\omega$$
, i.o
in Z-Plane. Find the point $0, -i, \omega$ of the
 ω -plane.
 $z_1 = \omega, z_2 = i + z_{3=0}$
 $z_1 = \omega, z_2 = i + z_{3=0}$
 $(z_2 - z_3)(z_1 - z_3) = (\omega - \omega_3)(\omega_2 - \omega_3)$
 $(z_2 - z_3)(z_1 - z_2) = (\omega - \omega_3)(\omega_1 - \omega_2)$

$$\frac{\left(\frac{2}{1-1}\right)\left(1-\frac{2}{1-1}\right)}{\left(\frac{2}{1-1}\right)\left(1-\frac{2}{1-1}\right)} = \frac{\left(\frac{2}{1-1}\right)\left(\frac{2}{1-1}\right)}{\left(\frac{2}{1-1}\right)\left(1-\frac{2}{1-1}\right)}$$

$$\frac{(0-1)^{\circ}}{-2} = \frac{\omega(0-1)}{(0-1)^{\circ}} \Rightarrow \frac{2}{-1} = \frac{-2}{-1}$$

$$\omega = \frac{-1}{-1} = \frac{-1}{-2} = \frac{-1}{-2}$$

$$Z_{1} = 0 = 0 = \frac{1}{2} = 0$$

$$Z_{2} = 0 = 0 = \frac{1}{2} = 0 = 0 = \frac{1}{2} = 0 = \frac{1}{2$$

$$\omega = \frac{1}{2} = \omega \quad (= 0 = 8^2)$$

$$\begin{aligned} \frac{1}{2} \int_{-1}^{2} \ln d + \ln \frac{1}{2} \int_{-1}^{2} \ln \frac{1}{2} \ln \frac{1}{2} - \frac{1}{2} \int_{-1}^{2} \ln \frac{1}{2} + \frac{1}{2} \int_{-1}^{2} \ln \frac{1}{2} + \frac{1}{2} \int_{-1}^{2} \frac{1}{2} \int_$$
$$\begin{split} & \omega\left(1-\frac{1}{2}z\right) = \frac{2}{2}-\frac{1}{1-\frac{1}{2}z} \\ & \left(\omega = \frac{z}{1-\frac{1}{2}}\right) \\ & \text{Ver}_{\text{SP}}^{\text{SP}} (ca+Pon); \\ & z_1 = -1 \Rightarrow \omega = \frac{-1-\frac{1}{1+\frac{1}{2}}}{1+\frac{1}{2}} + \frac{1-\frac{1}{2}}{1+\frac{1}{2}} = \frac{-2}{1+\frac{1}{2}} = -\frac{2}{2} = -\frac{1}{2} \\ & z_2 = 0 \Rightarrow \omega = \frac{0-\frac{1}{2}}{1-0} = -\frac{1}{2} \\ & z_3 = 1 \Rightarrow \omega = \frac{1-\frac{1}{2}}{1-\frac{1}{2}} = 1 \\ & + F^{\text{ind}} + \text{the } F^{\text{ind}} = 0 \\ & \omega = 6\frac{z-9}{z} \\ & z_2 = 6\frac{z-9}{z} \\ & z_1 = 6\frac{z-9}{z} \\ & z_2 = 6\frac{z-9}{z} \\ & z_1 = 6\frac{z-9}{z} \\ & z_2 = 6\frac{z-9}{z} \\ & z_1 = -\frac{1}{2} \\ & z_2 = 6\frac{z-9}{z} \\ & z_2 = 6\frac{z-9}{z} \\ & z_1 = -\frac{1}{2} \\ & z_2 = 6\frac{z-9}{z} \\ & z_2 = 6\frac{z-9}{z} \\ & z_1 = -\frac{1}{2} \\ & z_2 = 6\frac{z-9}{z} \\ & z_2 = 6\frac{z-9}{z} \\ & z_1 = -\frac{1}{2} \\ & z_2 = 6\frac{z-9}{z} \\ & z_2 = 6\frac{z-9}{z} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_2 = -\frac{1}{2} \\ & z_1 = -\frac{1}{2} \\ & z_2 = -\frac$$

(f) Find the Fixed point of the Transformation
(D =
$$\frac{DZ+6}{Z+T}$$

(D = $P(Z) = \frac{2Z+6}{Z+T}$
 $Z = \frac{DZ+6}{Z+T}$
 $Z = \frac{2Z+6}{Z+T}$
 $Z = (Z+T) = 2Z+6$
 $Z^{Y} + ZZ - 2Z - 6 = 0$
 $Z^{Y} + 5Z - 6 = 0$
 $(Z-1)(Z+6) = 0$
 $Z = 1$ | $Z = -6$
(J) Find the Fixed point of Transformation
 $U = \frac{3-Z}{1+T}$
 $Z = \frac{3-T}{1+T}$
 $Z = 3-T$
 $Z^{Y} + 2Z - 3 = 0$
 $Z^{Y} + 2Z - 3 = 0$
 $Z^{Y} + 2Z - 3 = 0$
 $Z^{Y} + 2Z + 3Z = 0$
 $Z = 1 = 0$
 Z

Children permits:
(4) Find the Cyrrical point of the Function

$$f(x) = \frac{\chi_{t+1}}{\chi_{t+1}} \qquad \int \bigcup_{v} dx = \frac{\sqrt{d_{x}u - u} \frac{d}{d_{x}v}}{\sqrt{v}}$$
(A) Find the Cyrrical point of the function

$$f'(x) = \frac{\chi_{t+1}}{\chi_{t+1}} \qquad \int \bigcup_{v} dx = \frac{\sqrt{d_{x}u - u} \frac{d}{d_{x}v}}{\sqrt{v}}$$

$$D = \frac{\chi_{t+1} - 2\chi_{t+1}}{\chi_{t+1}^{W_{t+1}}}$$

$$D = -\frac{\chi_{t+1} - 2\chi_{t+2} + 1}{\chi_{t+1}^{W_{t+1}}}$$

$$D = -\frac{\chi_{t+2} - 1}{\chi_{t+1}^{W_{t+1}}}$$

$$Q = -\frac{\chi_{t+2} - 1}{\chi_{t+1}^{W_{t+1}}}$$

$$\chi = -\frac{2\pm \sqrt{10} + 4}{2}$$

$$\chi = -\frac{2\pm \sqrt{10} + 4}{2} = -\frac{2\pm \sqrt{10}}{2}$$

$$(\#) \text{ Find the Currier point of the function}$$

$$f'(x) = \frac{\chi_{t+1}}{\chi_{t+1}^{W_{t+1}}}$$

$$\int \bigcup_{v} (\chi_{t+1})(2\chi) - (\chi_{t-1})(2\chi)$$

$$(\chi_{t+1})^{W_{t+1}}$$

$$D = \frac{\chi_{t+1}^{W_{t+1}}}{(\chi_{t+1}^{W_{t+1}})}$$

$$2\pi^{3} + 2\pi - 2\pi^{3} + 2\pi = 0$$

 $4 \neq 0 \Rightarrow \pi = 0$

* (On Formal Mapping: (Image to Image Transformation) (*) Find the image of the Region bounded by (*) Find the image of the Region bounded by x=0, y=0, x=1, y=2. Under the transformation W= Z+2-i

$$\begin{aligned} & \int e^{it} & (t) = f(z) \rightarrow 0 \\ & z = \chi + iy \rightarrow 2 \\ & f(z) = (t + iy \rightarrow 3) \\ & (t + iy) = \chi + iy + 2 - i \\ & (t + iy) = \chi + iy + 2 - i \\ & (t + iy) = \chi + iy + 2 - i \\ & (t + iy) = \chi + i(y - 1) \\ & (t + iy) = (\chi + 2) + i((y - 1)) \\ & (t + iy) = (\chi$$

Points	U=X+2:	V = Y - 1, (u, v)
A(0,0)	(1 = 0 + 2)	V = -1 (2,-1)
	4=2	$\vee = -1 \qquad (3, -1)$
B(0,1)	U = 3	
C(1,2)	u = 3	V = I (3.1)
0(012)	u=2	V = 1 (2.1)

. P. Bort Till

Conclusion:

A Frechangle bounded by 4 Straight Un. NECIVED & XELIVER. IN a 2- plane is transfor. -med into a vectorigie and it = 3 & V=-1,V>1 in 10- plane under the mapping 2+2-9

(+) Find the image of the rectangular region bounded by the region n=0, y=0, x=1, y=2 under the transformation w= (1+P) z Solt

and the set of the set ()= ()())

+ (=)= U+- N こ= パードシリ $w = (1+p)_{2}$ $\omega = (1+9)(n_1+n_4)$ $\omega = \chi + \chi_1^{\circ} + i \eta + (-i) \eta$ $\omega = \chi = (1 + 1) i (\chi + \gamma) + \chi - \gamma$

W= x-y + i (x+y)

$$u = \chi - y , v = \chi + y$$

$$(0,2) \quad y = 2 \quad (1,2)$$

$$p = 0 \quad x = 1 \quad x = 1$$

$$(0,2) \quad y = 2 \quad (1,2)$$

$$p = 0 \quad x = 1 \quad x = 1$$

$$(0,2) \quad (1,2) \quad (1,2) \quad (1,2)$$

$$p = 0 \quad (1,2) \quad (1,2$$

Find the image of the Circle 121=2 under the transformation w= 32		
g_{01} : $\omega = 3 \neq \longrightarrow \mathbb{D}$		
$\omega = F(z) = (1+i) - 2 = 1 + iy$		
(1+i) = 3(x+iy)		
U + iv = 3x + i3y		
$U = 3x$ $V = 3y$ $V = 3y$ $V = -\frac{1}{3}$ $V = -\frac{1}{3}$		
121 = 2		
$ \chi + iy = 2$ $ z = Jmyy$		
$\overline{J}_{\chi}\gamma_{+}\gamma_{-}^{\gamma}=2\rightarrow \otimes$		
$m^{\nu} + y^{\nu} = 4$		
$\frac{4}{9}\frac{1}{4} + \frac{1}{9} = 4$		
$\frac{u^{2}+v^{2}}{2}=4$		
$(1^{\vee}+1^{\vee}=36)$		
$\boxed{U^{+} V^{+} G^{-} + G}$		
Z-Plone W-plone N		
11 2 1 2 2 2		
$\frac{1}{2^{1-2}}$		
Conclusion:		
A circle 121=2 with the Centre (010) & radius		
l'unit in a Z-plane is transformed into a		
Circle in w-Plane with Centre (0:0) and		

= 4abx $\left[\frac{2a^3}{3} + \frac{2ab^2}{3} + \frac{2ac^2}{3}\right]$ = 40tc (20)] = + = + =] Sape (0+ 5+ c) Cubre anits (11) g dozve dozev) g dozve dozev) g dzayax dzayax dzayax $= \int_{0}^{0} \left[\int_{0}^{\sqrt{d^{2}-x^{2}}} \left(\int_{0}^{\sqrt{d^{2}-x^{2}y^{2}}} \frac{dz}{\sqrt{d^{2}-x^{2}-y^{2}+x^{2}-y^{2}+x^{2}-y^{2}$ $= \iint_{0} \left[\int_{0}^{\sqrt{a^{2}} x^{2}} \left(\int_{0}^{\sqrt{a^{2}} x^{2} - y^{2}} \frac{1}{\sqrt{a^{2} - x^{2} - y^{2}}} dz \right) dy \right] dx$ $= \int_{0}^{0} \left[\int_{0}^{\sqrt{\alpha^{2} + x^{2}}} \left(\frac{3^{0} \pi^{1}}{3^{0} \pi^{1}} \left(\frac{z}{\sqrt{\alpha^{2} + x^{2} + y^{2}}} \right) \frac{\sqrt{\alpha^{2} + x^{2} + y^{2}}}{\sqrt{\alpha^{2} + x^{2} + y^{2}}} \right) \frac{1}{\sqrt{\alpha^{2} + x^{2} + y^{2}}} \frac{1}{\sqrt{\alpha^{2} + x^{2} + y^{2}}}} \frac{1}{\sqrt{\alpha^{2} + x^{$ $= \int \int S^{0} n^{-1} (i) di di :$ = I a [Jaz x y]dx $= \frac{\pi}{2} \int \overline{\sqrt{\alpha^2 - u^2}} dx$ = Jayfor - fright = 73

 $= \frac{\pi}{2} \left[\frac{\chi \sqrt{\Delta^2 - \chi^2}}{2} + \frac{\alpha^2}{2} s^{9\pi^2} \left(\frac{\chi}{\alpha} \right) \right]_0^{\alpha}$ $= \frac{\pi}{2} \left[a_0 + \frac{\alpha}{2} s^{0} \bar{n}^{1}(i) \right]$ $=\frac{T_1}{2}\left[\frac{q^2}{2},\frac{T_1}{2}\right]$ $= \frac{T V \alpha^{N}}{8} C u b^{2} c 0 u^{2} F c$

 \cap

-15

dent. (er & (n.y.2) be a Scalar point function then Gradieni Do=(=+=+=+=+=+=+=+=+==) (x,y,z) $P\phi = \left(7\frac{d\phi}{dx} + 5\frac{d\phi}{dy} + \frac{1}{2}\frac{d\phi}{dy} + \frac{1}{2}\frac{d\phi}{dy}\right)$ Where, D is a Gradient operator. $D = \overrightarrow{v} \overrightarrow{d} + \overrightarrow{v} \overrightarrow{d} + \overrightarrow{k} \overrightarrow{d}$ 17 -> Vector differential Operator $\frac{d}{du}$, $\frac{d}{du}$, $\frac{d}{dz}$ (1St order the Derivatives) 4= 20 $\frac{dy}{dx} = 2x = \frac{d^2y}{dx^2} = 2 = \frac{d^2y}{dx^3} = 0$ (ordinary Dentiti Do is a Vector point function. Unit Norman Vector !-The Unit normal Vector to the gaven Surface $\phi(x,y,z)$ is given by $\hat{n} = \nabla \phi$ Directional Derivative! 100 The directional derivative for the Surface \$ (x, y, z) in the direction of the Vector \$ 99 by Directional derivative = DO. a

F(x,y,z) & g(x,y,z) +000 Surpoices are 1ex (*) \$ (x,y,z) = x4y4 = 2 - a (Sphere = x4y4 = a) Find Do? $D = \left(\vec{r}\frac{\partial}{\partial x} + \vec{J}\frac{\partial}{\partial y} + \vec{K}\frac{\partial}{\partial z}\right) \rightarrow \text{vector}.\text{funct.}$:12 (NIY, Z) = NYYYZZ av -> Sphere Surface $D\phi = \left[i\frac{d}{dx} + j\frac{d}{dy} + k\frac{d}{dz}\right]\phi$ $= \overline{p} \frac{d\phi}{d\phi} + \overline{j} \frac{d\phi}{d\phi} + \overline{k} \frac{d\phi}{d\phi}$ $= \vec{p} \frac{d}{dx} (x^{1} + y^{1} + z^{2} - \alpha') + \vec{y} \frac{d}{dx} (x^{1} + y^{1} + z^{2} - \alpha') + \vec{k} \frac{d}{dz} (x^{1} + y^{1} + z^{2} - \alpha')$ $=\vec{R} = \vec{r}(2\pi) + \vec{j}(2y) + \vec{K}(2\pi)$ $D\phi = 2x_{1}^{2} + 2y_{1}^{2} + 2z_{3}^{2}$ (*) DO OF (1,1,1) $D\phi = 2(1)\vec{j} + 2(1)\vec{j} + 2(1)\vec{k}$ $D\phi = 2\vec{i} + 2\vec{j} + 2\vec{k}$ (*) \$ (x,y,=) = xyz (1,-1,0) Santa Pret of the (*) Q (X, y, z) = ny + yz + zx (1,1,1) (*) \$ (right) = x3+y3+23 (1.1.1) and the state (1) \$ (X, 8, 2) + 2 (2 - 3, 0)

5

1) \$ (xiyiz) = xyz (1,-1,0) -101 $D\phi = (\vec{r} d + \vec{r} d + \vec{r} d)\phi$ $D\phi = \overline{\partial} \phi (xyz) + \overline{\partial} \phi (xyz) + \overline{k} \phi (xyz)$ $= \overline{1}^{2} (1) (42) + \overline{1}^{2} (2) (1) (2) + \overline{1}^{2} (2) (3) (3) (3)$ Do = (42) + (x2) + (xy) R QF (1,-1,0)) + Frank + $Dq = (1)(0)\vec{i} + (1)(0)\vec{j} + (1)(-1)\vec{k}$ =0+0-K $D\phi = -R$ ② Solt \$ (x,y,z) = xy + yz + zx (1,1,1) $D\phi = \overline{\partial} \frac{\partial}{\partial y} \left(\overline{\lambda} \dot{y} + \dot{y} z + \dot{z} \dot{x} \right) + \overline{\partial} \frac{\partial}{\partial y} \left(\overline{\lambda} \dot{y} + \dot{y} \dot{z} + \dot{z} \dot{x} \right)$ + ス は (パリ+リン+ンル) Do = (2xy+z)))+ (n+2y2))+ (y+2=0)) Q+ ((+11,1) $D\phi = (2(1) + (1)^{2}) + (1)^{2} + (1)^{2} + 2(1)) + (1)^{2} + (1)^{2} + (1)^{2} + 2(1)) = 0$ () 准确的 (1) = 30 + 30 + 312

$$\begin{aligned}
\underbrace{\underbrace{a}}_{i} & \oint (a_{1}a_{1},z) = x_{i}^{3}+y_{i}^{3}+z_{i}^{3} (a_{1}a_{1}) \\
& = \frac{1}{2} \frac{d}{dx} (x_{i}^{3}a_{i}y_{i}^{3}+z_{i}^{3}) + \frac{1}{2} \frac{d}{dy} (x_{i}^{3}a_{i}y_{i}^{3}+z_{i}^{3}) + \frac{1}{2} \frac{d}{dy} (x_{i}^{3}a_{i}y_{i}^{3}+z_{i}^{3}) \\
& = \frac{1}{2} (y_{i}^{3}x_{i}^{3}) + \frac{1}{2} (y_{i}^{3}y_{i}^{3}) + \frac{1}{2} (y_{i}^{3}y_{i}^{3}) + \frac{1}{2} (y_{i}^{3}x_{i}y_{i}^{3}+z_{i}^{3}) \\
& = \frac{1}{2} (y_{i}^{3}x_{i}^{3}) + \frac{1}{2} (y_{i}^{3}y_{i}^{3}) + \frac{1}{2} (y_{i}^{3}y_{i}^{3}) + \frac{1}{2} (y_{i}^{3}x_{i}y_{i}^{3}+z_{i}^{3}) \\
& = \frac{1}{2} (y_{i}^{3}x_{i}^{3}) + \frac{1}{2} (y_{i}^{3}y_{i}^{3}) + \frac{1}{2} (y_{i}^{3}y_{i}^{3}) + \frac{1}{2} (y_{i}^{3}y_{i}^{3}) + \frac{1}{2} (y_{i}^{3}y_{i}^{3}) \\
& = \frac{1}{2} \frac{d}{dx} (x_{i}^{3}a_{i}y_{i}^{3}+z_{i}^{3}) + \frac{1}{2} \frac{d}{dy} (x_{i}^{3}a_{i}y_{i}^{3}-z_{i}^{3}) \\
& = \frac{1}{2} \frac{d}{dx} (x_{i}^{3}a_{i}y_{i}^{3}+z_{i}^{3}) + \frac{1}{2} (y_{i}^{3}+z_{i}^{3}-z_{i}^{3}) \\
& = \frac{1}{2} \frac{d}{dx} (x_{i}^{3}a_{i}y_{i}^{3}+z_{i}^{3}) + \frac{1}{2} \frac{d}{dy} (x_{i}^{3}a_{i}y_{i}^{3}-z_{i}^{3}) \\
& = \frac{1}{2} \frac{d}{dx} (y_{i}^{3}a_{i}y_{i}^{3}+z_{i}^{3}) \\
& = \frac{1}{2} \frac{d}{dy} (y_{i}^{3}a_{i}y_{i}^{3}+z_{i}^{3}) \\
& = \frac{1}{2} \frac{d}{$$

() \$ = (x,y,z) at (1111) Find DA 2005. Do = 12 (xyz) + 12 d (xyz) + R d (xyz) = 1 = = = = (yz) +] (xz) + R'(xy) $=(42)\overline{i}+(x2)\overline{j}+(xy)\overline{k}$ たいない コントアカビック Q+ (1,1,1) $= (1)\overline{1} + (1)\overline{2} + (1)\overline{k}$ $D\phi = i + j + k$ (a) Find Dop if $\phi = log(x'+y'+z')$ or Do = 1 d (log (x+y+z))+ 3 d (log (x+y+z)) + R d (209 (x+4+2)) $= \overline{\chi} \frac{4}{3} \frac{1}{1} \frac{1}{1} \frac{2}{2} \frac{1}{1} \frac{2}{1} \frac{2}{1} \frac{1}{1} \frac{1}{1} \frac{2}{1} \frac{1}{1} \frac{1}{$ $= \frac{2\chi}{\chi^{2}+y^{2}} + \frac{2y}{\chi^{2}+y^{2}} + \frac{2\chi}{\chi^{2}+y^{2}} + \frac{2\chi}{\chi^{2}+y^{2}+z^{2}} + \frac{2\chi}{\chi^{2}+z^{2}} + \frac{2\chi}{\chi^{2}+z^$ $=\frac{2}{\chi^{2}+\chi^{2}}(\chi^{2}+\chi^{2}+\chi^{2}+\chi^{2})$ QF (1.1.1) H-SH FISH STRIED $b\phi = \frac{2}{2}\left(\vec{p} + \vec{p} + \vec{k}\right)$

$$\begin{array}{c} (3) & \nabla x^{2}, & (3) & \nabla y^{2} & x^{2}(x+y^{2}+zx^{2}) \\ (1 & -y^{2} & = \begin{pmatrix} (1) & -y^{2} & dy & +x^{2} & dy \\ -y^{2} & -y^{2} & dy & +x^{2} & dy & +x^{2} & dy \\ -y^{2} & -y^{2} & dy & +x^{2} & (x^{2}x^{2}+y^{2}) & +z^{2}x^{2}) & +z^{2}x^{2} & +z^{2}x^{2} \\ -y^{2} & -y^{2} & -y^{2} & -y^{2}x^{2} & -y^{2}x^{2} \\ -y^{2} & -y^{2} & -y^{2} & -y^{2}x^{2} & -y^{2}x^{2} \\ -y^{2} & -y^{2} & -y^{2} \\ -y^{2} & -y^{2} &$$

 \bigcirc

 \bigcirc

William Mainte () Partially dire. winto y 27 27 = 24 dv = 4 (3) PONTEONIN dippe with 2 Star Stars Fittel 51 95 = 55 ST = T $DY = \left(\overline{p}\frac{d}{dx} + \overline{j}\frac{dy}{dy} + \overline{k}\frac{dz}{dz}\right)r$ = アウダチアウチャアウチ - ひら+サラ+シズ $=\frac{1}{r}\left(x_{e}^{+}+y_{J}^{-}+2\overline{k}^{+}\right)$ $D_{\lambda} = \frac{1}{\lambda} (\underline{L}_{j}) = \frac{1}{\underline{L}_{j}}$ () Dr 1 urn-5[2)] $\sum_{i=1}^{n} Dx_{i} = \left(\overline{i} \frac{1}{2} \frac{1}{2} + \overline{j} \frac{1}{2} \frac{1}{2} + \overline{k} \frac{1}{2} \frac{1}{2}\right) x_{i}$ $= \frac{1}{6} \frac{1}{6} \frac{1}{4n} + \frac{1}{6} \frac{1}{64} \frac{1}{(2n)} + \frac{1}{64} \frac{1}{(2n)} \frac{1}{(2n)} + \frac{1}{6} \frac{1}{64} \frac{1}{(2n)} \frac{1}{(2n)} + \frac{1}{6} \frac{1}{64} \frac{1}{(2n)} \frac{1$ = $(n \cdot n^{-1}) = + (n \cdot n^{-1}) = \frac{1}{2} \frac{dr}{dy} + (n \cdot n^{-1}) = \frac{1}{2} \frac{dr}{dy}$ = いわ-1 (がら)+ テリ+ テレ]

= NY - [x=2+y] + ZR] = ny -2 -7 / T (1) Find Dir. Derivative $\phi = xy \neq a + (1,1,1)$ in the Dir. of $\overline{a} + \overline{j} + \overline{j} + \overline{k}$ D.D = DO - D' 501: $D\phi = \vec{e} d (xyz) + \vec{f} d (xyz) + \vec{k} d (xyz)$ = (45) + (x=)) + (xy) K D¢ = =)+ =)+ =) Cinin) DØ-IVEETON DÍ D.0 = 70 = 0.0 12 $= (\overline{p}_{j}^{+} + \overline{p}_{j}^{+} + \underline{k}_{j}) \cdot \frac{(\overline{p}_{j}^{+} + \overline{p}_{j}^{+} + \underline{k}_{j})}{(\overline{p}_{j}^{+} + \overline{p}_{j}^{+} + \underline{k}_{j})}$ $= \frac{1+(+)}{\sqrt{10^{2}+(0)^{2}+(0)^{2}}} = \frac{3}{\sqrt{3}} = \frac{13}{\sqrt{3}}$ $D\phi = \frac{1}{12} \frac{d}{dx} (xy+yz+zx) + \frac{1}{2} \frac{d}{dy} (xy+yz+zx)$ + え + (xy+yモ+モル)

11

$$= (2+0)^{\frac{1}{2}} + (1+0)^{\frac{1}{2}} + (1+1)^{\frac{1}{2}}$$

$$= (2+0)^{\frac{1}{2}} + (1+0)^{\frac{1}{2}} + (1+1)^{\frac{1}{2}}$$

$$= (2^{\frac{1}{2}})^{\frac{1}{2}} + 3^{\frac{1}{2}}$$

() Find the Onit normal Vactor to the Surface. \$= 23-2412 + 23-1 ar the Foint (1,1,1) 1.2 A= TOOL Sor $Dq = \left(\frac{2}{2}\frac{d}{dx} + \frac{2}{2}\frac{d}{dy} + \frac{2}{2}\frac{d}{dz}\right) \times \frac{3}{2} \times \frac{3}{2}$ = - d (x3- xy2 + 28-) +) d (x3- xy2 + 23-) + 12 (43-242+23-1) ť (= ? (3n- yz) + ? (- x+) + K' (- ny + sz) 6 = (3n2-42) P- J'(n2) + (322-24) R ar (1.1.1) S $= (3-1)\overline{1}^{2} + (-1)\overline{1}^{2} + (3-1)\overline{k}^{2}$ $[A_{1} = 100]$ Do = 27- 5-122 $= \frac{|D\phi|}{|D\phi|} = 1$ 1201 = # 1 (2) + (-1) + (2) $|\hat{n}| = \frac{2\tilde{i} - \tilde{j}^2 + 2\tilde{k}}{3}$ = J4+1+4 = J9 = 3 $\hat{n} = 2P^2 \vec{p}^2 + 2\vec{k}^2$ = 3 = 1 (*) Divergence of a vector point function ?? ?? F= Fit + F2J + F3 K + then the divergence of \vec{F} PS $\Delta \vec{F} = \frac{d}{dx} \vec{F}_1 + \frac{d}{dy} \vec{F}_2 + \frac{d}{dz} \vec{F}_3$ i) DF' is a Scalar guan fily (i) IF D.F=0, then F's Said to be Satenoidal

We Curl of a Vector point - Runchion IP F= F, + F, + F, F + Hen DXデ= CUMデー デアア THE FE F2 F3 1) Curi P is a Vector guantity. (i) If Curi F=0 then F is said to be irrotational. Solenoidal and Interatarional () Find DF and DXF OF the Vector points Americans. Find F= 2231-22421+2424R at the point (1,-1.1) Cor- $= \frac{d}{dx}(xz^{2}) + \frac{d}{dx}(-2x^{2}yz) + \frac{d}{dz}(2yz^{4})$ = 23-212+24(8423) D.F = == 23-LNZ + 8423 Qr (1,-1,1) $D.\vec{P} = (1)^3 - 2(1)^2(1) + 8(G)(1)$ = 1-2-8 = -9 マメピー しょう ちの 12 14

$$\begin{aligned} \begin{split} \mathbf{D} \times \mathbf{F}^{2} &= \begin{pmatrix} \mathbf{F}^{2} & \mathbf{J}^{2} & \mathbf{F}^{2} \\ \mathbf{J}^{2} & \mathbf{J}^{2} & \mathbf{J}^{2} & \mathbf{J}^{2} \\ \mathbf{J}^{2} & \mathbf{J}^{$$

 \cap

$$\begin{aligned} y \times \vec{P} = \vec{v} \left[\frac{d}{dy} (\vec{x}) - \frac{d}{dz} (\alpha y) - \frac{d}{dy} (\alpha y) \right] - \vec{v} \left[\frac{d}{dz} (\alpha y) - \frac{d}{dy} (\alpha y) \right] \\ = \vec{v} \left[\frac{d}{dz} (\alpha y) - \frac{d}{dy} (\alpha y) \right] \\ = \vec{v} \left[\frac{d}{dz} (\alpha y) - \frac{d}{dy} (\alpha y) \right] \\ = \vec{v} \left[\frac{d}{dz} (\alpha y) - \frac{d}{dy} (\alpha y) \right] \\ = \vec{v} \left[(\alpha + 3\alpha) \vec{v} \right] + (\alpha + 2\alpha) \vec{v} \right] \\ \vec{v} \quad \vec{v}$$

(Show that F= (y+2x2) 1+ (2xy-2)]+ (2x2-yna) 95 irrotational. Invotational, DxP=0 Sol? $D \times \vec{P} = \begin{bmatrix} \vec{p} & \vec{p} & \vec{p} \\ d_{3} & d_{3} & d_{3} \\ d_{3} \times d_{3} & d_{3} \\ F_{1} & F_{2} & F_{3} \end{bmatrix} = 0$ d (2x²z-y+2z)]+ k d (2xy-2)-d (y+2xz²)]=0 =) [(-1) - d-1)]- [(4x=)-(4x=)]+ [2y)-(2y)]=0 シ ?(0)-j(0)+R(0) > 10=0 Hence Proved irrotational @ Fridar with tetune hornar vector to the Soctar \$= n3 x42

Angle the two Surfaces:

$$\int_{P} \int_{P} \int_{$$

$$P_{3} = \frac{1}{1}(2\pi x) + \frac{1}{1}(2\pi y) + \frac{1}{12}(2\pi y)$$

$$= 2\pi (\frac{1}{1}) + 2\pi (\frac{1}{2}) \cdot \frac{1}{14} + \frac{1}{12}(2\pi y)$$

$$(2_{1}-1_{1},2)$$

$$P_{3} = \frac{1}{12}(\frac{1}{12}) + \frac{1}{14}(\frac{1}{12}) + \frac{1}{14}(\frac{1}{12})$$

$$P_{3} = \frac{1}{12}(\frac{1}{14}) + \frac{1}{12}(\frac{1}{14}) + \frac{1}{12}(\frac{1}{12})$$

$$P_{3} = \frac{1}{12}(\frac{1}{12}) + \frac{1}{12}(\frac{1}{12}) + \frac{1}{12}(\frac{1}{12})$$

$$P_{4} = \frac{1}{12}(\frac{1}{12}) + \frac{1}{12}(\frac{1}{12})$$

$$P_{5} = \frac{1}{12}(\frac{1}{12}) + \frac{1}{12}(\frac{1}{12}) + \frac{1}{12}(\frac{1}{12})$$

$$P_{5} = \frac{1}{12}(\frac{1}{12}) + \frac{1}{12}(\frac{1}$$

& Vector Integration: O Line integral @ Green's Theorem 3 Grauss Drivergence - theorem 3 - 137 @ Stoke's Theorem (1) Line integral:--> An integral evaluated along the Curve C is Colled Line integral. -> Ler F be a vector point -function acting on the Porth. $\vec{F} = F_1\vec{r} + F_2\vec{r} + F_3\vec{r} \int \vec{F}d\vec{r} = \int (F_1dx + F_2dy + F_3dy)$ Then $d\vec{r} = d\vec{x} + d\vec{y} + d\vec{z} + d\vec{x}$ Find Fide"=> (Fil+ 51+ 51+ 51). (dx + dy + date) F'.dr = F.dr + F2dy + F3dz 1 - 112 1 Problems OIF F= x"+y", evaluate (Fd) along the Dine y=x from (0,0) (1,1) Soli == xit + with Y= (21+45+0K) d= = dxi + du=) F.d? = (x^v, +y^v,). (dx + dy) = x'dx+ y'dy

$$\begin{aligned} \int F^{2} dv^{2} = \int ((444 + 4)^{2} dv) & 444 \\ & = \int (x^{2} dx + 4)^{2} dx \\ & = \int (x^{2} dx$$

(a)
$$\vec{F} = 5xu\vec{f} + 2u\vec{f}$$
 along the line $4=x^{3}, x=1, x=2$
(b) $\vec{F} = 3xu\vec{f} + 2u\vec{f}$
 $\vec{F} = 4x^{2} + 4u\vec{f}$
 $\vec{F} = 4x^{2} + 2y dy$
 $y = x^{2}$
 $dy = 2x dx$
 $\vec{f} = 4x^{2} = 5xufdx + 2y dy$
 $\vec{f} = 5x^{2}(x)^{2}dx + 2x^{2}dx$
 $= \int_{1}^{2} 5x^{3}dx + 4x^{3}dx$
 $= 5(\frac{x^{4}}{4})^{2} + 4(\frac{x^{4}}{4})^{2}$
 $= 5(\frac{x^{4}}{4})^{2} + 4(\frac{x^{4}}{4})^{2}$
 $= 5(\frac{x^{4}}{4})^{2} + 4(\frac{x^{4}}{4})^{2}$
 $= \frac{15}{4}x5 + \frac{15}{4}x4$
 $= \frac{15}{4}x5 + \frac{15}{4}x4$

The second s U) Relonives (the integral & multiple integral (2) 2-D closed image. 10-×= ** Total a fato a star (3) [pdx + 0dy = IS (0x+Py) drdy l'ine integral Double integral Grauss DAvergence Theorem: () It relates double integral & triple integral 2 Sphere E WHANZ AND 3 P.F? SFR'ds = SF P.Fdv service - 7kg Surface Triple Double Stroke's Theorem !-1) Relate line integral & Double integral 2 30 - open object TI 3 PXF $\iint (\nabla x \vec{F}) \cdot \vec{n} ds = \oint \vec{F} \cdot d\vec{r}$ $\int double \qquad Line$ double @ Stokes theorem is a pictular case Green's -theorem when 3D object.

Giveen's Theorem !-

Let P(r.y), Q(r.y) be any two Continuous -Friction With first order parital dericative exist then. Jpoh-tady = JS(do - dr) drdy Region R (or) my -plane

Spoketady = ((an-Py) dxdy R on xyplane The line inregral along the boundary of the Curve 'c' is equal to the Region 'R' on the Xy-Plane enclosed by 'c'.

Closed Curve!-

=) $\int Pdx + Qdy = \iint (Qx - Py) dx dy \rightarrow 0$ R Q = x, y, P = 4y; $\frac{dQ}{dx} = 1$ $\frac{dP}{dy} = -1$

- $\textcircled{0} \Rightarrow \int -y dx + x dy = \iint [1 (-i)] dx dy \\ = \Rightarrow \int x dy y dx = 2 \iint dx dy$
 - $\Rightarrow \lim_{R} x dy y dx = \iint_{R} dx dy$ $\Rightarrow \iint_{R} dx dy = \frac{1}{2} \oint_{C} x dy y dx \int_{R} dx dy = \frac{1}{2} \int_{C} dx dy y dx \int_{R} dx dy = \frac{1}{2} \int_{C} dx dy y dx \int_{R} dx dy = \frac{1}{2} \int_{C} dx dy y dx \int_{R} dx dy = \frac{1}{2} \int_{C} dx dy y dx \int_{R} dx dy = \frac{1}{2} \int_{C} dx dy y dx \int_{R} dx dy = \frac{1}{2} \int_{C} dx dy y dx \int_{R} dx dy = \frac{1}{2} \int_{C} dx dy y dx \int_{R} dx dy = \frac{1}{2} \int_{C} dx dy \frac{1}{2} \int_{C} dx dy = \frac{1}{2} \int_{C} dx dy \frac{1}{2} \int_{C} dx dy = \frac{1}{2} \int_{C} dx dy \frac{1}{2} \int_{C} dx dy = \frac{1}{2} \int_{C} dx dy \frac{1}{2} \int_{C} dx dy = \frac{1}{2} \int_{C} dx$

R.

Chicle Sidedy = The pt patrice to Mar Barlin Ellipse Jjdrudy=Trab = () Veriley Green's theorem in a plane fayty)d tridy tridy when 'c' is the Closed Curve of the region bounded y=x", y=x $S_{pl} \neq \int Pdx + Qdy = \int (Qx - Py) dx dy \rightarrow O$ Given J (ny+y) dx +x dy -> @ Wings Presid Let p=xy+y Q=x who they want To find double integral, $P_{ij} = \frac{dP}{dy} = (x + 2y), \frac{dQ}{dx} = Qx = 2x$ [(On-Ry) drdy R: y=n y=n $y=n = \iint \left[2x - (x+2y) \right] dx dy$ R: y=x y=x) 1 2 martine star = IS (x-2y)dxdy OF 2=0, 4=0 attendors in the work 0p x=1, y=1 - x=0,x=1 y=n, y=x

U)

$$I = \int (u_{1} + u_{1})(du_{1} + u^{2})du_{2}$$

$$I = \int \int [u_{1}(u_{1}v_{1}) + (u^{2})]du_{1} + u^{2}du_{2}du_{2}$$

$$= \int \int [u_{2} + u^{2}]du_{1} + 2u^{2}du_{2}$$

$$= \int (u_{2} + u^{2}]du_{1} + 2u^{2}du_{2}$$

$$= \int (u_{2} + u^{2})du_{1} + u^{2}du_{2}$$

$$I = \int (u_{2} + u^{2})du_{2} + u^{2}du_{2}$$

$$I = \int (u_{3} + u^{2})du_{2} + u^{2}du_{2}$$

$$I = \int (u_{3} + u^{2})du_{2} + u^{2}du_{2}$$

$$= \int (u_{3} + u^{2})du_{2} + u^{2}du_{2}$$

$$= \int (u_{3} + u^{2})du_{2} + u^{2}du_{2}$$

$$I = \int (u_{4} + u^{2})du_{2} + u^{2}du_{2}$$

$$I = \int (u_{4} + u^{2})du_{2} + u^{2}du_{2}$$

$$I = \int (u_{4} + u^{2})du_{3} + u^{2}du_{4}$$

$$= \int (u_{4} + u^{2})du_{4} + u^{2}du_{4}$$

$$= \int (u_{4} + u^{2})du_{4}$$
(*)
$$\int (3x^{2} - 8y^{2}) dx + (4y - 6xy) dy \quad y = 0 \ x = 0 \ x + y = 1$$

(*)
$$\int (3x^{2} - 8y^{2}) dx + (4y - 6xy) dy \quad x = 0 \ x = 0 \ x + y = 1$$

(*)
$$\int (3x^{2} - 8y^{2}) dx + (4y - 6xy) dy \quad x = 0 \ x = 0 \ x + y = 1$$

(*)
$$\int (3x^{2} - 8y^{2}) dx + (4y - 6xy) dy \quad x = 0 \ x$$

$$= \int_{1}^{0} (ay - bxy) dy$$

$$= \int_{1}^{0} (ay - bxy) dy = \int_{1}^{0} (ay dy)$$

$$= \int_{1}^{0} (ay - bxy) dy = \int_{1}^{0} (ay dy)$$

$$= \int_{1}^{0} (ay - bxy) dx = \int_{1}^{0} (ay - bx) dy$$

$$= \int_{1}^{0} (3x^{2} - 8y^{2}) dx + (ay - 6xy) dy$$

$$= \int_{1}^{0} (3x^{2} - 8(1 - x)) dx + (a(1 - x) - 6(x)(1 - x)) (dx)$$

$$= \int_{1}^{0} [3x^{2} - 8(1 + x^{2} - 2x)] dx + [(4 - 4x - 6x + 6x^{2})] dx$$

$$= \int_{1}^{0} [3x^{2} - 8(1 + x^{2} - 2x)] dx + [(4 - 4x - 6x + 6x^{2})] dx$$

 \bigcirc

.)

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

$$= \int_{C} \left[-11m^{2} + 26m - 12 \right] dx$$

Let'P' be a Vector point function is Continue With the first order partial derivative exists inside and on the Surface 'S'.

The Surface integral OF F over 's' is eau to the Volume OF the divergence OF F through outst the Volume 'V'.

More:

$$\nabla = \vec{P} \cdot \vec{d} + \vec{P} \cdot \vec{d} + \vec{R} \cdot \vec{d}$$

 $\vec{F} = \vec{F}_1 \cdot \vec{P} + \vec{F}_2 \cdot \vec{J} + \vec{F}_3 \cdot \vec{R}$
 $\vec{F} = \vec{F}_1 \cdot \vec{P} + \vec{F}_2 \cdot \vec{F}_3 + \vec{F}_3 \cdot \vec{R}$
 $\vec{P} \cdot \vec{F} = \vec{d} \cdot \vec{F}_1 + \vec{d} \cdot \vec{F}_2 + \vec{d} \cdot \vec{F}_3$ \rightarrow scalar - Punction
 \vec{N} is the Unit Ourward normal Vector to the
Surface.

$$\begin{aligned} & \int_{a} \int_{a}$$

All the second s

$$= 0 + \pi + 0 + 2\pi$$

$$= 3\pi$$

$$(\pi + 0 + 2\pi)$$

$$= 3\pi$$

$$(\pi + 0 + 2\pi)$$

$$(\pi + 1 + 2\pi)$$

$$($$

Ô

()

$$(A) = (AA = 1^{2} - A = 1^{2} + A = 1^{2$$

 $= \int_{0}^{1} \left((2-y) dy du \right)^{2} dx$ = $\int_{0}^{1} \left((2y - \frac{y^{2}}{2}) \right)^{2} dx$ = $\int_{0}^{1} \left((2y - \frac{y^{2}}{2}) \right)^{2} dx = \frac{3}{2} \int_{0}^{1} dx$ 15 rel 12 MALE = 12/1 11-1 2 To Find SF. nds R JECON D E G (0,1,0) (0,0,0)Try (1,0,0) B n=0,9=1 y=0,4=1 X 2=0,2=1 ア= 4727-47 Surfaces Ŷ Equipition Volucof HYER ds F.R. 也,可 5 S, ABEG 422 dydz N=001 42 -07 S2! OCDF -4727 dydz X=O J) S: BCDE -4~ Ohdz. 4=1 -1 -3 Su'OAGF yv didz 4=0 0 K SS'GEDF 42 chidy 4 モニー -K S6:0ABC chidy -42 $(\)$

SIPAGE - SIPAGE + SSPACE + SSPACE + [[=""" ds+]] =?. "" ds +]] =?. " ds => SS=?. nds= SS(u+)dzdy and a part $=\int \left(\frac{4z}{2}\right)_{0}^{2} dy$ + + + o in - or & - shi'n $= 2 \int dy = 2 [y]_0' = 2 ||$ => IJ =?. n' ds = J[] o] dydz = 0 1 22.0105-2 400 Z $\exists \int \vec{F} \cdot \vec{n}' ds = \int \int \left[\int (-t) \int dz dx \right]$ well as well a Sz = { GDGJdx ETAT - 2157 - 11 1 dx = -1=) [[======] = [[(o)dr.d======];

$$\begin{aligned} \int \left(\frac{1}{p} \cdot \pi^{2} ds = \int \int \left(\frac{1}{p} \cdot \frac{1}{q} dy dx \right) \\ = \int \left(\frac{1}{p} \cdot \frac{1}{p} \cdot \frac{1}{q} dx \right) \\ = \int \int \left(\frac{1}{p} \cdot \frac{1}{p} \cdot \frac{1}{q} dx \right) \\ = \int \int \left(\frac{1}{p} \cdot \frac{1}{p} \cdot \frac{1}{q} dx \right) \\ = \int \int \left(\frac{1}{p} \cdot \frac{1}{p} \cdot \frac{1}{q} dx \right) \\ = \int \int \left(\frac{1}{p} \cdot \frac{1}{p} \cdot \frac{1}{q} dx \right) \\ = \int \int \left(\frac{1}{p} \cdot \frac{1}{p} \cdot \frac{1}{q} dx \right) \\ = \int \int \left(\frac{1}{p} \cdot \frac{1}{q} dx \right) \\ = \int \int \left(\frac{1}{p} \cdot \frac{1}{q} dx \right) \\ = \int \int \int \left(\frac{1}{p} \cdot \frac{1}{q} dx \right) \\ = \int \int \int \left(\frac{1}{p} \cdot \frac{1}{q} dx \right) \\ = \int \int \int \int \frac{1}{p} \cdot \frac{1}{q} dx \\ = \int \int \int \frac{1}{p} \cdot \frac{1}{q} dx \\ = \int \int \int \frac{1}{p} \cdot \frac{1}{q} dx \\ = \int \frac{1}{q} \cdot \frac{1}{q} dx \\$$

 \bigcirc

 \bigcirc

= 2x + 2y + 22 2(x+y+=) SSP. Pav= SSS (Je(x+y+z)) diady) dr 91=0 y=0 z=0 a b + bit =2 [(x = + y = + z) dy dx Sund Shares ATT A THE $=2\int \int (Cx + Cy + Cy) dy dx$ 語のつる $= 2C \int \left(xy + \frac{y^{2}}{2} + \frac{cy}{2} \right)^{\frac{1}{2}} dx \quad g = \int \left(\frac{1}{2} + \frac{y^{2}}{2} + \frac{cy}{2} \right)^{\frac{1}{2}} dx$ A SHALL HE WHEN 1.45 $= 2C \int \left(bx + \frac{b^{\nu}}{2} + \frac{bc}{2}\right) dx$ DIN'S $= 2bc \int \left(x + \frac{b}{2} + \frac{c}{2}\right) dx$ 为国际的 = $2bc\left[\frac{n^2}{2} + \frac{bn}{2} + \frac{cx}{2}\right]^{Cl}$ 2676 1 $= 2bc \left[\frac{a^{2}}{2} + \frac{ab}{2} + \frac{ac}{2} \right]$ $= \frac{2bc}{2} \left(a^{2}+ab+ac \right)$ abc tals'e + abc = abc (a+b+c)

To Find IS P. Ti ds (L.H.S) $\iint \vec{F} \cdot \vec{n} ds = \iint \vec{F} \cdot \vec{n} ds + \iint \vec{F} \cdot \vec{n} ds + \iint \vec{F} \cdot \vec{n} ds$ Silver Silver + SFRids + SFRids + SFRids Unit outward P.n' Value Normal Vector +(y-zi) P+ P=n' Surfaces Equation ds n=1) S .: ABEG ny-yz ayyz dydz x=a n=-P - ~~+yz yz alydz S2: OCOF X= 0 4=0 n=3 4-2x b-2x dude S3: BODE 4=0 n=-j Sy' DAGIF -4+22 22 drud = n= R z-ry dray Ss: GIEDF 2=00 $n = -\overline{k}^{2}$ - 2+xy ny Se! OABC dixdy 2=0 $\iint \vec{F} \cdot \vec{n} ds = \iint (\vec{0} \cdot y \cdot d \cdot dy)$ 2, y=02=0 $= \int \int (a^2 - yz) dz dy$ (20+202g) od3 $= \int \left(a^{2}z - 4z^{2} \right)^{c} dy = \int \left(a^{2}z - 4z^{2} \right) dy$

41

A second second second

= (acby - yc) beneficient () = acb - bre = 40°cb - b°c y=b ==C $\iint \vec{F} \cdot \vec{n} \cdot ds = \iint (y \neq) d \neq dy$ 4=0 2=0 Sz $= \int \left(\frac{y z^{\nu}}{z} \right)_{0}^{C} dy = \int \frac{y c^{\nu}}{z} dy$ $= \left[\begin{array}{c} y^{\nu} & c^{\nu} \\ y & c^{\nu} \end{array} \right]^{b}$ $=\frac{5^{\circ}c^{\circ}}{4}$ $\iint \vec{F} \cdot \vec{n} ds = \iint (b^{\gamma} - zn) dz dx$ $= \int \left(b^{\vee} - \frac{1}{2} \right)^{C} dx$ $= \int \left(b^{\alpha}c - \frac{c^{\alpha}x}{2}\right) dx$ $= \left(b^{n}cx - c^{*} x^{n}\right)^{n}$ Bra - Chan

CHARLET CONSTRUCTION

00

COURSE FILE

FACULTY	Dr. R. ANBU	FACULTY DEPT	MATHS
SUBJECT	ADVANCED CALCULUS AND COMPLEX ANALYSIS	U20MABT02	
YEAR	2022 - 2023	EVEN	
DEG & BRANCH	В.ТЕСН	DURATION	60 Hours
SL.NO	DETAILS IN COURSE FILE	REMARKS	
1.	LEARNING OUTCOMES		
2.	LESSON PLAN		
3,	CO-PO MAPPING		
4.	INDIVIDUAL TIME TABLE		
5,	SYLLABUS WITH COURSE OUTCOMES		
6.	LECTURE NOTES (FOR ALL UNITS)		
7.	CLA I - QUESTION PAPER		
8.	CLA I-KEY		
9.	CLA I – SAMPLE ANSWER SHEETS		
10.	CLA II - QUESTION PAPER		
11.	CLA II - KEY		1
12.	CLA II - SAMPLE ANSWER SHEETS		
13.	CLA III - QUESTION PAPER		
14.	CLA III - KEY		
15.	CLA III - SAMPLE ANSWER SHEETS		
16.	ASSIGNMENT QUESTIONS		
17.	SAMPLE ASSIGNMENTS	5	-
18.	END SEMESTER QUESTION PAPER		
19.	END SEMESTER ANSWER KEY		
20.	TEXT BOOK AND REFERENCE BOOK		
21.	QUESTION BANK		
22.	STUDENT PERFORMANCE RECORD		
23.	STUDENT ATTENDANCE RECORD		
24.	COURSE END SURVEY		
25.	CO ATTAINMENT		

. 1

- (3)

٠.

LEARNING OUTCOMES

Subject Name / Code : Advanced Calculus and Complex Analysis / U20MABT02

- 1. Evaluate multiple integrals using change of variables.
- 2. Gain knowledge in applying the techniques of vector calculus in problems involving science and engineering in solving ODE.
- 3. Apply Laplace Transform method for solving many engineering problems.
- 4. Understand the knowledge in fundamentals of complex analysis functions and its properties.
- 5. Evaluate improper integrals using Residue Theorem involving problems in science and engineering.
- 6. Analyze real and complex integrals using the Cauchy's integral formula.

Name of the Department	:Mathematics
Name of the School	:Schoolof Basic Sciences
Program Name/Code	:B.Tech(All branches)/First Year
Academic Year / Semester	:2022-2022/ODD
Course Name/Code	:Advanced Calculus and Complex Analysis/U20MABT02
a. No. of Credits b. Total Contact Hours	:4 :60

Staff Name / ID

:Dr. R. Anbu/5166

S.No	бо Торіс		Reference	Teaching Tool	Proposed Date	Completed Date	BT
	UNI	r I-MI	ULTIPLE IN	TEGRALS			
1	Introduction to double integration. Evaluation of double integral when the limits are constant and variable.	1	R1	Т6	10-10-22		2
2	Evaluation of double integral (Cartesian forms and Polar forms)	1	R1	Т6	11-10-22		2
3	Changing of order of integration in Cartesian coordinates		R1	T6	12-10-22		3
4	Tutorial	1	R1	T2	13-10-22		3
5	Area of the region using double integral (Cartesian forms and Polar forms)		R1	Т6	14-10-22		3
6	Evaluation of triple integral using the Cartesian coordinates and solving the problems	1	R1	Т6	17-10-22		2
7	Convert the Cartesian coordinate into Polar coordinate in triple integral, Solving problems in Volume integral	1	R1	T6	18-10-22		2
8	Tutorial	1	R1	T2	19-10-22		2
9	Using triple integral techniques to find the Area	1	R1	T6	20-10-22		3
10	Apply triple integral techniques to find the Volume.	1	Rl	Т6	21-10-22		3
11	Applications of integral in engineering - Determine the mass an object, Calculate the force exerted of an objects	1	R1	Τ6	26-10-22		3

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/002

LESSON PLAN

12	Tutorial	1	R1	T2	27-10-22	3
	UN	IT II-	VECTOR C	ALCULUS		
13	Introduction to vector calculus and review of vectors in 2, 3 dimensions. Definition for Gradient-divergence-curl.	1	R2	T6	28-10-22	2
14	Solving problems in Solenoidal& Irrotational.	1	R2	Т6	31-10-22	2
15	Directional derivatives. Evaluation of line integrals and surface integrals	1	R2	T6	01-11-22	2
16	Tutorial	1	R2	T2	02-11-22	2
17	Verification of Green's theorem and solve problems using Green's theorem.	1	R2	Т6	03-11-22	3
18	State the Gauss divergence theorem and problems for Gauss divergence theoremand explaining how surface integral relates with volume integral	1	R2	T6	04-11-22	3
19	Problems on Gauss divergence theorem for Cube¶llelepiped	1	R2	T6	07-11-22	3
20	Tutorial	1	R2	T2	08-11-22	3
21	State the Stokes's theorem and solving the problems and explaining how line integral relates with double integral	1	R2	T6	09-11-22	3
22	Problems on Stokes's theorem for Cube¶llelepiped	1	R2	Т6	10-11-22	2
23	Application of Line and Volume Integrals in Engineering	1	R2	Т6	11-11-22	3
24	Tutorial	1	R2	T2	14-11-22	3
	UNIT	III-LA	APLACE TR	ANSFORM	1	
25	Introduction to Laplace transforms and Properties of Laplace Transforms	1	R2	T6	15-11-22	2
26	Solving problems using properties. Transforms of derivatives and integrals	1	R2	Т6	16-11-22	2

27	Problems on Transforms of derivatives and integrals	1	R2	Т6	17-11-22	3
28	Tutorial	1	R2	T2	18-11-22	2
29	Initial value theorem and final value theorem and solving problems	1	R2	Т6	21-11-22	2
30	Introduction to Inverse Laplace transforms using partial 30 fractions. Derive Inverse Laplace transforms using shifting theorem		R2	T6	22-11-22	2
31	LT and ILT convolution theorem, LT of periodic functions		R2	Т6	23-11-22	3
32	Tutorial		R2	Т2	24-11-22	3
33	Applications of LT for solving linear ordinary differential equations of second order with constant coefficient	1	R2	Т6	25-11-22	3
34	Solution of integral equation and integral equation involving convolution type	1	R2	Т6	28-11-22	3
35	Applications of Laplace transform in engineering- Laplace transform is used to simplify calculations in system modelling	1	R2	T6	29-11-22	3
36	Tutorial	1	R2	T2	30-11-22	3
	UNIT	TV-A	NALYTIC	FUNCTION		
37	Introduction of analytic function and its Properties. C-R Equations.	1	R2,R3	Τ6	01-12-22	2
38	Determination of analytic function using Milne Thomson's method	1	R2,R3	Т6	02-12-22	3
39	Problems on Milne Thomson's method	1	R2,R3	Т6	05-12-22	3

Harmonic function, Explain the Conformal mappings:

magnification, rotation, inversion, reflection

1

1

R2,R3

R2,R3

T2

T6

06-12-22

07-12-22

40

41

Tutorial

3

42	Problems on Conformal mappings	1	R2,R3	Т6	08-12-22	2
43	Problems on fixed points and cross ratio, Bilinear transformation	1	R2,R3	Т6	09-12-22	3
44	Tutorial	1	R2,R3	T2	12-12-22	2
45	Problems on Bilinear transformation	1	R2,R3	Т6	13-12-22	3
46	State Cauchy's integral theorem and solving problems	1	R2,R3	Т6	14-12-22	3
47	 Application of Bilinear transformation and Cauchy's integral in engineering- signal processing and discrete time control theory to transform continuous 		R2,R3	Т6	15-12-22	3
48	Tutorial	1	R2,R3	T2	16-12-22	3
	UNIT	V-CO	MPLEX INT	EGRATIO	N	
49	Derive the Cauchy's integral formulae and solving the problems	1	R2,R3	T6	19-12-22	2
50	Explain the Taylor's expansions and solving the problems	1	R2,R3	Т6	20-12-22	3
51	Explain the Laurent's expansions and solving the problems	1	R2,R3	T6	21-12-22	2
52	Tutorial	1	R2,R3	T2	22-12-22	2
53	Classification of singularities and methods of finding residues	1	R2,R3	T6	23-12-22	2
54	State Cauchy's residue theorem and solving the problems	1	R2,R3	Т6	26-12-22	2
55	Explain the Contour integration: Unit circle and solving the problems	1	R2,R3	T6	27-12-22	3
56	Tutorial	1	R2,R3	T2	28-12-22	2
57	Introduction to Semi-circular contour and Explain the problems	1	R2,R3	T6	29-12-22	2

LESSON PLAN

58	Apply Cauchy's residue theorem to find Complex integral along a circular contour C	1	R2,R3	Т6	30-12-22	3
59	Semi-circular contour Application of Contour integration in Engineering	1	R2,R3	Т6	02-01-23	3
60	Tutorial	1	R2,R3	T2	03-01-23	3

	Reference Code	Description
	R1	Erwin Kreyszig, "Advanced Engineering Mathematics", 9 th Edition, John Wiley & Sons, 2006
0	R2	B.S.Grewal, "Higher engineering Mathematics", Khanna Publishers, 36 th Edition, 2010
<u>_</u>	R3	Veerarajan.T, "Engineering Mathematics for first years", Tata McGraw-Hill, New Delhi- 2008
	R4	G.B.Thomas and R.L.Finney, "Calculus and Analytic geometry", 9 th Edition, Pearson, 2002
	R5	Ramana. B.V, "Higher Engineering Mathematics", Tata McGraw-Hill, New Delhi, 11 th - 2008
	R6	N. P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, 2008

	Type Code	Teaching Tool Planned
	T1	Power Point Presentation
0	T2	Tutorial and Problem Solving etc.
	T3	Video Presentation
	T4	Notes
[T5	Models
	T6	Black Board
	T7	Simulation/Practical etc.

Prepared by	Staff Name Dr.R. Anbu	Signature
Verified by	HOD Dr.G.Mathubala	Signature
Approved by	Dr.M. Sundararajan ProVC (Academics)	Signature

CO-PO MAPPING

List of Pos:

Engineering Graduates will be able to:

PO1 Engineering knowledge Apply the knowledge of mathematics science engineering fundamentals and an engineering specialization to the solution of complex problems.

PO2 Problem Analysis Identify, formula, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural science, and engineering sciences.

PO3 Design/Development of Solution Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the information to provide valid conclusions

PO4 Conduct Investigation of Complex Problems Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5 Modern Tool Usage Create, select, and apply appropriate techniques and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6 The Engineering and Society Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7 Environment and Sustainability Understand the impact of the professional engineering solution in societal and environmental contexts, and demonstrate the knowledge of and need for sustainable development.

PO8 Ethics Apply ethical principle and commit to professional ethics and responsibility and norms of the engineering practice.

PO9 Individual and Team Work Function effectively as an a member or leader in diverse teams and in multidisciplinary settings.

PO10 Communication Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11 Project Management and Finance Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work as a member and leader in a team to manage projects and in multidisciplinary environments.

PO12 Life-Long learning Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

STAFF NAME: Dr. D. Venkatesan, MATHEMATICS

DA HR	I 9.00- 9.50	II 9.50- 10.40	B	III 10.50- 11.40	IV 11.40- 12.30	B	V 1.30- 2.20	VI 2.20-3.10	VII 3.10-4.00
MON		ACCA A1	R			R			
TUES			E		ACCA A1	E			
WED	ACCA A1		A C			A C			
THUR			К	ACCA A1		K			
FRI				ACCA A1					

	ADVANCED CALCULUS AND COMPLEX ANALYSIS	L	Т	Р	C			
U20MABT02	Total Contact Periods- 60	3	1	0	4			
	Prerequisite :+2							
	5							
	Total Marks:100							

Co.No	COURSE OUTCOME(Cos)					
CO2	Gain knowledge in applying the techniques of vector calculus in problems	3				
	involving science and Engineering in solving ODE					
CO3	Many Engineering problems can be transformed in to problems involving ODE,	3				
	PDE and Integrals. Laplace transform method and Complex methods can be used					
	for solving them.					
CO4	Gain knowledge in fundamentals of complex analytic functions and its properties	3				
CO5	Gain knowledge in evaluating improper integrals using Residue Theorem involving	3				
	problems in science and Engineering					

Mapping/Alignment of Cos with PO& PSO

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3										1			
CO2	3	3										2			
CO3	3	3										2			
CO4	3	3	2									1			
CO5	3	3	1									2			

(Tick mark or level of correlation: 3-High, 2-Medium, 1-Low)

Course Content:

UNIT I - MULTIPLE INTEGRALS

(9+3) Hrs

Evaluation of Double integration Cartesian and plane polar coordinates- Evaluation of double integral by changing of order of integration- Area of double integral (Cartesian) - Area of Double integral (polar) - Triple integration in Cartesian coordinates- Conversation from Cartesian to polar in double integrals - Area of triple integral- Applications of Integral in Engineering.

UNIT II - VECTOR CALCULUS

Review of Vectors in 2,3 dimensions- Gradient- divergence - Curl – Solenoidal- Irrotational fields- vector identities (without Proof) -Directional derivatives- Line Integrals- Surface Integrals . Volume Integrals Green's Theorem (without proof) - Gauss divergence theorem (without proof) - Verification Applications to cube- Applications to parallelepiped- Stoke's Theorem (without proof) - Verification - Applications to cubes- Applications to parallelepiped - Application of Line and Volume Integrals in Engineering.

UNIT III - LAPLACE TRANSFORM

Laplace Transforms of standard functions- Transforms properties- Transforms of derivatives and integrals- Initial value theorems (without proof) and Final value theorems (without proof) - verification for some problems- Inverse Laplace transforms using partial fractions – Inverse Laplace transforms using shifting theorem - LT convolution theorem- ILT convolution theorem- LT of periodic functions - Applications of LT for solving Linear ordinary differential equations up to second order with constant coefficient – Solution of integral equation and integral equation involving convolution type- Applications of Laplace transform in Engineering.

UNIT IV- ANALYTIC FUNCTIONS

Definition of Analytic function- Cauchy Riemann equations- Properties of analytic function -Determination of analytic function using Milne Thomson's Method - Conformal mappings: magnification, rotations, inversion, reflection- Bilinear transformation- Cauchy's Integral theorem(without proof) - Cauchy's integral theorem applications- Application of Bilinear transformation and Cauchy Integral in Engineering

UNIT V - COMPLEX INTEGRATION

Cauchy's Integral formulae- Taylor's expansions- Laurent's expansions- Types of poles and Residues - Cauchy's residue theorem (without proof) - Contour Integration: Unit Circlesemicircular contour Application of Contour integration in Engineering

Course Coordinator

Dr. R. Anbu

(9+3) Hrs

(9+3) Hrs

(9+3) Hrs

(9+3)Hrs

HoD/Mathematics

(*) JJ x (x+y) dx dy 1824 $= \int \int (x^{2} + xy) dx dy$ = $\int \int \int (x^{2} + xy) dy dy$ = $\int \int \int \int (x^{2} + xy) dy dy$ = J[Jxidy + Jxy dy]dx

$$= \int_{1}^{2} \left[\int_{-\infty}^{1} x_{0}(y) + \int_{0}^{1} x_{0}(\frac{y}{2}) \right] dx$$

$$= \int_{1}^{2} \left[\int_{-\infty}^{\infty} c_{0}(y) + x_{0}\left(\frac{y}{2} - \frac{y}{2}\right) \right] dx$$

$$= \int_{1}^{2} \left[\left[x_{0}^{-} dx + x_{0}\left(\frac{y}{2}\right) \right] dx$$

$$= \int_{1}^{2} \left[\left[x_{0}^{-} dx + x_{0}\left(\frac{y}{2}\right) \right] dx$$

$$= \left(\frac{g}{3} - \frac{1}{3} \right) + \frac{g}{2} \left(\frac{g}{2} - \frac{1}{2} \right)$$

$$= \frac{g_{1}}{3} + \frac{g}{2} \left(\frac{g_{2}}{2} \right)$$

$$= \frac{g_{1}}{3} + \frac{g}{2} \left(\frac{g_{2}}{2} \right)$$

$$= \frac{g_{1}}{12}$$

$$= \int_{1}^{2} \left[\int_{-\infty}^{\infty} x_{0} \frac{y^{2}}{2} \right] dx$$

$$= \int_{1}^{2} \left[\int_{-\infty}^{\infty} x_{0} \frac{y^{2}}{2} \right] dx$$

· I x made - The man = 1 1 2 Jan = [[2 - 2] dx = 31/23 dx $=\int \frac{n^5}{1} dx - \frac{x^3}{2} dx$ $=\frac{2}{2}\left[\frac{\chi^{0}}{R}-\frac{\chi^{0}}{2}\right] \neq$ YAYFINE $= \frac{1}{2} \left[\frac{64}{4} - \frac{1}{4} \right] - \frac{1}{2} \left[\frac{16}{4} - \frac{1}{4} \right]$ (3) $\int \int \frac{Sinx}{x} dy dx = 2$ $=\frac{1}{2}\begin{bmatrix} 63\\ -1 \end{bmatrix} -\frac{1}{2} \begin{bmatrix} 15\\ -1 \end{bmatrix}$ 63 - 10 = [] Sinz dy] dx = [] Sinx. Hay Jax - [四六]]] = [] Sink.y. (*) JJ (nry)drdy at all and all a $= \int \int (x + y) dy dx$ = [x] Idy + [ydy]dx $= \int \chi^{\nu}(y) + \left(\frac{y^{3}}{z}\right)^{2} dx$

 $= \int \left[\mathcal{H}^{\vee}(a-i) + \frac{g}{2} - \frac{i}{3} \right] dx$ · [[x*+]]dx : + Jadan = fida $= \left(\frac{\gamma_{1}^{3}}{3}\right)_{0} \left(\frac{3}{3}\right)_{0}$ Han a sala (+) [] drdy A sata ta ta $= \int_{y=0}^{y=1} \left[\int_{y=0}^{y=1} \frac{1}{1-x^2 \sqrt{1-y^2}} dy \right] dx$ = St Stindy & Frands Jan $= \left[\left[\int \frac{1}{\sqrt{1-y^2}} dy \right] \frac{1}{\sqrt{1-x^2}} dx \right]$ $= \left[\left[S^{2} \overline{n}^{\prime} (i) - S^{2} \overline{n}^{\prime} (o) \right] \left[\frac{dx}{\sqrt{1-x^{\prime}}} \right] \left[\frac{1}{\sqrt{1-x^{\prime}}} \right] \right] \left[\frac{1}{\sqrt{1-x^{\prime}}} \right]$ $= \int (\underline{T} - 0) \frac{1}{1 - x} dx$ $= \frac{\pi}{2} \int \frac{1}{\sqrt{1-x^{2}}} dx = \frac{\pi}{2} \left[sink \right]_{0}^{1} = \frac{\pi}{4}$

(+) IJ drdy = [[] = dy] tox S Tue La la = [[] blogy] tax =][logb-log1] + dx -Correct 1 at =) (logb) dx = logb J tdx (r [vou] = logb[loga-0] = loga. logb. (*) I rigid dy over the region bourded by the Straight lines n=0, x=3 & y=0 y=3 m=3 y=3= $\int \int x y dx dy$ (0.3) (3.3) x=0 y= (0,0) (3,0) $= \int \left[\int_{Y}^{S} dy \right] \chi dx$ Area = bxh =3×3=9 $b = \int dx = 3$ $= \int \left[\frac{y^3}{3} \right]^3 \chi d\chi$ = 27 Judx = 27 Judx = 97 24 = 18 $h = \int dy = 3$ Ser units

Wo Thad the area of the Chuble Surray val SS (x-y)dydre baunded by yer and yer Sol-4=2 -50 4 = 2 - 7 (2) N 28 30 yor Non DACKED 0.00 M.(x-7)=0 ALL MED C1.0) IF 71=0=74=0 IF WEI Syel Doint of Inter Section (0.0) (1.1) The Lunit 'n' Vories From N=0, N=1 The Unit 'Y' Varies from y=x, y=x" If Gr-y)dy dr = J[[(r-y)dy]dr R n=oly=n = [[] ndy-Jydy]dx N=0 20 = S[n[y-]+2]dx $= \int \left[\chi(m-\chi') - \left[\frac{\chi'}{2} - \frac{m^2}{2} \right] dx \right]$ -43-W + 24 Have p13/7

$$= \begin{bmatrix} \frac{\pi^{3}}{3} - \frac{\pi^{4}}{4} - \frac{\pi^{3}}{3\pi^{2}} + \frac{\pi^{5}}{5\pi^{2}} \end{bmatrix}_{0}^{1}$$

$$= \begin{bmatrix} (\frac{1}{3} - \frac{1}{4}) - \frac{1}{6} + \frac{1}{16} \end{bmatrix}_{0}^{1} = 0$$

$$= (\frac{1}{12} - \frac{1}{6}) + \frac{1}{16}$$

$$= -\frac{1}{12} + \frac{1}{10} = \frac{12 - 10}{120} = -\frac{1}{60} \text{ Solution}^{1} + \frac{1}{10}$$

$$= -\frac{1}{12} + \frac{1}{10} = \frac{12 - 10}{120} = -\frac{1}{60} \text{ Solution}^{1} + \frac{1}{10}$$

$$= -\frac{1}{12} + \frac{1}{10} = \frac{12 - 10}{120} = -\frac{1}{60} \text{ Solution}^{1} + \frac{1}{10}$$

$$(4) \text{ Find the Ovec of the Clouble Integration of the Ovec of the Ovechous Integration of the Ovechous of the Ovechous Integration of the Ovechous of the Ovechous Integration of the Ovechous of$$

= 1 Sq. unit. (+) Find the area OF the double integral bounded by the Straight line x=0, y=1, y=2 N=0, y=1, y=x Sol-N=0->0 P. C. L. L. L. L. H. 4=1-92 4=n -) B) IF y=1=1 (11) The Unit Varies from N=0, N=1 and a former The Unit Varies from y=x1, y=x $\iint dy dx = \iint \left[\frac{y=1}{4} \right] dy dx$ $= \iint \int dy \int dx$ $= \int [y]_{x} dx$ つったい (のよう一) = 1 (1-20 dx 15- Alta - A V J.F. Margarit $=\left(\mathcal{N}-\underline{\mathcal{N}}\right)^{2}$ $= 1 - 0 - \left[\frac{1}{2} - \frac{0}{2}\right]$ $=1-\frac{1}{z}$ = 1 So. Units Contr/

W) Find Area using Double integral \$ 450 y=x y=xx Sol: Y=n~->0 (3) (2,14) y=2×+3→@ 1-20 y=n Land (0,0) 0=4, 0=x 9; (01) 23 4 5 G x=1, y=1 (1,1) -4-3 62.-动动动物 电工 R=-1, Y=1 (-1.1) - 2 n=2, y=y(2, u)allow and 29 x=-2 14=4 (-2,4) The Long a= 8 14=9 (+3,9) way - phillip 2,27 y = 2x + 3 $\chi = -3, \forall = 9(-3, q)$ PE x=0, y=3 (0.3) y=n~->0 y = 1 + y = 5 (1,5) $y = 2x + 3 \rightarrow \bigcirc$ n=-1, y=1 (-1,1) W=2x+3 n=2, y=7 (2,7) n=-2, y=-1 (-2,-1) x-2x-3=0 $(\chi+1)(\chi-3)=0$ 9 x=-1 => y=1 (-1,1) M+1=0 | X-3=0 if x=3=)y=9 (39) 12 = -1/2 = 37The Limit & varies from K=-1, K=3 The Linuir y varies from y=x, y=2x+3 N=3, y=2x+3 N=3 21/73 Area =] [dy]dx =][y],dx n=-1 (y=n $\chi = -1$ = $\int (2\pi + 3 - \chi^2) d\chi$ $= \int 2x dx + 3 \int dx - \int x dx$ $= 2(\frac{3}{2})^{3} + 3(3)^{3}$ 0

 \bigcirc

$$= 2\left(\frac{2}{3}+\frac{1}{3}\right)+3\left(3-(n)\right)-\left(9-(3)\right)$$

$$= 8+3(u)-(9+3)$$

$$= 20-\frac{28}{3}$$

$$= \frac{60-29}{3}=\frac{32}{3}$$

$$= \frac{60-29}{3}$$

$$= \frac{60-29}{3}$$

$$= \frac{60-29}{3}=\frac{32}{3}$$

$$= \frac{60-29}{3}$$

$$= \frac{60-29}$$
$$= \left(\begin{array}{c} \sqrt{10^{2} \text{ s}^{4}} + \sqrt{10^{4} \text{ s}^{4}} + \sqrt{10^{4}} \right)_{0}^{0}$$

$$= \frac{9}{2} \left[\sqrt{10^{4} \text{ s}^{4}} + \sqrt{10^{4}} \right]_{0}^{0}$$

$$= \frac{9}{2} \left[\sqrt{10^{4} \text{ s}^{4}} + \sqrt{10^{4}} \right]$$

$$= \frac{9}{2} \left[\sqrt{10^{4} \text{ s}^{4}} + \sqrt{10^{4}} \right]$$

$$= \frac{9}{2} \left[\sqrt{10^{4} \text{ s}^{4}} + \sqrt{10^{4} \text{ s}^{4}} \right]$$

$$= 10^{5} \text{ Seq. units}$$
Why Find the area bounded by $\sqrt{12} \text{ data s}_{0}^{2} + \sqrt{10^{4} \text{ dats}^{4}} + \sqrt{10^{4} \text{ dats}^{4}} \right]$

$$= 10^{5} \text{ Seq. units}$$
Why Find the area bounded by $\sqrt{12} \text{ dats}_{0}^{2} + \sqrt{10^{4} \text{ dats}^{4}} + \sqrt{10^{4}$

0

Ű

y (un? Ne ua Dyrua (unite) + (united) The Danst & varies from 200, 2=40 The Dimit y varies - From y= x to 2 Tax -Area = Mandy = J. [J. dy]dx = SlyT dx $= \int \left(2 J \overline{\alpha} x - \frac{\pi}{4 \alpha}\right) dx$ = jestan dx - jrigdx = 2Ja JJr. dx - to Jridx = $2\sqrt{12} = \frac{2}{3} \left[\chi^{3/2} \right]_{0}^{40} - \frac{1}{10} \left(\frac{\chi^{3}}{3} \right)^{40}$ $= \frac{4Ja}{3} \left[(4a)^{3/2} - 0 \right] - \frac{1}{4a} \left[\frac{(4a)^3}{3} - 0 \right]$ $= \frac{4Ja}{3} \left[\frac{4aJa}{4a} - \frac{4aJ^3}{3} \right]$ $= \frac{16a.02a}{2} - \frac{16a}{3}$ $=\frac{32a^{V}-16a^{W}}{3}$ = 1693 Sq. units

(4)
$$\int x^{n} dx = \frac{x^{n+1}}{x_{n+1}}$$
$$\int y^{n} dx = \frac{x^{n+1}}{x_{n+1}}$$
$$\int y^{n} dx = \frac{x^{n}}{y_{n+1}}$$
$$= \frac{x^{2n}}{y_{n}} = \frac{x^{2n}}{y_{n}}$$
$$= \frac{x^{2n}}{y_{n}} = \frac{x^{2n}}{y_{n}}$$
$$= \frac{x^{2n}}{y_{n}} = \frac{x^{2n}}{y_{n}}$$
$$(1) To evalue \int \int \int \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(1) To evalue \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(2) To evalue \int \int \frac{y^{n}}{y_{n}} dx dd dx$$
$$(2) To evalue \int \frac{y^{n}}{y_{n}} dx dd dx$$

 \bigcirc

 \bigcirc

副和1000年10月1日

= Jeydy $=\left[\frac{e^{y}}{-1}\right]^{\infty}$ $= -1 \left[\frac{e^{-y}}{e^{-y}} \right]^{\infty} = -1 \left(\frac{e^{-y}}{e^{-y}} \right)$ wind rooms =-1(0-1)=1 100 100 00000 (0,0) ed and Griven n: XAY to x=a 0.12 4: 4=0 to 4=0 IP y=0=) x=0 (0.0) (0.0) 4=0 (a.b) IF y=0=) x=0 (0,0) 1. A. (0.43) Change of order m=0, m=0 $\chi: \chi=0, \chi=a$ y=y y=a 4: y=0, y=x - Tart a fait to a the to $= \int_{0}^{1} \int_{0}^{1} \frac{1}{\chi_{-q}} \frac{1}{\chi_$ THUS - HILFORD - M. $=\int_{x=0}^{x=0} \left[\int_{y=0}^{y=x} \frac{x}{x^{y+y}} dy \right] dx$ to on the state $= \int \frac{1}{2} \left[\frac{1}{2} \tan^{-1} \left(\frac{y}{2x} \right)^{\lambda} \right] dx$ - ut stall - under $= \int \left[Tan' \left(\frac{y}{x} \right)^{\chi} \right] dx$ The second second NED $=\int \left[Tan'\left(\frac{y}{x}\right)_{0}^{\chi} \right] dx$ statue]] = ngué -= $\int \left[Tan'\left(\frac{x}{x}\right) - tan'\left(\frac{x}{x}\right) \right] dx$

$$= \int_{a}^{b} \int_{a}^{b} dx$$

$$= \int_{a}^{b} \int_{a}^{b} dx$$

$$= \int_{a}^{b} \int_{a}^{b$$

1⊑

0

(a) Change the Order of Ginegraphon

$$\int_{0}^{u_{a}} \left(\int_{u_{a}}^{2\sqrt{n}} du \right) dx = \int_{u_{a}}^{u_{a}} \int_{u_{a}}^{u_{a}$$

$$= \frac{1}{2} \int_{0}^{4} \left(4ay^{2} - \frac{y^{5}}{16a^{2}} \right) dy$$

$$= \frac{1}{2} \int_{0}^{4} (4ay^{2} - \frac{1}{2}) \int_{0}^{4} \frac{y^{5}}{16a^{2}} dy$$

$$= \frac{1}{2} \int_{0}^{4} (4ay^{2} - \frac{1}{32a^{2}}) \int_{0}^{4} \frac{y^{5}}{16a^{2}} dy$$

$$= \frac{2a}{3} \int_{0}^{4} \frac{y^{3}}{2} \frac{y^{4}}{4} - \frac{1}{32a^{2}} \int_{0}^{4} \frac{y^{6}}{6} dy$$

$$= \frac{2a}{3} \left(\frac{y^{3}}{3} \right)_{0}^{4a} - \frac{1}{32a^{2}} \left(\frac{y^{3}}{6} \right)_{0}^{4a}$$

$$= \frac{128a^{4}}{3} - \frac{1}{32a^{2}} \left(\frac{y^{3}}{6} \right)_{0}^{4a} - \frac{1}{32a^{2}} \left(\frac{y^{3}}{6} \right)_{0}^{4a}$$

$$= \frac{128a^{4}}{3} - \frac{128a^{4}}{32a^{2}} \left(\frac{256a^{4}}{6} \right)$$

$$= \frac{128a^{4}}{3} - \frac{64a^{4}}{3} = \frac{64}{3}a^{4} - \frac{9}{29} \frac{100}{14}$$

$$= \frac{128a^{4}}{3} - \frac{64a^{4}}{3} = \frac{64}{3}a^{4} - \frac{9}{29} \frac{100}{14}$$
(4) Find area de charge and condentate $\frac{3}{2}h^{4} + \frac{9}{2}a^{2}$

$$= \frac{3}{2}h^{4} + \frac{9}{2}a^{2}$$

$$= \frac{1}{2} \frac{9}{6}a^{4} - \frac{9}{2}a^{2}$$

$$= \frac{1}{3} \frac{9}{6}a^{4} - \frac{9}{2}a^{4} - \frac{9}{2}a^{4}$$

דו

Here & Transfilm Area = [] Jardar]do $= \int_{1}^{2\pi} \left(\frac{91}{2}\right)_{0}^{\alpha} d\theta$ $=\int_{1}^{2}\frac{d^{2}}{2}d\theta$ $= \frac{a^{\vee}}{2} \int d\theta$ $= \frac{\Omega^{N}}{2} (0)^{2\pi}$ $= \frac{\alpha^{\vee}}{2} (2\pi) = \pi \alpha^{\vee} \Omega_{0} . unit.$ $\int \int xy \, dy \, dx = \int \int x \left[\int y \, dy \right] dx \longrightarrow 0$ $\int \int xy \, dy \, dx = \int \int x \left[\int y \, dy \right] dx \longrightarrow 0$ $\int \int xy \, dy \, dy = \chi$ (5) and a find Sol-Given 4= 2 -> @ y=20-x->3 18:05 Limits: N: N=0, N=a $y: y = \frac{x^{\vee}}{2}, y = 2a - x$ If x=0 then y=0 (0:0) IP $\chi = a$ then $y = \frac{a}{a} = a$ (a,a) $y = \frac{a}{a}$ If n = 0 -then y = 2a (0,2a) 2y = 2a - 2If n = a -then y = a (a,a) Del $(D) Y = \frac{\pi^{\nu}}{2} =) \pi^{\nu} = ay (Parabola).$ 3=) y= 2a-x => x+y=2a (st. 2?ne)

Apply Change of Order (0,20). Cimits! (a.a) (0.0) 1: 4=0,4=0 (x= Tou (0.0) (10.0) n=0, n= Jay (0.0) II: y=a, y=2a $\chi = 0$, $\chi = 2a - 4$ $0 \Rightarrow \int x \int y = 2a - x$ L(0:20) (0,a) x=0 y=x (0.0) (a10) (zan) 三 1 + 五 = Jy Jx dx] dy + Jy [J x dx] dy 4=0 M=0 4=0 n=0 $I = \int e_{y} \left[\frac{n}{2} \right]_{0} dn_{y}$ 4=0 $= \int_{2}^{\alpha} y(\frac{\alpha y}{2}) dxy$ $=\frac{\alpha}{2}\int y^{2}dy$ $= \frac{q}{2} \left(\frac{y^3}{2} \right)^{\alpha}$ $I = \frac{a}{2} \cdot \frac{a^3}{3} = \frac{a^4}{6}$ Now $II = \int_{y=2a}^{y=2a} \int_{x=0}^{x=2a-y} \int_{x=0}^{x=2a-y} dy$ $= \left(\frac{1}{2} \left(\frac{x^{2}}{2} \right)^{2\alpha - 4} \right) dy$

10

= [y [(20-y)] dy = J y [40×44×40y] dy = +2 5 [4ay +y3 4ay]dy = #a Jy dy + y ay # y dy = $2a^{\gamma} \left(\frac{y^{\gamma}}{2}\right)_{a}^{2q} + \frac{1}{2} \left[\frac{y^{4}}{4}\right]_{a}^{2q} - 2a \left[\frac{y^{3}}{3}\right]_{dy}^{2q}$ = $2a^{(4a^{)}} - \frac{a^{}}{2} + \frac{1}{2} \left[\frac{16a^{4}}{4} - \frac{a^{4}}{4} \right] - 2a \left[\frac{8a^{3}}{3} - \frac{a^{3}}{3} \right]$ $= \mathcal{A}\alpha^{\vee}\left[\frac{3\alpha^{\vee}}{2}\right] + \frac{1}{2}\left[\frac{15\alpha^{4}}{4}\right] - 2\alpha\left[\frac{4\alpha^{3}}{3}\right]$ $= 3a^{4} + \frac{15a^{4}}{2} - \frac{14a^{34}}{2}$ ab [[]] $= a^{4} \left(3 + \frac{15}{9} - \frac{14}{3} \right)$ $= a^{4} \left(\frac{1}{2} + \frac{45 - 112}{24} \right) = \frac{5a^{4}}{24}$ Total Area I+I $I+II = \frac{a^4}{c} + \frac{5a^4}{24}$ $= \frac{3a^4}{8} \frac{5a^4}{4a^4}$ $= \frac{3a^4}{8} Sq. units$

(1) Jrondo = J[y=0 $=\int_{0}^{\pi} \left[\frac{\gamma}{2}\right]_{0}^{a} d\theta = \int_{0}^{\pi} \frac{d\theta}{2} d\theta$ $= \frac{\alpha^{2}}{2} [0]_{0}^{T}$ $=\frac{\alpha^{\vee}}{2}\pi = \frac{\pi\alpha^{\vee}}{2}$ (+) J Jrdvdo - 12 12 12 12 12 101 00 $= \int \frac{\pi}{\sqrt{\frac{1}{2}}} \int \frac{1}{\sqrt{\frac{1}{2}}} \frac{1}{\sqrt{\frac{1}{2}}} \int \frac{1}{\sqrt{\frac{1}{2}}} \frac{1}{\sqrt{\frac{1}{2}}} \int \frac{1}{\sqrt{\frac{1}{2}}} \frac{1}{\sqrt{\frac{1}{2}}} \frac{1}{\sqrt{\frac{1}{2}}} \int \frac{1}{\sqrt{\frac{1}{2}}} \frac{1}{\sqrt{\frac{$ Post $= \int \left[\frac{\gamma^{\nu}}{2}\right]_{0}^{sin\theta} d\theta = \int \frac{sin^{\nu}\theta}{2} d\theta$ $= \frac{1}{2} \left[Sin 0 d0 \right]^{-1}$ $= \frac{1}{2} \int \frac{(1-\cos 2\theta)}{2} d\theta d\theta$ $=\frac{1}{4}\int_{0}^{1}\frac{1}{4}d\theta -\frac{1}{4}\int_{0}^{1}\frac{1}{4}\cos\theta d\theta$ $= \frac{1}{4} (\pi) = \frac{1}{4} \left[\frac{(sinzo)}{2} \right]_{0}^{\pi}$ = TI - 1 SinizTI $= \frac{\pi}{4} - 0 = \frac{\pi}{4} g_{0} \cdot u v^{2} + .$

(+) J Cost (+) [rardo (*) JJrdrdo Sol-2m (oszo 0 0 vdrdo Sol-2m (oszo 0 [[vdr]do Solt- π [$\frac{5}{2}$] = $\int \left[\int r dr\right] d\theta$ = $2\pi \left[\frac{2\pi}{2}\right] \frac{2\pi}{2} \int \frac{2\pi$ $= \int_{0}^{\pi} \left[\frac{\gamma}{2} \right]_{0}^{\sqrt{2}} d\theta = \int_{0}^{2\pi} \frac{(\cos 2\theta)}{2} d\theta$ =] (2) do $=\frac{1}{2}\int ((0520)^{2}d0)$ $\pi = \begin{bmatrix} 0 \end{bmatrix} = \pi$ $= \frac{1}{2} \left[\frac{(sin20)}{2} \right]^{1}$ andioid :- $= \frac{1}{4}$ (0) = 0 $Y = \Omega (1 - COSO)$ $\theta = 0^{\circ} \Rightarrow Y = \alpha (1 - \cos \theta) = 0$ $\theta = \frac{\pi}{2} \Rightarrow Y = \alpha (1 - \cos \pi) = \alpha$ $0 = \pi \Rightarrow Y = a (1 - cos \pi) = 2a$ Cyr'r)- $\theta = 2\pi = 3r = \alpha (1 - \cos 2\pi) = \alpha + 1$ $0=2\pi \Rightarrow Y= \alpha(1-\cos 2\pi)=0$ 201 (*) Area = [[rdrdo 1000 1 S Land A.S. 0=0 10=271 KLA LEE Y=0, Y= a (1-coso) $\int \int \frac{1}{\sqrt{2}} \frac{1}{$ 0=0 Y=0

$$= \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{d(1-coso)}{ds}$$

$$= \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{d(1-coso)}{ds} \int_{0}^{2\pi} \frac{d(1-coso)}{s} \int_{0}$$

C

U

$$\begin{aligned} \left(e^{t} \operatorname{A}_{u \neq v} \left(\cos \theta \right) \\ \operatorname{Y}_{u \neq v} \left(\sin \theta \right) \\ \operatorname{Char} \operatorname{Char$$

 $=\frac{1}{2}\int_{1.00}^{1/L}$ $=\frac{1}{2} [GJ_0^{T/2} = \frac{TT}{4} Sau unit$ aran a seal Another Method Jo jo - (x+y) drdy = J (exed) drdy $\frac{\pi}{4} = \left(\int_{e}^{\infty} e^{x} dx\right) dx \left(\int_{e}^{\infty} e^{y} dy\right)$ fon)=y $\frac{\pi}{4} = \left(\int e^{x} dx\right)^{2}$ J= jedx $\frac{J\pi}{2} = \int e^{2t} dx \qquad \frac{J\pi}{2} = \int e^{4} dy$ Triple Integral:-(1) $\int \int \int (x+y+z) dx dy dz$ = JJJJ ndrdydz + JJJJ gardydz + JJJ Zdrdydz = jr [j[dz)dy]dx + j[j4(jdz)dy]dx $+ \int \int \int (\int z dz) dy dx$ $= \int x \left[\int (z)^{c} dy \right] dx + \int \left[\int y [z]^{c} dy \right] dx$

 $+\int \left[\int (\frac{1}{2})^{c} dy\right] dx$ $= c \int x \left(\int dy \right) dx + c \int \left(\int y dy \right) dx + \frac{c^2}{2} \int \left(\int dy \right) dx$ $= c \int x \left[y \right]_{0}^{b} dx + c \int \left[\frac{y}{2} \right]_{0}^{b} dx + \frac{c}{2} \int \left[\frac{y}{2} \right]_{0}^{b} dx$ $=bc\int x dx + \frac{b'c}{2} \frac{d}{dt} \int dx + \frac{bc'}{2} \int dx$ $= bc \left[\frac{w}{2}\right]^{a} + \frac{b'c}{2} \left[w\right]^{a}_{0} + \frac{bc'}{2} \left[w\right]^{a}_{0} + \frac{bc'}{2} \left[w\right]^{a}_{0}$ = $\frac{a^{\nu}bc}{bc} + \frac{abc^{\nu}}{bc} + \frac{abc^{\nu}}{bc}$ $= \operatorname{Obc}\left(\frac{a}{2} + \frac{b}{2} + \frac{c}{2}\right) = \operatorname{Obc}\left(\frac{a+b+c}{2}\right)$ Hip (A) SS (x+y+y+z) dxdydz and SS (2x+2y+23) dxdy dz $\sum_{j=0}^{(2)} = \int_{N}^{N} \int_{N}^{D} \left(\int_{dz}^{d} dy \right) dx + \int_{dx}^{D} \int_{y}^{y} \left(\int_{z}^{z} dz \right) dy dx$ + [[[[[]] $= \int x^{2} \left[\int [z]_{0}^{2} dy \right] dx + \int \left[\int y^{2} [z]_{0}^{2} dy \right] dx$ + j (j (z) dy dr = c] n [[dy] dx + c [[y3] dx + 2 [[] dy] dx

= ch fryton + chi for + bc3 for $= bc \left[\frac{x^{3}}{3}\right]_{0}^{a} + \frac{b^{3}}{3} \left[x\right]_{0}^{a} + \frac{bc^{3}}{3} \left[x\right]_{0}^{a} + \frac{bc^{3}}{3}$ $\frac{a^{3}bc}{3} + \frac{ab^{3}c}{3} + \frac{abc^{3}}{3}$ = $abc\left(\frac{a+b+c}{3}\right)$ (3) Soit JJJ (2x+2y+23) drdydz $= \int 2x \left[\int \left(\int dz \right)^{2} dx + \int \left[\int 2y \left(\int dz \right) dy \right] dx$ + j[[[(j22dz)dy]de $= 2\int x \left[\int \left(\left[\frac{1}{2} \int \frac{1}{2} \right] dx \right] + 2 \int \left[\int \frac{1}{2} \left(\frac{1}{2} \int \frac{1}{2} \right) dx \right] dx$ $+2\int \left[\int \left(\frac{3}{2}\right)_{0}^{c} dy\right] dx$ = $2c\int x(\int dy) dx + 2c \int \left[\int y dy\right] dx + \frac{x}{2} \int \left[\int dy\right] dx$ = $2c \int x [y] dx + 2c \int [y] dy dx + c^{\gamma} \int [y] dx$ $= 2cb \int ndx + 2b'c \int dn + c'b \int dx$ $= 2bc\left(\frac{\pi}{2}\right)_{0}^{q} + b^{v}c\left[\pi J_{0}^{q} + bc^{v}\left[\pi J_{0}^{q}\right]\right]$

= 2bc (9) + b 2 a + b c 2 a = abc +abc + abc ローモスリースアクト = abc (a+b+c) Jarxy 14) JI-2 JI-2-4 JI-X-Y-ZV $= \frac{\alpha}{\alpha} \overline{a^2 x^2 + \underline{a}^2} s_{in}^{in} (3)$ $S_{0}^{1+} = \int \int \int \frac{dz}{\sqrt{1-x^{2}-y^{2}-z^{2}}} dy dx$ D = 4410 18 20 = 40 マスションコーと = JJI-N JI-N-YY dz dy du $= \int_{0}^{\infty} \int_{0}^{1-x^{2}} \left[S^{0}x^{1} - \frac{z}{\sqrt{1-x^{2}-y^{2}}} \right]_{0}^{1-x^{2}-y^{2}} dy dx$ $= \int_{0}^{\infty} \int_{0}^{1-x^{2}} \left[S^{0}x^{1} - \frac{z}{\sqrt{1-x^{2}-y^{2}}} \right]_{0}^{1-x^{2}-y^{2}} dy dx$ X $= \int \int \left[S_{i}^{0} \overline{x}^{i} (i) \right] dy dx$ (2:47 =TIS dy dn 1 1 x 10 - 5 10 molenes = X $= \frac{\pi}{2} \int \int dy dx$ THE TO ESPER + + 224 1 2 8 - 40 B $= \frac{\pi}{2} \int \frac{1}{\sqrt{1-n^2}} dx$ "Hin Lal + = $= \frac{\pi}{2} \left[\frac{\pi \chi}{1} \frac{1}{\sqrt{1-\chi^2}} + \frac{1}{2} \frac{\sin^{-1}(\chi)}{\sqrt{1}} \right]^{\frac{3}{2}}$ $= \underbrace{\mathbb{E}}\left[0 + \underbrace{\mathbb{E}}_{Sin}^{-1}(i)\right] = \underbrace{\mathbb{E}}\left[\underbrace{\mathbb{E}}_{Sin}^{-1}(i)\right] = \underbrace{\mathbb{E}}\left[\underbrace{\mathbb{E}}_{Sin}^{-1}(i)\right]$ = 11/8

(b) Find the Volume of a Sphere by Using tiple image
Stringty 2:
$$a^{-} \rightarrow 0$$

the n-anis, $y = z = 0$
 $\frac{n^{2} = a^{-}}{|x = \pm a|}$
For $y - \alpha x^{2}s + (\alpha d t a m)$
 $\frac{n^{2} = a^{-}}{|x = \pm a|}$
 $\frac{1}{|x = a|}$

-Harris and Stream

V= J J=Jarny N=a y=-Jarny Z= Jaz wy 2= 10-1-4 $\Rightarrow \int x' dx = \left(\frac{x''}{3}\right) = \frac{2}{3} \quad (or) \quad 2 \int x' dx = \frac{2}{3}$ $V = 2 \int 2 \int (2 \int dz) dy dx$ = 8 [[z] dy] dr = 8 [] Jozx y dy] dx $= 8 \int \int \int \sqrt{d^2 x^2} y^2 dy dx$ $= 8 \int \left[\frac{y}{y} \frac{y}{z} \frac{y}{z} \frac{y}{z} + \frac{y}{z} \frac{y}{z} \frac{y}{z} \frac{y}{z} \frac{y}{z} \right] dx$ $=8\int \left[\frac{\alpha^{2}-\chi^{2}}{2}\sin(1)\right]d\chi = 2\pi i \delta^{2} \int d\chi - \int \chi^{2} d\chi$ $= 8 \int \left[\frac{\pi}{2} \frac{a^{2} + x^{2}}{2} \right] dx = 2\pi \left[\frac{a^{3}}{3} - \left[\frac{a^{3}}{3} \right]_{0}^{q} \right]$ $=\frac{8\pi}{4}\int_{0}^{\pi}a^{2}x^{2}dx=7$ $=2\pi ia^{3}-\frac{a^{3}}{3}\cdot 2\pi ia^{3}$ <u>Спаз-2паз 4 па</u> A Stron 2hote 2 Alloh 2 25

(6) Volume of ellipse? Solt $\frac{m^{\nu}}{m^{\nu}} + \frac{y^{\nu}}{h^{\nu}} + \frac{z^{\nu}}{c^{\nu}} = 1$ For X-anis Y=0=Z xb YE XYOL $\frac{n}{n} = 1$ $x = a^{\vee} =) [x = \pm a]$ sept) UDYP=1 For Y-anis X=CONSI-2-5×201 (* # YAN) $\frac{2}{\alpha^{v}} + \frac{y^{v}}{b^{v}} = 1$ $\frac{y}{b} = -\frac{x}{b}$ (1) Nº2 $y^{\nu} = b^{\nu}(1 - \frac{\eta^{\nu}}{\alpha^{\nu}})$ 14=±6/1-For 2. -anis +4+2+2 = ± c | l-100

Limits! $\chi = -G, \chi = G$ y: y=-b]1-22, y= b]1-22 2: 2=- - [-x-y, 2= -]-x-y V= Mdxdydz V= JJJdxdydz V= JJdxdydz V= JJdxdydd V= Jdxdydd V= Jdxdydd V= Jdxdydd V Jdxdydd Jdxdydd Jdxdydd V Jdxdydd Jdxdydd Jdxdydd $\chi = -\alpha \quad y = -b \sqrt{1 - \lambda^{2}} \quad z = -c \sqrt{1 - \lambda^{2} - y^{2}} \quad z = -c \sqrt{1 - \lambda^{2} - y^{2}}$ $= 2 \left[2 \left[2 \left(2 \left(\frac{2}{2} \right) \frac{1-x^2}{2} - \frac{y^2}{2} \right) dy \right] dx \right]$ $= 8 \int \left(\int \left| \frac{1-x}{z} \right|^{2} - \frac{1-x}{z} - \frac{y}{z} \right) dx$ = 8 S S C. J(-x) y dy] dx $= \sqrt{\sqrt{a^2 - x^2}} = \frac{\chi \sqrt{a^2 - x^2}}{2} + \frac{\alpha^2}{2} \operatorname{sin}^1\left(\frac{\chi}{\alpha}\right)$ $= 80 \int \left[\int \frac{b^{2}(1-x^{2})}{b^{2}(1-x^{2})} - \frac{y^{2}}{b^{2}} dy \right] dx$

 $z_{\text{RC}} = b \int \overline{1 - n^{\nu}} + 9 \overline{1 = b^{\nu}} \left(\frac{1 - n^{\nu}}{a^{\nu}} \right)$ $\int \overline{da^2 \cdot u_j^2} = \frac{y \cdot \overline{da^2 \cdot y^2}}{2} + \frac{a^2}{2} s^{2n} i\left(\frac{y}{a}\right)$ $=\frac{8c}{5}\int \left[\frac{4\sqrt{3n^2-9^2}+\frac{91}{2}}{2}s^{0}n^2\left(\frac{4}{31}\right)\right]dn$ $=\frac{8c}{5}\int_{0}^{1}\left[\frac{4J(5)(1-2)}{2}+4^{2}+5^{2}(1-2)^{2}S(n^{2})\left(\frac{5}{5}(1-2)\right)\right]$ N-1 A $=\frac{8c}{2b}\int_{0}^{\infty}\frac{b^{\nu}\left(1-\frac{x^{\nu}}{\alpha^{\nu}}\right)}{2}\sin^{\nu}\left(1\right) dx$ $=\frac{8cb^{\nu}}{2b}\int_{0}^{\infty}\left(1-\frac{x^{\nu}}{\alpha^{\nu}}\right)\frac{\pi}{2} dx$ $= \frac{42}{2} \int \left(\left(-\frac{x^{v}}{a^{v}} \right) dx = \int \left(\frac{1}{2} - \frac{x^{s}}{a^{v}} \right) dx = \int \left(\frac{1}{2} - \frac{x^{s}}{a^{v}} \right) dx$ = $9\pi bc \left[\frac{3a^3-a^3}{3a^3}\right]$ $= \frac{9\pi bc}{3\pi} \left[\frac{2a\delta}{3\alpha} \right]$ $= \frac{4\pi abc}{3} Cubic unir.$ (+) Evaluatore III avyzdradydz $\sum_{n=0}^{N-1} \frac{y^2}{y^2} \sum_{z=1}^{2^2} \frac{z}{z^2} dy dy dx$ = {x [jy[=], dy]dx

 $= \int x^{*} \left[\int y \left(\frac{q}{2} - \frac{1}{2} \right) dy \right] dx$ のないないない (install)] $= \int u_n \left[\frac{1}{2} \int A d A \right] dx$ al at [at]] $= \int m' \left[\frac{3}{2} \left[\frac{y}{2} \right]_{0}^{2} dx \right]$ $= \int n^{\nu} \left[\frac{g}{2} \left(\frac{g}{2} \right) \right] dx$ $= \int m^{\nu} [3] dx = 3 \int n^{\nu} dx$ $= 3\left[\frac{3}{3}\right]dx = 3 \frac{1}{3} = 10^{4}$ (8) I [nyzdxdydz Bro in Filter = f f xyzdx dydz 2=0 y=0 n= $= \int z \left[\int y \left(\int x' dx \right) dy \right] dz$ $= \int 2 \left[\int \frac{y}{3} \left[\frac{2^3}{3} \right] \frac{1}{3} dy \right] d2$ = [2[[y[8-1]]dy]dz = サイン [シン] d2 = 专业 1202 = 专业(上) = 香

34

(9) JJJdraydz $= \iint \left[\int (\int dz) dy \right] dz$ shall goste [] $= \int \left[\int_{z}^{z} [z]^{2} dy \right] dx$ $= \int \left[\int (2) dy \right] dx = 18 \int \left[\left[4 \right] \frac{2}{2} \frac{1}{3} \right] dx$ $= 2 \int dx = \mathcal{L}_{1/2}$ (10) Evoluvate JJ (x+y+z) dx dy dz $= \int x^{2} \left[\int \left(\int dz \right) dy \right] dx + \int \left[\int y^{2} \left(\int dz \right) dy \right] dx$ + JIJ (Jzdz)dy]dk $= \int x^{2} \left[\int (z)^{2} dy dx + \int \left[\int y^{2} [z]^{2} dy dx + \int \left[\int (\frac{z}{z})^{2} dy dx \right] dx + \int \left[\int (\frac{z}{z})^{2} dy$ = j ~ j j

(10) 3 [] ([(m*+4)+2))dz)dy)dre), 24 = <u>[[]</u> <u>x</u>¹z+<u>y</u>²z+<u>z</u>³]dy]dx $= \int \left[\int \left(\frac{c_{x}v_{+}c_{y}v_{+}\frac{c_{3}}{3}}{c_{x}v_{+}c_{y}v_{+}\frac{c_{3}}{3}} \right) - \left(\frac{-c_{x}v_{-}c_{y}v_{-}\frac{c_{3}}{3}}{c_{3}v_{-}\frac{c_{3}}{3}} \right) \frac{dy}{dx} \right] dx$ $= \int \left[\int (2cx^{2}+2cy^{2}+2c^{3}) dy \right] dx$ $=2c\int\int\frac{1}{2}\left(\frac{2x^{2}+y^{2}+c^{2}}{3}\right)dy dx$ $= 2C \int \left[\int_{a}^{b} \left(\frac{2y}{3} + \frac{y^{3}}{3} + \frac{c^{2}y}{3} \right) \frac{dy}{dx} \right] dx$ $= 2c \int \left[bn^{2} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \left[-bn^{2} + \left(-\frac{1}{3} \right) - \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right] \right]$ $= 2c \int \left[2bx^{2} + 2b^{3} + 2bc^{2} \right] dx'$ $= 2c.2b \int \left[\chi^{2} + \frac{b^{2}}{3} + \frac{c^{2}}{3} \right] dx$ $= 4bc \int \left[\frac{\pi^3}{3} + \frac{b\pi}{3} + \frac{c\pi}{3}\right]^{\alpha}$ $= 4bc \left[\frac{a^3}{3} + \frac{b^2}{3} + \frac{c^2}{3} \right] - \left[\frac{-a^3}{3} - \frac{b^2}{3} + \frac{c^2a}{3} \right]$

 $\left(\frac{1}{4}\right)\left(\frac{\frac{1}{63}}{\frac{2}{3}}-\frac{15}{2}\right)$ $(\overline{u})(\overline{v}) - \overline{v}$ $\left(\frac{1}{4}\right)\left(\frac{42\cdot15}{2}\right)$ $\left(\frac{1}{4}\right)\left(\frac{21}{2}\right)$ FG 1= (2)J j dndy Jydy ≥ logy (logy); jdn $(\log b - \log(i)) (\cos n)^{9}$ $l \log b - \log(1) l (\log a - \log(1))$ (1096) (109a) → (loga) (logb) B). Given Links, X=3 X 50 y 2 0 2=3, 4>3 x'y' du dy, 220 J at j ydy da a= 31 2=0 y=0

(1)

$$\frac{n^{-2}}{2 \times \sqrt{p}} \left[\frac{(y_{2}^{-1})}{2} \right]_{0}^{\frac{1}{2}} (y_{2}^{-1}) = \frac{1}{2} \left[\frac{(y_{2}^{-1})}{2} \right]_{0}^{\frac{1}{2}} (y_{2}^{-1}) = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right]_{0}^{\frac{1}{2}} (y_{2}^{-1}) = \frac{1}$$

(

n= VO $\nabla \phi = \begin{pmatrix} i \frac{\partial}{\partial n} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z} \end{pmatrix} \begin{pmatrix} x^* - y^* + z - j \end{pmatrix}$ ~ i d (n-y+t-2) + J d (n-y+t-2) + K d (n-y+t-1) \rightarrow (i) (2x) + j(-2y) + k(1)axi- 24j+K •5 at(1, -1, 2)21-21+K. $\Delta \phi \rightarrow$ $|\nabla \phi| = \sqrt{44}$ = 19>3 DXit Vector = A > VO IVO aitzitk 3 Part-B T(A) $\overline{F} = \alpha \tilde{i} + y \tilde{j} + \tilde{z} \tilde{E}$ $\nabla F = (i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z}) (xi + yj + E kd)$ = $i \frac{\partial}{\partial k} (a\tilde{i} + y\tilde{j} + \tilde{\epsilon}k) + j \frac{\partial}{\partial y} (\tilde{\lambda}i + y\tilde{j} + \tilde{\epsilon}k)$ + K うしんい + モK) $\vec{H} \cdot \vec{\partial} (x') \rightarrow \vec{\partial} (y') \rightarrow \vec{H} \cdot \vec{\partial} (z') = \vec{J} \cdot \vec{J} = \vec{J}$ R. K =1 an + ay + 27p(n+y+r)D (N) = 2X - jy (y) 2 2y - 2 (2) > 22.

y. (Impter varier from y. b/1. 10 + b/1. 10 no a blight J dy du. -> Can also be readten . a blight av a blat a Jajdydu · 4 9 J dy du. Jdy = y. 4] [y] bliadu. J du >x. $\Rightarrow (4) \int \left(b\left[\frac{1-x^{2}}{a^{2}}-0\right)du\right) \int \sqrt{a^{2}-x^{2}}du$ \rightarrow (4) $\int \left(b \sqrt{1-\frac{k^2}{a^2}} \right) du$ 2 Var- 2 1 a Sin (2) $(4) \int (\frac{b}{a}) (\sqrt{a^2 - n^2}) du$ " 46 g Jarar du $\frac{a}{a} \left(\frac{2\sqrt{a^2-x^2}}{2} + \frac{a^2}{2} \sin^2(\frac{1}{a}) \right)_0^{\alpha}$ que a var av sint (ala) · 4b (0 - a (1/2)]

 $\left(\frac{4b}{a}\right)\left(\frac{a't}{y}\right)$ » Mab squuits, - Area of the ellipse is trab Sq. miles. Part - C 8(b) Griven ellipsoid is $\frac{\pi}{\alpha^{\nu}} + \frac{y}{5} + \frac{z^{\nu}}{c^{\nu}} \ge 1$. let y20, Z20 2 71 123+9 (et Z=0 then nt + y st $\frac{y^{2}}{b^{2}} = \frac{y^{2} - x^{2}}{a^{2}}$ $\frac{y^{2} \pm b}{a^{2}}$ 2 + y + 2 2 / $\frac{z^{v} = C^{v} \left(1 - \frac{x^{v}}{a^{v}} - \frac{y^{v}}{b^{v}}\right)}{z^{v} = \pm C \left(1 - \frac{x^{v}}{a^{v}} - \frac{y^{v}}{b^{v}}\right)}$ eve can rewrite the entrys d as $\begin{array}{c} g & b \sqrt{1-x} \\ 2 \\ z \\ z \\ \end{array} \begin{array}{c} 1-x \\ \overline{a} \\ z \\ \end{array} \begin{array}{c} \sqrt{1-x} \\ -\frac{x}{a} \\ \sqrt{1-x} \\ -\frac{y}{b} \\ \sqrt{1-x} \\ -\frac{y}{b} \\ \sqrt{1-x} \\ \sqrt{1-x$

8 g blind (VI-no to dz dydn. $\begin{array}{c} \alpha & b \left(\frac{1-n}{a} \right) \\ \varepsilon & \int \left(\frac{1}{\varepsilon} \right) 0 & c \left(\frac{1}{\varepsilon} \right) \\ \varepsilon & \int \left(\frac{1}{\varepsilon} \right) 0 & c \left(\frac{1}{\varepsilon} \right) \\ \varepsilon & \int \left(\frac{1}{\varepsilon} \right) \left(\frac{1}{\varepsilon} \right) \\ \varepsilon & \varepsilon \\$ e (Jevi-nígv-Ý/b' dy) du. $\alpha = \left(\sqrt{1 - \lambda} \right)$ $\sqrt{a^2 - n^2} = \frac{2\sqrt{a^2 - n^2}}{2} + \frac{a^2}{2} \sin^2\left(\frac{x}{a}\right)$ $= \frac{9}{60} \int \left(\frac{1}{b}\right) \sqrt{\left(\frac{1-\lambda^{2}}{a^{2}}\right)^{2} - \frac{y^{2}}{b^{2}}} + \frac{1-\lambda^{2}}{2} \sin^{2}\left(\frac{\frac{1}{b}}{\sqrt{1-\lambda^{2}}}\right)$ $\Rightarrow 8 (b) \int (\frac{y}{b}) \left(\sqrt{\frac{1}{n}} - \frac{1}{n} + \frac{1}{a} +$ \Rightarrow 8 cb $\int_{a}^{b} \frac{a'-a'}{2a'} \sin^{2}(1)$ $s = \frac{a}{a} \frac{a}{a}$ $\frac{8bc}{4} \int \frac{a^{\nu} - n^{\nu}}{a^{\nu}} du$ TIDC (1 - n) dy $\frac{1}{2}bc \int dn - \frac{1}{a} \int (x^{\nu}) dn$ $\frac{\text{Tt}}{2} b \left[n \right]^{Q} - \frac{1}{2} \left[\frac{n^{3}}{3} \right]^{Q} \right]$

 $\frac{1}{2}b\left(\left(a - \frac{1}{a^{2}}\left(\frac{a^{2}}{3}\right)\right) = \frac{1}{2}b\left(\left(a - \frac{a}{3}\right)\right)$ $\frac{17}{2}$ bc $\left(\frac{2a}{3}\right)$ <u>tabl</u> Sq. unils.

Roll. No? 7/N Ad: No? 6567 Name: A. Hema Krishna Subject: 220 MAB TO2 - A DVANCED CALCOLUS AND COMPLEX ANALYSIS Date: 22. 11. 2022 SET-B

8)a)

$$\int_{a}^{a} \int_{a}^{2a-\chi} \chi_{y} dy dx.$$

 $\int_{a}^{b} \chi_{y} dy dx.$
 $\int_{a}^{b} \chi_{y}^{2} dy dx.$
 $\int_{a}^{b} \chi_{z}^{2} dx dy$
 $\int_{a}^{2a-\chi} \chi_{z}^{2} dx dy$
 $\int_{a}^{b} \chi_{z}^{2} dx dy$

R
5) $x^{2} - y^{2} + z = 2$ Point = (1,-1,2) x2-y2+z=2 $(1)^{2} - (-1)^{2} + 2 = 2$ 1+ (71)+2=2 +2+2=2 4 = 2 ¥2 =211 Si zydy dz. 1) S ay dy da do uble integral S xy dy dx Si Si x dy dy da.

WA

$$\begin{cases} \vartheta(a) \\ 0 \\ \int_{2^{1}}^{a} \chi_{y} \, dy \, dx. \\ (a) \\ \chi_{z} \\$$

(M)

$$\int_{0}^{A} \times \left(\int_{\frac{x^{1}}{2}}^{1a-x} y dy \right) dt$$

$$\begin{array}{c}
\text{Hen} \int_{1=a}^{1=a} \left(\begin{array}{c} y = 2a - x \\ y = x^{1}} y dy \right) dt$$

$$\begin{array}{c}
\text{Hen} \int_{1=a}^{1=a} \left(\begin{array}{c} y = 2a - x \\ y = x^{1}} y dy \right) dt$$

$$\begin{array}{c}
\text{Change of ordes}
\end{array}$$

$$\begin{array}{c}
\text{Change$$

 $= \frac{1}{4} \int \frac{y^{22a}}{y^{20}} \frac{y^{2}}{y^{2}} \frac{y^{2}}{y^{2}}$ $= \frac{1}{4} \int_{y}^{y=2a} 4a^{2}y^{2} f(y^{7}) \int_{0}^{2a} - 4 [ay^{3}]_{0}^{2a}$ = 4 4 [a 2y 2] 29 + [y 4] 2a - 4 [ay 3] 29 = 4 4 2 ad 1 2 Jy=0 8 (4a2+y2-4ay)dy = 2 []²⁹ ua²y dy t]²⁹ dy = J uay dy] $=\frac{1}{2}\left[\frac{4^{2}}{9}\right]_{0}^{2a}\left[\frac{4^{2}}{2}\right]_{0}^$ $= \frac{1}{2} \left[\frac{4a^2}{2} \left[\frac{4^2}{2} \right]_{0}^{29} + \left[\frac{4^3}{3} \right]_{0}^{29} - \frac{4a}{2} \left[\frac{4^2}{2} \right]_{0}^{29} \right]_{0}^{29} - \frac{4a}{2} \left[\frac{4^2}{2} \right]_{0}^{29}$ $= \frac{1}{2} \left[\frac{4^2 a^2 (2a)^2}{\chi} + \frac{12a}{3} + \frac{12a}{3} + \frac{12a}{2} \right]$ $= \frac{1}{2} \left(\begin{array}{c} ua^{2} \\ 0 \end{array} \right) + \begin{array}{c} ua^{2} \\ 0 \end{array} \right)$ $=\frac{1}{2}\frac{16a^{4}}{2}+\frac{8a^{3}}{3}\left(-\frac{16a^{3}}{2}\right)$

3) J.J x'y 2 dx dy X=6,X=2/J=0,J=J 276 29 6.1.1 SS 2 (1)2(4) = QS 2,2 SS 2(3) 2(3) - SS 6 7 6 asea uping double indeglad 6 v 21 and y=z χ 24 1 2 2 2 6) 1011 lines sare given i - C 8) -70 = A n) ! -0 .hn Put y 2 0 (0,0)

to a start for Put Q in Q ().q 2] ··· 1 Point of inter section (1,1) & (0,0) x=0, x=1 y=x,y=1, x, y= 2 Joen (42 , 5 , 5 , 5) . - 6 $\frac{1}{2} = 0 \quad \frac{1}{2} \quad$ $= \int_{x=0}^{x=1} dx - \int_{x=0}^{x=1} dx = 0$ = $\int_{x=0}^{x=0} dx = 0$ = $\int_{x=0}^{x=0} \int_{x=0}^{x=0} dx = 0$ $= \frac{1}{2} = \frac$ Jali - L 8) b) 3(2) $\overline{a^2} + \frac{y^2}{62} + \frac{y^2}{(2)} = 1$ for a jaxis y, 2 =0 x2 + 0 + 0 71 x 2 = a2

Por y-axis / X i's chot x2 + y2 + 0=1 $\frac{d^2}{b^2} = \frac{1-a^2}{a^2}$ $y^2 = b^2 \left(\frac{1-x^2}{a^2} \right)^{1/2}$ y = + (j 1-22 a2 2083 2, y are constants $\frac{\chi^{n}}{a^{2}} + \frac{y^{L}}{6^{2}} + \frac{3^{n}}{r^{2}} + \frac{y^{L}}{r^{2}} = \frac{\chi^{L}}{r^{2}} \left(\frac{\beta}{r} \right)$ 32 - 1 - 22 - 42 x b x a 2 - 42 x b 3²=2²(1)-<u>x²</u>[y²] a²[y²] 2 = + 4 J 1-22 - y 2 a2 - 62 x = a y = b x = a y = b x = a $y = -b \int (-x^{2})$ $= 2 \int x = a$ $y = b \int (-x^{2})$ $= 2 \int x = a$ $y = b \int (-x^{2})$ $= 2 \int x = a$ $y = b \int (-x^{2})$ $= 2 \int x = a$ $y = b \int (-x^{2})$ $= 2 \int x = a$ $y = b \int (-x^{2})$ $= 2 \int (-x^{2})$ $y = b \int (-x^{2})$ $= 2 \int (-x^{2})$ $y = b \int (-x^{2})$ $= 2 \int (-x^{2})$ $y = b \int (-x^{2})$ $y = b \int (-x^{2})$ $y = b \int (-x^{2})$ $x = b \int (-x^{2})$ $y = b \int (-x^{2})$ $x = b \int (-x^{2})$ 1 Jiser and

$$V = \int_{0}^{a} \int_{0}^{b} \sqrt{\frac{x^{2}}{a^{2}}} \int_{0}^{c} \sqrt{\frac{x^{2}}{a^{2}}} - \frac{y^{2}}{a^{2}}$$

$$= \int_{0}^{a} \int_{0}^{b} \frac{\int_{1-x^{2}}^{x^{2}}}{a^{2}} \frac{\int_{1-x^{2}}^{x^{2}}}{a^{2}} - \frac{y^{2}}{b^{2}}$$

$$= \int_{0}^{a} \int_{0}^{b} \sqrt{\frac{x^{2}}{a^{2}}} \frac{\int_{1-x^{2}}^{x^{2}}}{a^{2}} - \frac{y^{2}}{b^{2}}$$

$$= \int_{0}^{a} \int_{0}^{b} \sqrt{\frac{x^{2}}{a^{2}}} \frac{\int_{1-x^{2}}^{x^{2}}}{a^{2}} - \frac{y^{2}}{b^{2}}$$

$$= \int_{0}^{a} \int_{0}^{b} \sqrt{\frac{x^{2}}{a^{2}}} \frac{\int_{1-x^{2}}^{x^{2}}}{a^{2}} \frac{y^{2}}{b^{2}}$$

$$= \int_{0}^{a} \int_{0}^{b} \sqrt{\frac{x^{2}}{a^{2}}} \frac{\int_{1-x^{2}}^{x^{2}}}{a^{2}} \frac{y^{2}}{b^{2}}$$

$$= \int_{0}^{a} \int_{0}^{b} \sqrt{\frac{x^{2}}{a^{2}}} \frac{\int_{1-x^{2}}^{x^{2}}}{a^{2}} \frac{y^{2}}{b^{2}}$$

$$= \int_{0}^{a} \int_{0}^{b} \sqrt{\frac{x^{2}}{b^{2}}} \frac{y^{2}}{y^{2}} \frac{y^{2}}{b^{2}} \frac{y^{2}}{b^{2}}$$

$$= \int_{0}^{a} \int_{0}^{b} \sqrt{\frac{x^{2}}{b^{2}}} \frac{y^{2}}{y^{2}} \frac{y^{2}}{b^{2}}$$

$$= \int_{0}^{a} \int_{0}^{b} \sqrt{\frac{x^{2}}{b^{2}}} \frac{y^{2}}{y^{2}} \frac{y^{2}}{b^{2}} \frac{y^{2}}{b^{2}}$$

$$= \int_{0}^{a} \int_{0}^{b} \sqrt{\frac{x^{2}}{b^{2}}} \frac{y^{2}}{y^{2}} \frac{y^{2}}{b^{2}} \frac{y^{2}}{b^{2}}$$

$$= \int_{0}^{a} \int_{0}^{b} \sqrt{\frac{x^{2}}{b^{2}}} \frac{y^{2}}{y^{2}} \frac{y^{2}}{b^{2}} \frac{y^$$

PART-B $\vec{F}^{2} = \chi^{2}\vec{r}^{2} + y^{2}\vec{J}^{2} + 2^{2}\vec{F}^{2}$ 7. ゴンシャリアナモマド $2^{2}_{k} = x^{2} + y^{2}$ x2, -> - yj ->

7(3)

 $\vec{v} = \vec{x} + \vec{y} + \vec{z} + \vec{z}$ Vr : nrn-2 v> = n, n 2 xi + y = + 2k $= n_{1}^{n-2} (\gamma_{1}^{n} + \gamma_{1}^{n}) + 2k$ $= n_{1}^{n-2} (x+y+z) = (x+y+z) = (x+y+z)$ = nrⁿ⁻² (xyz) (p)p)k) = $n_{v}(n-2)$ (x+y+z+) (i)=) (i) $(x^2+y^2+z^2)$ $(i^2)_{k}$ = (xi)+yi)+24) $Q \nabla x^n = nr^n - 2r^{-2}$ Hence proved.

PAPT-A \$= x2-y2+2=2 at (11-1,2) Unit normal vector n= ad $\nabla \phi = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial y} \right) \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \right) \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} \right) \right) \left(\overrightarrow{i} \frac{\partial}{\partial y} + \overrightarrow{k} \right) \right) \left(\overrightarrow{i} \frac{\partial}$ $= (i) \frac{d}{dx} + \frac{d}{dy} \frac{d}{dy} + \frac{d}{dx} \frac{d}{dx} \frac{d}{dx} - \frac{d}{dx} \frac{d}{dx} \frac{d}{dx} + \frac{d}{dx} \frac{d}{$ $=\frac{1}{2}\int_{X}^{2}(x^{2}-y^{2}+2-2)+\frac{1}{2}\int_{Y}^{2}(x^{2}-y^{2}+2-2)+\frac{1$ $12^{-12} \frac{1}{2} \frac{1}{2} (x^2 - y^2 - z^2)$ = i (xx) + i (2y) + i (y)- 2xi - 245) + (F) at $(1, +, 2) = 2i^{2} + 2i^{2} + k^{2}$ 1 VØ1= Nu+4+1= 59=3 n = (2xi) - 2yi + k) (2i) + (i)= 10

r f f zydydx 1. J. J. J. Laty) dady $\int_{.}^{2} \int_{.}^{2} f(x^{2} + xy) dx dy$ $= \int_{1}^{2} \left(\int_{3}^{3} (x^{2} + xy) dx \right) dy$ $=\int_{1}^{1}\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}\right)^{4}dy$ $= \int \left(\frac{u^3}{3} + \frac{u^2y}{2} \right) - \left(\frac{3^3}{3} + \frac{u^2y}{2} \right) dy$ = 5/ 64 + 647 27 27 + 427 = { 64 + 84 - 9 - 84] = j² 64 - 89 - 19 - 89 = { 644 - 842 - 94 +84 proved. Hence

Register no: U22EC 136 ROLLNO not 6 Name : ex. Dhanashekar a agy UB 200 subject : moths Set SB? section - Or-1 2 given L[sinhat]= a (a we known that $\sin h\theta = e^{\theta} - \bar{e}^{\theta}$: eo_e-o cat_crat $= \frac{1}{2} \left[e^{\alpha t} - e^{-\alpha t} \right]$ $2\frac{1}{2}\left[\frac{1}{5}a^{2}\frac{1}{5}a^{2}\right]$ =-: [<u>Stor-849</u>] [5-0) [5-0] $= \frac{1}{4} \left(\frac{gq}{s^2 - \alpha^2} \right)$ KINELSO LI PEDING given [[avf + b; +c] VILLE DY DRY $= b \alpha \lambda [\sqrt{2} + b \lambda (t^{-1/2}) + \lambda (c)$ $= \alpha \lambda (t^{-1/2}) + b \lambda (t^{-1/2}) + \lambda (c)$ $= a \frac{1}{2s^3/2} + b \sqrt{11} + c \frac{1}{s^3/2}$ we known that 1 EN = VT +-1/2 VTT 531 $\frac{a\sqrt{n}}{25^{3}/2} + \frac{b\sqrt{n}}{5^{3}/2} + \frac{c}{5}/2$ Ū) given 2[sinst @93t] sin A EDBE STATAB) COS SINCATB) -SINCAB) - 2 [sin (st+3t)-sin(st-3t)] = L [singt - sin 2t]

= 2 [sin(8+)]_2[sin 2+] = 18 - 2 52764 5274//

SINGU

5

6

1

2-1 [39+2] $= L^{-1} \left[\frac{3S}{s^2 - u} \right] + \& 2^{-1} \left[\frac{9}{s^2 - u} \right]$ $= 3 \left\{ 2 \left| \left| \frac{s}{s^2} \right| + 2^{-1} \left| \frac{2}{s^2} \right| \right\} \right\}$ Tom write atlast 3 cognet + a sinnet

given 2 Cestsin2t ?

E where sinzts and = 2 []

Hout Sty according to shifting theorem

BE TO ACT - CO

266 - (J. .)

$$\begin{bmatrix} 2^{3t} \sin 2t \end{bmatrix}_{2}^{2} = \begin{bmatrix} 5 - 3 \\ 5 - 3 \\ 2 \end{bmatrix} + 4$$

$$\begin{bmatrix} 2 \\ 5^{2} + 9 - 65 \\ 5^{2} + 9 - 65 \end{bmatrix}$$

$$\stackrel{2}{=} \begin{bmatrix} 2 \\ 5^{2} - 65 \\ 5^{2} - 65 \end{bmatrix}$$

G given 21 (strait 6) (7) $\sim 2^{\prime} \left(\frac{S}{S^2 + 25} \right) \cdot L^{\prime} \left(\frac{S}{S^2 + 25} \right)$ (++) × 8(+) (09,5+, (095 ((+) × 8(5) where as the formula = (L[FE] *9(5)] ·- 56 (24) - 8(E-a) dy 12 6095 u # 8 009 5 (E-u)] 24 = 52 [cossy. coss(st su)]du $= \frac{1}{2} \int_{0}^{1} \left[\cos S \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \right] \left[\cos S \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \right] \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \right] \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \right] \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \right] \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]_{0}^{1} \left[\frac{1}{2} - \frac{1}$ $= \frac{1}{2} \int_0^t \left[\cos 5t + \cos (\cos 5t) \right] dy$ = - [[20095t 20095t + stall Similar-st] $= \frac{1}{2} \left[\frac{1}{1005} \frac{1}{510} \frac{1}{100} \frac{1}{1000} \frac{1}{1000$ = 2 [+ cosst + 1 sinst + 1 sinst $= \frac{1}{2} \left[\frac{1}{2} \cos 5t + \frac{1}{2} \cos 5t \right]$

5 given 2-1[5+2 5(5+4)(5-9] E these is type -I then $\frac{S + 2}{S(S+U)(S-Q)} = \frac{A}{S} + \frac{B}{S+U} + \frac{C}{S-Q}$ B'St2 = $+CS+uXS-q)+BSCJ-q)+CSCS+u) \rightarrow 0$ Stz Stut(S-q) S(Stut(S-q)) S(Stut(S-q)) S(S+ut(S-q)) S(S+ut(S-q)) S(S+ut(S-q)) + CS(S+ut(S-q)) + CS(S+ut(S-q))S (5+4)(S-9) sabstitut (0-1) Jeon & a ceoj di 5 + 420 inabove at ation por wellos -u+2 = B [-u] (-u-9) Nb [V 2+ B -u (-13)) + (vb - tering) 2007 / 1 - 2 - B -u (-13) -23, 8(-52) B=-2 LINEY B272101 + 1 2 201) + 1 substitute (5:0) them (7,7)substitute (5:0) them (7,7)(4+2) (2, c) (2, tu)(1) = c - 2(13)(1) = c -100 A-221 A-221 A-26 then we substitute in exaction ($2^{-1} \left(\frac{S+2}{SC_{3}+u} \right)^{2} \left(\frac{1}{s} \right$ $= \frac{1}{18} \left(\frac{1}{5} \right) + \frac{1}{26} \left(\frac{1}{544} \right) + \frac{1}{111} \left(\frac{1}{5-9} \right)$ = 18 (1) - 2600-46 - 110291 -ut. 11 Cat

given gaups divergence テ= (22-43)ア+(42-3×)子+ (22-×4)戸 formula for gaups divergence JIESUSOS: JULLE, gr $\nabla: \vec{i} \frac{\partial}{\partial x} + \vec{c} \frac{\partial}{\partial y} + \vec{c} \frac{\partial}{\partial x}$ F= (x2-y3) 12 + (32-x4) F+ (22-x4) K) $\nabla \left[\overline{F} + \overline{\partial} + \overline{\partial} + \overline{F} + \overline{\partial} \right] \left[\overline{F} + \overline{\partial} + \overline{F} + \overline{\partial} \right] \left[\overline{F} + \overline{\partial} + \overline{F} + \overline{F} + \overline{\partial} + \overline{F} + \overline$ $= \frac{\partial}{\partial x} (x^2 - y^2) + \frac{\partial}{\partial y} (y^2 - 3x) + \frac{\partial}{\partial x} (x^2 - xy)$ 2× +29+23 ~ ~ (x+y+2) 111 A E gr = 5 200 (6+1+3) 9×9793 = 2 10 10 (202 + 204 + 03)0 99 93 = 5 PC 10 (25+02+03) 97 93 2×10° [a? 47ay =2ay2] d3 = ~ Soc (azy + ay 2+2043) bdz = 10 (a26+a62+2063)93 = [05 p3 + 0 p3 + 5 0 p3 -] C a2bc + ab2 ct abc2 = abc fat bt c] R.H.S

R.H.S. Eatbtc) = abc (atbtc) 5 then 2. H.S r II Esego out ward normal me face equation 25 P.R ABEI 5-0 9293 g-- ya= 0 OCRE 0= 93=0 I. 5-0 (X 0(43)(-1) 9993 = 42 BCEF 5 9:6 735C 6=31=0 OCRO 4:0 - 0,1 0-3x(-1) - 3x 939X 3:00 6=24=0 -24 (E) drdy OWFA 2=0 OFBL · xy drdy ひというないい、「いいい、日子の子」「「ちの」」 エリテア35 +51 そのか 12 5,2,92; 27 92=93 2293 $\left(\right)$ = Sc2p azyz & yzz = Pc [05 - 2] pgg ~ 1°C (05-P - 10-3)93 ~ (a2b3-b22) (~ a2b ~ b2c2

DO -1592 dydz 3=158=3x dx8 : 1° 1° 6-3x dr 33 = 16 Co 43 6 9 13 >10 (12 2 x2) 0 13. · 16 (2,3) 993 · 1 1-2 23 2 5b2a - 3a2 d3 ~ [b232](- (b203 - 3202)C - 420C - c202 - 420C - c202 2 b2 c2 /2 (5) JJ c2 x g dx dy @ 12 3x 939x - 1020 c2-xy 8xdy = 2°220 3×9×93 >100 \$ [c,x - x, 2] \$ all = Pc (3x7/093 > 1°c (805 /93 = 100 and (ca - a2y) by = [c2ay 10242}6 : c2ab - a2b 6 - 55° x 2 9x8r - 1°p (x5) 999 - 10 (ary by · (aryz)og 2 Q2 62

4 m

アレキャッシア トンよいの ナンたいのアイ アンもの +いときとのアナリトをとの = arb C - b x + b x + b a c - c x + c a + c b c - x + all arbet shact croc = abp Ratbtc) therefore 2.4.5 P.H.S siven Lilt coshst) 6 5 $\mathbf{E} \left(\left(E^2 \left(\cos ha^2 \right) - \left(-H^2 - \frac{3}{2} n \right) - \frac{3}{2} n \right) \left(-\frac{5}{5} - \frac{3}{2} \right)$ $\left(\left|\left(\frac{2}{2}\right)\right|^{2}\right) = \left(\frac{2}{2}\right)^{2} \left($ d (U): Vdu-udv $=\frac{1}{35}\left[-5^{2}-q(1)-5(25)\right]$ $\frac{2}{3} \frac{d}{ds} \left(\frac{s^2 - q}{s^2 - 2s^2} \right)$ $\frac{2}{3} \frac{d}{ds} \left(\frac{s^2 - q}{s^2 - q} \right)$ $\frac{2}{3} \frac{d}{s^2 - 2s^2} \left(\frac{s^2 - q}{s^2 - q} \right)$ $\frac{2}{3} \frac{d}{s^2 - 2s^2} \left(\frac{s^2 - q}{s^2 - q} \right)$ 4676 PE 1 17 - 3

1 3/m (d cm); vdu-udv bb $= \frac{d^2}{ds} \left(\frac{s}{s} \right)$ $\frac{2}{\delta s} \left(\frac{s^2 - q(1) - s(u)}{(s^2 - q)^2} \right)$ 18 = d [s2-q -252] ds [[s2-q]2] $\frac{1}{2} \frac{1}{\delta s} \left(\frac{-s^2 - q}{(s^2 - q)^2} \right)$ d W = vdu-udv ~ - J (S49 $= \frac{-2}{35} \left[(52-q)^2 - (25) - (5^2+q) (5) (5^2-q) (25) \right]$ ((s²-9)²)² $= -\frac{1}{35} \left[(3481 - 1852)(25) - (529) es(329) \right]$ 10+2 $((s^2-q))^{4}$ (5-9)4 $= \frac{-d}{-d} \left(2 S_{+}^{5} (62) = 36^{13} - (2 S_{-}^{5} 188^{3} + 9185^{3} 1625) \right)$ $= -\frac{d}{J_{5}} \left[\frac{28^{5} + 1625 - 365^{3} - 26^{5} + 1625}{(s^{2} - 9)^{4}} + 1625 \right]$ (sza) 101 102 127

= = = [KES 1625 3653716859) 102 = -d [324536535 (5-04) $= \frac{d}{ds} \left[\frac{(s^3 - 32us)}{(s^2 - q)^4} \right]$ erayes Diversen theorem? Jerdx + ady = IS [da - 29] dx dy where R= Region siven [sinst cosst] $-\partial ([Sin(5+3+)+sin(3+-3+)]$ = 2 [sin8t + sin 2+] = 1212 =) 2 Usingt]+L[sinzt] 2 (Sinst 60) 8 + 2 S764 5744 de

k. Surendra Babu. ix : GI Roll NO + HO + HO A.No : 7712 SET-A BINNO - U22 EC 174. NO ZU PART-C G JJ F. n ds = JJJ V.F dv **8**b) 1 V = i j + i j + k jz B (1) 6 2 0 M) $\vec{F} = \mu \chi \vec{z} - y^{2} \vec{j} + y \vec{z} \vec{k}$ V.F. = dx (4xZ) = dy (y2)+ dz (4Z) 2840= R-113 = 42 = 24 +4 10 = ab an = 2 + 26 6 571 SE = UZ - YUS REC 2 OF R.H.S = JJJ(HZ-y) drdydz su) Ed Lox ga = [[(uxz-xy]) dy dz = [][HZ -y] dy dz 1 L $= \int \left(4y z - \frac{y^2}{2} \right) dz$ $= \int \left(\frac{4}{2} \cdot \frac{1}{2} \right) dz$ $= \left(\frac{\frac{1}{2}}{\frac{1}{2}} - \frac{\frac{1}{2}}{\frac{1}{2}} \right)'$ $=\left(2-\frac{1}{2}\right)$ $= \left(\frac{\mu - t}{2}\right) = \frac{3}{2}$

 $LHS = \prod \vec{z} \cdot \vec{n} \, ds$ face outward Normal equation 20 03 3=ABEE x=a1 - 7 4×2 = Hazuz dydz S2=0006 x=0 -? Jydz HXZ = 0 SZ=BCDE Y= @1 -y2 = -1 dzdz ì $s_1 = oat c_1 \quad y = 0$ -y2 =0 1d7 dx $-\overline{)}$ 55=EDFG 2=01 t? YZ = y dx dy SE=OABC Z ZO YZ = o (soul of dr dy -k $\iint \vec{F} \cdot \vec{n} \, ds = s_1 = \vec{F} \cdot \vec{n} \, dA + s_2 = \vec{F} \cdot \vec{n} \, dA + s_3 = \vec{F} \cdot \vec{n} \, dA = s_3 = \vec{F} \cdot \vec{n} \, dA$ - $S_{1} = \vec{F} \cdot \vec{n} d s$, $S_{5} = \vec{F} \cdot \vec{n} d s$, $S_{6} = \vec{F} \cdot \vec{n}^{2} d s$. $S_{r} = \iint (HZ) dy dZ$ $S_{r} = \iint (Y) dx dy$ $= \int [4y z]' dz \qquad = \int [xyz]' dy$ = j (uz) dz $=\left(\frac{\mu z^2}{2}\right)^{\prime}$ $2\left(\frac{y^2}{2}\right)^2$ $=\left(\frac{\mu^2}{2}\right)$ $\left(\frac{1}{2}\right)$ = [2] $S_3 = -\int \int dz dx$ 1 = - j [x] dz 1 ... = - j (17 dz - (2]' = -1

$$g_{1} = S_{1} + S_{1}$$

$$g_{1} + S_{1} + S_{5}$$

$$= 2 + (-1) + \frac{1}{2}$$

$$= \frac{5 - 2}{2}$$

$$\int_{-\frac{3}{2}} \frac{3}{2} = \frac{3}{2}$$

$$\int_{-\frac{3}{2$$

Put S=0. A(4) (0-9) 2 = A(4) - 92 = -36A $A = -\frac{1}{18}$ S-q = -11-9 C(9+4)11=1172 $L^{-1}\left(\frac{S+2}{S(S+u)(S-q)}\right) = \frac{1}{2\sqrt{1-1}} \left(\frac{1}{\frac{2}{5}} + \frac{1}{\frac{15}{5}} + \frac{11}{\frac{117}{(S-q)}}\right)$ $= \left(\frac{1}{26} \left(\frac{1}{S} \right) + \frac{1}{18} \left(\frac{1}{(S+u)} \right) \left(\frac{1}{117} \left(\frac{1}{(S-q)} \right) \right)$ 1-1-(1)1 1 = 1=+++ $\frac{1}{2} + \frac{1}{18} + \frac{1}{26} + \frac{1}{26} + \frac{11}{17} + \frac{11}{17} + \frac{11}{17} + \frac{117}{(5-9)}$ = E' 18 et - L' ett 1 26 + L' et 117 = L'et 1/26 + L'eq 11/17 7.

$$Nbm(-T) - Gistandar Ready.$$

$$Regintudo := U_{2L} \in c \ los .$$

$$section := G_{1} \ t C \in$$

$$sobject adv := U_{2,0,44,B,T,0,2}.$$

$$Ta. \qquad U_{2,0,$$

$$A = \frac{x'}{-38} = A = \frac{-1}{18}$$

$$Put s=9.$$

$$A(+9+4)(9-9) / B(+9)(9-9) / C(9)(9+4)$$

$$A(+13)(0) / B(9)(0) / C(9)(13)$$

$$A(0).$$

$$P(12 = C(17)).$$

$$P(12 = C(17)).$$

$$C = \frac{11}{117}.$$

$$\frac{S+L}{S(S+L)(S-9)} = \frac{-1}{18} - \frac{1}{26} + \frac{11}{117}$$

$$L^{-1} \left(\frac{S+L}{(S+Y)(S-9)} = \frac{-1}{26} - \frac{1}{(S+Y)} + \frac{11}{117} - \frac{1}{(S+Y)(S-9)} - \frac{1}{26} - \frac{1}{18} - \frac{1}{26} - \frac{1}{18} - \frac{1}{26} - \frac{1}{18} - \frac{1}{26} - \frac{1}{117} - \frac{1}{117$$

07. Soi).

$$F^{-1}$$
, $\chi^{2}\tilde{f}^{-1} + \gamma^{2}\tilde{f}^{-1}$ and $dF^{-1} = d\chi\tilde{f}^{-1} + d\chi\tilde{f}^{-1} + d\chi\tilde{f}^{-1}$.

1 .

$$\int F^{2} \cdot dr^{2} = \int (x^{2} dx + y^{2} + y^{2})$$

$$\int F^{2} \cdot dr^{2} = \int x^{2} dx + x^{2} dy$$

$$= \int 2x^{2} c lx.$$

$$= 2 \left(\frac{x^{3}}{3}\right)$$

$$= \frac{2x^{3}}{3} \frac{1}{2}.$$

8 FEUX2T- y25 + y2 K y=1, 2=0, 2=1, 420 da it dy it tout (x+xiy) 7 (y-1) + (2 1904) $\frac{\partial}{\partial x} (x + xy) + \frac{\partial}{\partial y} (y + xz) + \frac{\partial}{\partial z} (z)$ xy) JJ ß

L(C-Stsinhet). $L(e^{at}+(f)) = +(Sta)$ f(t) = sinh2t= 2 52-44. $L(e^{-st} sinh2t) = \left(\frac{2}{sL_{ty}}\right) + \frac{2}{s+3}$ $= \frac{2}{s^{2t}9 + 6jty}$ 2 82-+ 65+ 18.

L(f'(t)) = L'(f(t)) - L(f(0))) L(f'(t)) = L(f'(t)) - L(f(0)) - L(f(0))

ŗļ,

CLA-3

Name - Neha Jana Section - A1 REG NO: - U22AE022 Sub-ACCA(U20MABT02)

Sel-A $W = \frac{67-9}{7}$ 1) Replace z in the place of w $\overline{z} = \frac{6z-9}{7}$ $Z^2 = 6Z - 9$ $Z^{2}-6Z+9=0$ The fixed point of the transtermation $z^{2} - (3+3)z + 9 = 0$ Z2-3Z-3Z+9=0 1.8 3.510 2(2-3)-3(2-3)=0 (7-3) (7-3)=0 Z = 3,30Cauchy's Integral formula for Derivatives $f(z_0) = \frac{1}{2\pi i} \int \frac{f(z)}{z - z_0} dz$ $J'(z_0) = \frac{1!}{2\pi i} \int \frac{J(z)}{(z-z_0)^2} dz$

ug

 \bigcirc

 $J''(z_{0}) = \frac{2!}{2\pi i} \int \frac{J(z)}{(z-z_{0})^{3}} dz$ $J''(z_{0}) = \frac{n!}{2\pi i} \int \frac{J(z)}{(z-z_{0})^{n+1}} dz$

3)
$$f(z) = \frac{1}{2+i}$$

The singular point of the Sunction $(1 - i)$.
4) $f(z) = \frac{z}{(z+i)(z+z)}$
The third equation singular point is
 $z = -1$ and $z = -2$
 $\frac{14}{(z+2)} \frac{z}{(z+i)(z+z)}$
 $= \frac{-2}{(-2+4)} = \frac{2}{-4} + 2$
5) $f(z) = \cos z$
 $f(z) =$

$$\frac{(\omega - \omega_{1})(\omega_{1} - \omega_{3})}{(\omega_{1} - \omega_{1})(\omega_{2} - \omega)} = \frac{(\neg - \neg 1)(\neg 2 - \neg 3)}{(\neg 1 - \neg 2)((\neg 3 - \neg 3))} | \begin{matrix} \omega_{1} = i \\ \omega_{2} - i \\ (\omega_{2} - i) \\ (i - 1)(0 - \omega) = \frac{(\neg - 0)(-i + 1)}{(0 + i)(-1 - \neg 2)} \\ \hline \frac{(\omega - i)}{(-1 - 2)} = \frac{\neg 2 i + 2}{i(-1 - 2)} \\ \hline \frac{\omega - i}{(-1 - 2)} = \frac{- \neg 2 i + 2}{-i + 2i} \\ (\omega - i)(-i - 2i) = (\omega + \omega)(- \neg 2i + 2) \\ - \omega i - \omega \neg 2i + (i^{2}) + \neg 2i^{2} = \omega \neg 2i^{2} + \omega - 2i - \omega \neg 2i + \omega \neg 2i \\ - \omega i - \omega \neg 2i - 1 - 2i = 0 \\ i(\omega - \omega \neg 2) = \neg 2i + 3 \\ \omega - \frac{\neg 2i}{i - 2i} \\ (\omega - 2i) = - 2i + 3 \\ (\omega - 2i) = - 2i + 3 \\ (\omega - 2i) = - 2i + 3 \\ (\omega - 2i) = - 2i + 3 \\ (\omega - 2i) = - 2i + 3 \\ (\omega - 2i) = - 2i + 3 \\ (\omega - 2i) = - 2i + 3 \\ (\omega - 2i) = - 2i + 3 \\ (\omega - 2i) = - 2i \\ (\omega - 2i) = - 2i + 3 \\ (\omega - 2i) = - 2i \\ (\omega - 2i) = - 2i + 3 \\ (\omega - 2i) = - 2i \\ (\omega -$$

7.0) Evaluates (Z) = COSZ as a Taylon's service about the
point $z=0$
Soln.
w.k. + Taylop's series Formula is -
$f(z) = f(a) + \frac{(z-a)}{4!} f'(a) + \frac{(z-a)^2}{2!} f''(a) + \frac{(z-a)^2}{2!} f''(a)$
f(z) = 608 z
Function Volume of Z=0
f(z) = (0) z f(0) = (0) z
J'(z) = -Sinz J'(0) = -Sin(0) = 0
$\mathcal{J}''(Z) = -602S = -7$
f'''(z) = sinz $f'''(0) = sin(0) = 0$
$\int f(x) = \cos x$ $\int f(x) = \cos x$
$L + S = (S \cup - \cup) i$
$f(z) = f(0) + \frac{(z-0)}{1!} f'(0) + \frac{(z-0)}{2!} f''(0)$
$+ \frac{(z-0)^{3}}{(z-0)^{3}} \int (0) + \frac{(z-0)^{4}}{(z-0)^{4}} \int (0)$
$= 1 + 0 + \frac{z^{2}}{2}(-1) + \frac{z^{3}}{3!}(0) + \frac{z^{4}}{4!}(1)$
$-\frac{z^2}{2} + \frac{z^4}{24}$

$$\begin{aligned} \mathcal{H}^{2} + y^{2} - 4y = 0 \\ \left(\frac{u}{u^{2}+v^{2}}\right)^{2} + \left(\frac{-v}{u^{2}+v^{2}}\right)^{2} - 4\left(\frac{-v}{u^{2}+v^{2}}\right) = 0 \\ \frac{u^{2}}{(u^{2}+v^{2})} + \frac{v^{2}}{u^{2}+v^{2}} + \frac{4v}{u^{2}+v^{2}} = 0 \\ \frac{u^{2}+v^{2}}{(u^{2}+v^{2})^{2}} + \frac{4v}{u^{2}+v^{2}} = 0 \\ \frac{1}{u^{2}+v^{2}} + \frac{4v}{u^{2}+v^{2}} = 0 \\ 1 + 4v = 0 \\ 1 + 4v = 0 \\ 1 + 4v = 0 \\ 1 + e^{-81} \cdot \text{line } 1 + 4v \text{ is in the w-plane}. \end{aligned}$$

$$\begin{aligned} \textbf{Go} \quad \text{Delecraine the Analytic function } \textbf{S(2)}, who se \\ \textbf{xe ad part is } x^{3} - 3xy^{2} + 3x^{2} - 3y^{2} + 1. \\ \textbf{shim} \\ \text{Hexe given the steal part is } \\ u = x^{2} - 3xy^{2} + 3x^{2} - 3y^{2} + 1. \\ u_{x} = 3x^{2} - 3y^{2} + 6x \\ u_{y} = -6xy - ey \\ \text{Replace the value in the place of } \\ \textbf{x} = 0 \\ \textbf{w} \quad \mathcal{O}_{1}(2,0) = 3z^{2} - 3(0) + 6z = 3z^{2} + 6z \\ y_{2}(2,0) = -6(z), 0 - 60 = 0 \end{aligned}$$

.

$$\begin{aligned} S(z) &= \left[\int \varphi_1(z_0) - i\varphi_1(z_0) \right] dz \\ &= \int (3z^2 + 6z) dz \\ &= \int 3 \cdot \left[\frac{z^3}{3} \right] + 6 \left[\frac{z^2}{2} \right] \\ &= 2^3 + 3z^2 \end{aligned}$$

PART-A

٩)

$$f(z) = \frac{z}{(z+1)(z+2)}$$

The singular point s of the Sunction is z = -1 and z = -2

5

$$(Z) = \frac{z}{(z+1)} / Z_0 = -2$$

$$\begin{aligned}
f(z_0) &= \frac{z_0}{z_0 + t} \\
f(-2) &= \frac{-2}{-2 + 1} = \frac{-2}{-1} = 2 \\
\int \frac{f(z)}{z - z_0} &= 2\pi i f(-2) \\
&= 4\pi i
\end{aligned}$$

•

80 find J(z). is the Imaginary part is en(xsiny+you) Also tind it conjugate. soln Here given the imaginary part is $\mathbf{v} = e^{\mathbf{x}(\mathbf{x}giny + \mathbf{y}cosy)}$ $v_{y} = e^{\chi} \chi (+ 00sy) + e^{\chi} (y(-siny) + cosy))$ $\varphi_{1}(z,0) = e^{z} + e^{z} + e^{z}$ = e^zz + e^z = e^z(z+1) $v_x = siny(e^x + e^x x) + e^x y cosy$ $\varphi_{\ell}(z_0) = 0$ wikt Milton Thomas Method, $f(z) = \left[\int (\varphi_1(z, 0) + i\varphi_2(z, 0)) \right] dz$ » lez(z+1)dz > ZPZ $f(z) = ze^{z}$ utiv= (xtiy)extig ~ (K+iy), exeiy ~ (xe^x + iyex)e iy To find its conjugate, u+iv= (nen+iyen J(z) = (n + iyex) (cosy+isiny) +(2)=

 $\begin{aligned}
\forall (z) = (xe^{x} + iye^{x})(\cos y + ixiny) \\
&= xe^{x}\cos y + xe^{x}i\sin y + iye^{x}\cos y \\
&+ i^{2}ye^{x}\sin y \\
&= xe^{x}\cos y + xe^{x}i\sin y + iye^{x}\cos y \\
&- ye^{x}\sin y \\
&= (xe^{x}\cos y + - ye^{x}\sin y) + i(xe^{x}\sin y) \\
&+ ye^{x}\cos y)
\end{aligned}$

Name: 61. Arun kumar 5ec : A1 Res No: U22AE007 Sub : Advanced Calculus and Complex Analysis Sub code: U20MABT02 Set: A Maths - CLA-III Part - B. 6 b. Given points are 2=0,-1,-1 $\omega = i, 1, 0$ $\frac{(\omega - \omega_1)(\omega_2 - \omega_3)}{(\omega_1 - \omega_2)(\omega_3 - \omega)} = \frac{(z - z)(z_2 - z_3)}{(z_1 - z_2)(z_3 - z)} = 0$ z and w points sub in () $\frac{(\omega - i)(1 - 0)}{(i - 1)(0 - \omega)} = \frac{(z - 0)(-i + i)}{(0 + i)(-1 - 2)}$ 3 $\frac{(\omega - \hat{i})}{(\hat{i} - \omega \hat{i})} = \frac{(z - \hat{1})}{(i - z)}$ $(\omega - i)(i - z) = (i - \omega i)(z - y)$ $y_{1}^{2} - 2w_{1}^{2} + 1 - z_{1}^{2} = -z_{1}^{2} + 1 + z_{2}w_{1}^{2} - y_{1}^{2}$

 $f(a) + \frac{(z-a)}{1!} f(a) + \frac{(z-a)^2}{2!} f(a) + \frac{(z-a)^3}{3!}$ $O + \frac{0-b}{1!} + \frac{(0-a)^2}{2!} O + \frac{(0-a)^3}{3!}$ $O + \frac{0-a}{1!} + \frac{(0-a)^2}{2!} O + \frac{(0-a)^3}{3!}$

Z = 0

But - c
But - c
But - c

$$B_{x} = \frac{1}{2}$$

$$U = \frac{1}{2}$$

$$Z = \frac{1}{20}$$

$$Z = \frac{10}{20.10}$$

$$Z = \frac{10}{100}$$

$$Z = \frac{10}{100}$$

$$Z = \frac{10}{100}$$

$$X + \frac{10}{10} = \frac{10}{100}$$

$$X + \frac{10}{10} = \frac{10}{100}$$

$$X + \frac{10}{10} = \frac{10}{100}$$

$$X = \frac{10}{1$$

ł

$$= \left(\frac{u}{u^{2}+v^{2}}\right)^{2} + \left(\frac{-v}{u^{2}+v^{2}}\right)^{2} - -y\left(\frac{-v}{c^{2}+v^{2}}\right) = 0$$

$$= \frac{u^{2}+v^{2}}{(u^{2}+v^{2})^{2}} + \frac{4}{(u^{2}+v^{2})} = 0$$

$$= \frac{1}{(1+4)^{2}+v^{2}} + \frac{4}{v^{2}+v^{2}} = 0$$

$$= \frac{1}{(1+4)^{2}+v^{2}}$$
Part - A
$$= \frac{1}{(1+4)^{2}+v^{2}}$$
Part - A
$$= \frac{1}{(1+4)^{2}+v^{2}}$$

$$f(z) = \frac{1}{z+1}$$
Here
$$= \frac{1}{(z-1)^{2}} + \frac{1}{(z+1)^{2}}$$

$$f(z) = \frac{1}{z+1}$$
Here
$$= \frac{1}{(z-1)^{2}} + \frac{1}{(z+1)^{2}+v^{2}}$$

$$\int \frac{f(x)}{2-z_{0}} dx = 2\pi i f(z_{0})$$

$$= \frac{1}{(z+1)^{2}}, \quad x = -2$$

$$= -2xi$$

BIHER cup-s Name: - Saurabh Kumar Poddar 64122 Registration NO: - U22AS 024 Admission No.: - 9144 Subject: - U20 MABT 02 - ADVANCED The hope is CALCULUS AND COMPLEX AMALYSTS Set :- B es) (des agles) 01/2023 CLA:- 379 Date: - 31.01.2023 section: - Al (1) (a-x) (x-3) (1-16) a.s.) Check whether the function flz)=z2 is analytic or not? Som in- us - iz-in $f(z) = z^2$ Caj + LJ Hit util = Ntit We with = (x+iz)2 = (ait as -) (aco a) = 4+11= n2 # y2+2ixy (ms.) + 2015 - 1015 -D. W. o. to All y 4= n2 - 12 N= zing diff. w. s. to nory - 24 - 22 , 2 = 24 - 24 =- 27 , 24 =+24 C-R Equation 34 = 3x , By = - By .". function is analytic

DILLE-(O(b) N: 0, i, D 2= D,i,D $\frac{(W \cdot W_1)(W_2 - W_3)}{(W_1 - W_2)(W_3 - W)} = \frac{(2 - 2_1)(2_2 - 2_3)}{(2_1 - 2_1)(2_2 - 2_3)}$ (w-0)(i-w) = (2-00)(i-0)(0-i)(w-w) = (w-i)(0-2) $-\frac{(\omega)(i-\omega)}{-i(\omega-\omega)} = \frac{(2-\omega)i}{-2(\omega-i)}$ $=\frac{i\omega-\omega\omega}{-i\omega+i\omega}=\frac{iz-i\omega}{-z\omega+iz}$ $= (i\omega - \omega \omega) (-z\omega + iz) = (iz - iz)(-i\omega + i\omega)$ = - izw + 2000 + (-200) - iwzw = 2w - w - 2w + w w (2)

BHER Ì Ø)-) <u>f(z)</u> (f(z) <u>z-z</u>, dz $\int (z_0) = \frac{1}{2TTL} \left(\frac{J(z)}{2rL_0} dz \right).$ (Fib) f(z) = sinz Jtop= sino f(z) = 632 f(0)= G20 : f(z)= sin 2 C = 1 Am Him (b) 1<u>2+1</u> (2-3)(2-1) d2 Concrets integral formula f(z)=

Simm E E Ces 2h 7.63 m Un= (3 h 27 flor 22) 2 (6)27 for 22) Q (20) - (1 63 22) (92.2) Sizm/Jan the N R 1 + CJ 2, 2) bor . 3 M2 (Sim 2-2) 1(+4522)2 5 Q2 20 Staron) dz - { [20] JQ [30] - 92 (20)] dz C <u>J2'Ces</u> 22 + 2 Cy2·2+28m2 2= (lecunt · J (ten) 6-12 C2 (15 CY22 JdZ 110-22-52 JdZ f(2) 5 that

NAME : Registh
Reg NO : Uddenieg
Adm NO : 7207
Subject : ADVANCED CALCULUS & COMPLEX AND PLYSIS
Subject Code : UddBTBTOI.
5. Given

$$g = \pi y + y \pi + \pi \pi$$

point $\Delta t [1/2,00]$
 $\overline{\alpha} = \overline{1}^{2} + \overline{2}\overline{1}^{2} + \overline{2}\overline{\kappa}^{2}$
 $D \cdot D = \overline{\alpha} + \frac{7g}{|\nabla g|}$
 $\nabla \phi = \overline{1} \cdot \frac{d\phi}{d\pi} + \overline{1} \frac{d\phi}{dy} + \overline{K} \frac{d\phi}{d\pi}$
 $\frac{dg}{d\pi} = y + 0 + z = y + z$
 $\frac{d\phi}{d\pi} = 0 + y + \pi = y + \pi$
 $\frac{d\phi}{dz} = 0 + y + \pi = y + \pi$
 $\overline{q} \phi = \overline{1}^{2} (a+0) + \overline{1}^{2} (1+0) + \overline{K}^{2} (a+1)$
 $= 2\overline{1}^{2} + \overline{1}^{2} + \overline{2}\overline{K}$
 $|\nabla \phi| = \int (u+1)\overline{q} = f(\overline{u})$
 $p \cdot p = (\overline{1}^{2} + A\overline{1}^{2} + a\overline{K}) \frac{(2\overline{1}^{2} + \overline{1}^{2} + 5\overline{K}^{2})}{\sqrt{\overline{1}\overline{u}}}$

4. Allow
$$\phi = \log \left(\pi^{n} + y^{n} + \pi^{n} \right)$$

 $\forall \phi = \log \left(\pi^{n} + y^{n} + \pi^{n} \right)$
 $\forall \phi = \frac{1}{2^{n}} \frac{d\phi}{dx} + \frac{1}{2^{n}} \frac{d\phi}{dy} + \frac{1}{2^{n}} \frac{d\phi}{dy}$
 $\frac{d\phi}{dx} = \frac{1}{2^{n} + y^{n} + z^{n}}$
 $\frac{d\phi}{dy} = \frac{1}{\pi^{n} + y^{n} + z^{n}}$
 $\frac{d\phi}{dz} = \frac{1}{\pi^{n} + y^{n} + z^{n}} 2z = \frac{3z}{\pi^{n} + y^{n} + z^{n}}$
 $\forall \phi = \frac{1}{2} \left(\frac{2\pi}{\pi^{n} + y^{n} + z^{n}} + \frac{1}{2} \left(\frac{2\pi}{\pi^{n} + y^{n} + z^{n}} \right) + \frac{1}{2} \left(\frac{2\pi}{\pi^{n} + y^{n} + z^{n}} \right)$
 $= \frac{1}{\pi^{n} + y^{n} + z^{n}} + \frac{1}{2} \left(2\pi \right) + \frac{1}{2} \left(2\pi \right) + \frac{1}{2} \left(2\pi \right)$
 $= \frac{1}{\pi^{n} + y^{n} + z^{n}} + \frac{1}{2^{n} + z^{n}} + \frac{1}{2^{n}} \left(2\pi \right)$
 $= \frac{1}{2\pi} \left[2\pi \right]$
 $= \frac{2\pi}{\pi^{n}}$
 $\forall \phi = 2\pi - \frac{1}{\pi^{n}} \left[2\pi \right]$
 $= \frac{2\pi}{\pi^{n}}$
 $\forall \phi = 2\pi - \frac{1}{\pi^{n}}$
 \exists Griven
The hiple integral is
 $\int_{0}^{1} \int_{0}^{1} \pi^{n} y^{n} y^{n} dx dy dx$

à

 $= \int \int \int \int x^{2}yz \, dx \, dy \, dz$ $\int_{0}^{1}\int_{0}^{1}\left[\frac{x^{3}}{3} yz\right]_{1}^{2} dy dz$; $= \int \int \frac{1}{3} \frac{1}{3$ $\int \int \int \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \left[\frac{1}{2} \frac{1}{2} \right]^{2} dz$ $= \int_{0}^{1} \frac{1}{3} z \left[\frac{4}{2} - \frac{9}{2} \right] dz$ $\int_{0}^{1} \frac{1}{3} \cdot 2 \left[\frac{2^{n}}{2} \right]_{0}$ $= \frac{4}{3} \left[\frac{2^{n}}{2} \right]_{0}^{1}$ $\frac{14}{3} \left[\frac{1}{2} - \frac{1}{2} \right]$ = $\frac{14}{3}$ $\left[\frac{1}{2}\right]$ $\frac{14}{6} = \frac{7}{3}$ ($\int \int \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \frac{1}{2} \int \frac{1}{2} \frac{$ 2: Given) arya dady

And given line is

$$x = 0, x = 3, y = 0, y = 3$$

$$T = \int_{0}^{3} \int_{0}^{1} x^{*}y^{*} dx dy$$

$$= \int_{0}^{3} \left[\frac{x^{3}}{3}\right]_{0}^{3} y^{*} dy$$

$$= \int_{0}^{3} y^{*} \left[\frac{(3)^{3}}{3} - \frac{(0)^{3}}{3}\right] dy$$

$$= \int_{0}^{3} y^{*} \left[\frac{23}{3} - 0\right] dy$$

$$= \int_{0}^{3} y^{*} \left[9\right] dy$$

$$= \int_{0}^{3} y^{*} \left[9\right] dy$$

$$= \int_{0}^{3} \left[\frac{23}{3} - \frac{0}{3}\right]$$

$$= \int_{0}^{3} \int_{0}^{3} x^{*}y^{*} dx dy = 81$$

•

∫ = 10gx Given $2 = \int_{-\pi y}^{a} \int_{-\pi y}^{b} \frac{1}{\pi y} d\pi dy$ = [" [109 y]" dy Ja [1096-1091].184 Sa [1096-0] y dy 1712 Ja 1096 (ty) dy -1 1 h 1 =/ 10g b ja 10g y Star All $= 1096 \left[1099 \right]^{a}$ 1096 [109a-109] R P + (Y - S 1096 [109a - 6] 1 2011 11 211114 loga logb $\frac{1}{1} \int \frac{1}{x y} dy dy = 109 a \log b$ (20) 4 (x-y) + 4 (y-z)4-14(2-x)9 (1-4)3 + 0+ 4(2-1)3 dy di

PORT-B 7 Given (a) アニュジャソジャスド Vre drit drit dr R $a^n = a^{n-1}$ $\nabla Y^{n} = n \cdot Y^{n-1} \overline{y}^{n}$ $\nabla \gamma^{n} = \frac{n \cdot \gamma^{n-1} \vec{\gamma}}{x} + \frac{n \cdot \gamma^{n-1}}{y} + \frac{n \cdot \gamma^{n-1}}{z}$ $\pi \eta = \frac{1}{1 + y + z} \left[n \eta^{n-1} + n \eta^{n-2} + n \eta^{n-1} \right]$ $\nabla n^{n} = \frac{1}{2} \left[n \cdot \gamma n - 2 \right]$ $(a^m)^n = a^{m-n}$ $\nabla r^n = \eta, \gamma n^{-2}, \overline{\gamma}^{-1}$ n. 7n-2 Jin $\frac{1}{\sqrt{2}} = \chi \hat{i} + \gamma \hat{j} + z \hat{k} \quad i \leq j$ $\nabla Y^{n} = n \cdot \gamma n \cdot 2 \overline{\gamma}^{n}$ Hence proved.

 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i\varphi} d\varphi d\varphi$ et di et put $= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-\gamma^{\alpha}} d\gamma d\theta$ ferdt = drdo 2r dr do = dt $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\gamma^{*}} \frac{1}{2} dr do$ $drd0 = \frac{1}{2} dt$ $=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\int_{0}^{\infty}\frac{e}{-1} d0$ $= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \left[e^{-\gamma} \right]_{0}^{\infty} d\varphi$ $=\frac{1}{2}\int_{-\infty}^{\infty} \left(e^{-\infty}-e^{-0}\right) d\theta$ $=\frac{1}{2}\left[1\right]\frac{\Lambda}{2}$ 」 (茶-の) T/2 $\int_{0}^{n} \int_{0}^{\infty} e^{-r^{n}} dr d\theta = \pi/2$ NOW $\int e^{-\chi^{\alpha}} dx = \pi/4$ $\int_{0}^{\infty} e^{-\chi} dx = \pi/4$

$$\left(e^{-x} \int_{0}^{\pi} x = \pi/4 \right)$$

$$\left(e^{-\alpha} - e^{\alpha} \right) = \pi/4$$

$$\int e^{-x^{\alpha}} = \pi/4$$

$$\gamma^{\alpha} = \pi/4$$

$$\gamma^{\alpha} = \sqrt{\pi}/4$$

$$\frac{\gamma = \sqrt{\pi}}{2}$$

$$\int e^{-x^{\alpha}} dx = \sqrt{\pi}$$

$$\int e^{-x^{\alpha}} dx = \sqrt{\pi}$$

$$\int \int e^{-x^{\alpha}} dx = \sqrt{\pi}$$

$$\int \int e^{-x^{\alpha}} dx = \frac{\sqrt{\pi}}{2}$$

$$\int e^{-x^{\alpha}} dx = \frac{\sqrt{\pi}}{2}$$

from o 10 varies 2 Variet from 0 to $y = \pm 5\sqrt{1-x^{n}}$ 4 Now the limit is $= \int_{0}^{q} \int_{0}^{b} \int_{0}^{(1-\frac{n^{2}}{\alpha^{2}})} dx dy$ $= \int_{a}^{a} \int_{b} \int_{a}^{b} \int_{a}^{(i-x^{*})} dy dx$ $= \int_{0}^{q} \left[Y \right] \frac{d\left(1 - \chi^{2}\right)}{d\chi}$ $= \int_{0}^{a} \left[b \sqrt{1 - x^{*}} - 0 \right] dx$ Var-xor $= \frac{Q^{*}}{2} \operatorname{Sin}^{1}\left(\frac{\mathbf{x}}{a}\right)$ $= \frac{b}{a^{\alpha}} \int \left(\frac{a^{\alpha} - x^{\alpha}}{a^{\alpha} - o} \right) dx + \frac{b}{a^{\alpha}}$ + x va=x+ $\frac{b}{a^n} \int_0^a \left[\frac{a^o}{2} \sin^{-1}(\frac{x}{a}) + \frac{x}{2} \sqrt{a^n - x^o} \right] dx$ $= \frac{b}{a^{\gamma}} \left(\frac{a^{\gamma}}{2} \sin^{-1} \left(\frac{\pi}{a} \right) + \frac{\pi}{2} \sqrt{a^{\gamma} - \pi^{\gamma}} \right)^{\alpha}$ $= \frac{b}{a^{n}} \left[\frac{a^{n}}{2} \sin^{-1}(1) + \frac{a}{2} \sqrt{0 - \alpha^{n}} \right] - \left[\frac{a^{n}}{2} \sin^{-1}(0) + \frac{a}{2} \sqrt{a^{2} - \alpha^{2}} \right]$ $= \frac{b}{a^{n}} \left[\frac{a^{n}}{2} \sin^{2}(1) + \frac{b}{2} - [0] \right]$ $= \frac{b}{a^{\gamma}} \left[\frac{a^{\gamma}}{2} \cdot \frac{\pi}{2} + 0 \right] = \frac{a^{\gamma} b \pi}{a^{\gamma} h}$ Area of the ellipse is Tab

neg: U22CN177 Pate: 25.04.2023/FN subcedo: U20MABT02 sub: Advanced colouisand comelox Analysis section: K

SET-A Post-A

given, $\frac{2}{\sqrt{2}}$, $\frac{2}{\sqrt{$

 $\int_{0}^{1} x^{2} \left(y^{2} \int_{0}^{2} \right) dx dy$ $\int_{0}^{1} x^{2} \int_{y}^{2} y^{2} \left(dx dy \right)$ $\int_{0}^{1} dx^{3} \int_{dy^{3}}^{2} dy^{3}$ de nemetrali

the double integral of $\int_{0}^{2} (x^2+y^2) dx dy is$

 $\int_{0}^{1} dx^{3} \int_{0}^{2} dy^{3}$

1-

2. given $\int \int (x+y) dx dy$ 0 y Jx Jy (dx +dy) let y=1 $\int_{0}^{1} x \int_{0}^{1} y$ UL DO (FBFE)]] $\int L^2 \left(\frac{9^2 L^2}{2} \right) dx \, dy$ 3. Sind $\pi \propto \frac{1}{2} \int_{-\pi}^{\pi} \frac{1}{2} \frac{1}{$ $x^2 \int y^2 \left(dx dy \right)$ ub to the bornula is sinz= cosz, cosz= sinz let substande up al Sing Sing dyd 22 Sin (dyda)

J sin²o (dydx) Sin²O = dydz Lst!! dydx = sinzo 4. guren $\phi = x^2 + y - z - 1$ $y = -z^2 + y - z - 1$ $y = -z^2 + y - z - 1$ the given value one (1,0,0)let x = 1 (23) H + (25) 3.11年33年十月前 lety:0 lotz=0 = 120-0-1 = 1-0-1 = |-| = 0 the grad = 0

5. the given Ø=xyz epher aguis $\begin{pmatrix} i & j \\ \eta \\ 1 & 1 \\ \chi \\ \chi \\ \psi \\ z \end{pmatrix}$ Strie = xb kb i(12) to 24- Giller $i(1z-1y)+i(1z-1z)+\pi(1y-1z)$ i(zy) + i(zz) + h(yz) = ztol $i \neq y + i \neq x + hyx$ D = R. For iy+ix+hyx1g+i+kg itutk the directional derivative $cb\phi = icin$

(q) P PART-B 6 b) given y=2x+3 $y = x^2$ y=2x+3 = 52 -6=X x=-5 y=-52 y= 25 NOU adding 2 (25)+3 50 50 50+3 53 the agent using double integral bounded is 53

7. 6) The given $x^2 - y^2 + z = 2$ at the Point (1,-1,2) $|^{2}_{+}|^{2}_{+2}$ 1+1+2 4 \bigcirc now X=2 8=2 Z=2 22/22+3 4+4+3 8+3 11 >0

P 2 nou x=1) ¥=2 2:3 $|^{2}_{-2^{2}+3}$ 1-4+3 -3+3 0 121 16 137 now supsubret X= 4 y=11 270 $4^{2} = -11^{2} + 0 = 1$ 16+121+0=137 the unit Normal Vector to the survey is 137

Pasit-c 9 b) given $\int_{0}^{\alpha} \int_{x^{2}+y^{2}}^{x} dx dy$ $\begin{bmatrix} \alpha & \alpha \\ \int z^2 \int y^2 & \chi \\ 0 & y \end{bmatrix} (dx dy)$ $\int x^2 \int y^2 dz$ $\int \frac{1}{x^2} \int \frac{3}{x^2} \frac{x}{x^2 + y^2}$ $\chi \text{ value is } 2$ Œ $2^{2}+y^{2}$

Name? R. Gobyl. Reg. No? U22CN202. Section? Te' Sub? ACCA. Date? 23.4,2023.

(G) (A)

$$a=0, y=1 \text{ Ond } y=1.$$

$$y=x^{2} \text{ Ond } x=0=0.$$

$$y=x^{2} \text{ Ond } x=y_{2,24+8},$$

$$a=-y_{2} = 4 v=\frac{y}{v}.$$

$$dxdy= \int e^{-xx} dx.$$

$$\frac{3\ln x}{x} dy dx.$$

$$a=0 = 1, a \quad y=0. \quad (x+y) \quad dx \quad dy.$$

$$a^{2}xy^{2}+z^{2}+2xy=0$$

$$\frac{3\ln y}{2xy}=y+3=0. \quad xx.$$

$$x^{2}x+y^{2}-2x+22.$$

$$2+2+3y+x^{2}-3.$$

$$(x+y) \quad dx \quad dy.$$

$$\frac{3\ln y}{x} \quad dy \quad dx.$$

$$\frac{3\ln y}{x} \quad dy \quad dx.$$

$$(x+y) \quad dx \quad dy.$$

$$\frac{3\ln y}{x} \quad dy \quad dx.$$

$$(x+y) \quad dx \quad dy.$$

$$(x+y) \quad dx \quad dy.$$

$$\frac{3\ln y}{x} \quad dy \quad dx.$$

$$(x+y) \quad dx \quad dy.$$

$$(x+y) \quad dx \quad dy.$$

$$\frac{3\ln y}{x} \quad dy \quad dx.$$

$$(x+y) \quad dx \quad dy.$$

$$(x+y) \quad dx \quad dy.$$

$$\int_{a}^{b} \frac{CLA - \Pi}{R_{\text{spitter no: valemost}}} = \frac{CLA - \Pi}{R_{\text{spitter no: valemost}}}$$

$$\sum_{\substack{\text{subject : Advanced calculus and complex Analysis}}{R_{\text{subject : Advanced calculus and complex Analysis}}$$

$$\sum_{\substack{\text{subject : Magned construct calculus and complex Analysis}}{R_{\text{subject : Magned construct calculus and complex Analysis}}$$

$$\sum_{\substack{\text{subject : Magned construct calculus and complex Analysis}}{R_{\text{subject : Magned construct calculus and complex Analysis}}$$

$$\frac{PART - C(1 \times 12 = 12)}{PART - C(1 \times 12 = 12)}$$

$$8 \cdot a) \quad \text{Verify green's filterem in a plane for the unitegral $\int (xy + y^2) dx + x^2 dy \text{ undere c use closed surve}$

$$a_{\text{subject : Magned by } y = x \text{ and } y = x^2$$

$$\int (xy + y^2) dx + x^2 dy \text{ undere c use closed surve}$$

$$\int (xy + y^2) dx + x^2 dy \text{ under lay } y = x \text{ and } y = x^2$$

$$\int (xy + y^2) dx + x^2 dy \text{ under lay } y = x \text{ and } y = x^2$$

$$\int (y + y^2) dx + x^2 dy \text{ under lay } y = x \text{ and } y = x^2$$

$$\int (y + y^2) dx + y dy = \int (xy + y^2) dx dy \text{ under lay } y = x^2$$

$$\int (y + y^2) dx + y dy = \int (xy + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$

$$\int (y + y^2) (y + y^2) dx + x^2 dy \text{ under lay } y = x^2$$$$

solving both equation's y=x2 and y=x $x = x^2$ =) $\chi^2 - \chi = 0$ =) x(x-D=0 11 =) x=0 j x=1 when z = 0 = y = 0, y = 0, z = 0 and y = 0. $x = 1 = y = (1)^2 = 1$ and y = 1RHS: · · · · · · · · · · · · =) $\iint \left(\frac{\partial V}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy$ $\rightarrow \bigcirc$ $u = xy + y^2 \quad \forall = x^2 \quad \text{the product of the pro$ $\frac{\partial u}{\partial y} = \chi + 2y \qquad \frac{\partial v}{\partial \chi} = 2x \qquad \rightarrow 3$ By (1) (2) & (3) phy r des ⇒ ∬(2x-x-2y)dxdy s 环境的 大刀 计同时公式 化正正 we have variable function = II(2-sy)dxdy =) iner limit variable =) Outer emit constant $= \int \int (x-8y) dx dy$ limit of x => y to sy emit 06 y => 0 to 1 y=0 x=4 = JJ(x-ey)dxdy $= \int_{0}^{1} \left[\left[\frac{x^{2}}{2} - \Im xy \right]_{y}^{1} \right] dy$

 $= \int \left[\left(\frac{(y)^2}{2} - \frac{2y}{2} - \frac{2y}{2} \right) - \left(\frac{y^2}{2} - \frac{2y}{2} \right) \right] dy$ $= \int \left[\frac{y}{2} - \frac{xy^{3/2}}{2} - \frac{y^{2}}{2} + 2y^{2} \right] dy$ 1+4 2 -12 212 $= \int_{0}^{\infty} \left[\frac{y}{2} - \frac{y^{3/2}}{z} - \frac{y^{2} + 4y^{2}}{z} \right] dy$ $= \int_{0}^{\infty} \left[\frac{y}{2} - \frac{2y^{3/2}}{4} + \frac{3y^{2}}{2} \right] dy$ $= \int_{0}^{1} \left[\frac{y^{2}}{4} - \frac{24}{3} \frac{y^{5/2}}{5/2} + \frac{3}{2} \times \frac{y^{3}}{3} \right]_{0}^{1}$ y 1/2+ $\frac{1}{2}$ +1 $\frac{1+2}{2} = \frac{3}{2}$ $= \frac{1(1)^{2} - 4 \times 2(1)^{2} + 3 \times 1)^{3}}{4} = 0$ $=\frac{1}{4}-\frac{108}{315}+\frac{1}{2}=\frac{1}{4}-\frac{4}{5}+\frac{1}{2}$ 2 (2,5,2 $= 18 - 8 \times 4 + 30 = 5 - 16 + 10$ $= \frac{15 - 16}{20}$ = -1 $\frac{20}{20}$ 15-32+30 HS udx + vdy (0,1)-Acin 0(8,0) $(1_{1}0)$
$$\int_{C} u dx + v dy = \int_{OR} + \int_{AO}$$

Allong OA ; $y = x^{2} = 0$ dy = $\exists x dx$; limit of x is from
 $0 + o 1 - -i \oplus$

$$\int_{C} (xy+y^{2}) dx + x^{2} dy \rightarrow (S)$$

OH (i) in (S)

$$= \int_{C} (x^{2}) + (x^{2})^{2} dx + x^{2} (\exists x) dx$$

$$= \int_{C} (\exists x^{3} + x^{4}) dx + \exists x^{3} dx$$

$$= \int_{C} (\exists x^{3} + x^{4}) dx$$

$$= \left[(\exists x^{4} + x^{5}) \right]_{O}^{I}$$

$$= \left[(\exists x^{4} + \frac{x^{5}}{5}) \right]_{O}^{I}$$

$$= \left[(\exists x + \frac{1}{5} - 0) \right]$$

$$= \frac{15 + L}{20}$$

$$= \frac{19}{30} \qquad \rightarrow (C)$$

where $\Rightarrow y = x \Rightarrow dy = dx \Rightarrow einit of x is$

$$= \int_{C} (x(x) + x^{2}) dx + x^{2} dx$$

$$= \int (x^{2} + x^{2}) dx + x^{2} dx$$

$$= \int_{1}^{2} 3x^{2} dx$$

$$= \int_{1}^{2} 3x^{2} dx$$

$$= \left[\frac{3}{3}x^{3}\right]_{1}^{0}$$

$$= \left[x^{3}\right]_{1}^{0}$$

$$= 0 - 1$$

$$= -1 \quad \neg \otimes$$
Adding (and (b))
$$\int_{1}^{2} + \int_{2}^{2} = \frac{19}{20} - 1$$

$$= \frac{19 - 20}{20} = -\frac{1}{20}$$

$$LHS = RHS$$

$$Henco given's theorem verified,
$$\frac{PART - B(2xH - 8)}{S^{2} + a^{2}}$$

$$Gab = L[e^{-at}] = \frac{1}{Sta} \quad L[Ce^{at}] = \frac{S}{S^{2} + a^{2}} \quad L[Sinhat] = \frac{a}{S^{2} - a^{2}}$$

$$L[1] = \frac{1}{S}$$

$$= L[e^{-t}] - 2L[Ces 2t] + 3L[Sinhat] + 5L[1]$$

$$= \frac{1}{Sta} - 2x \frac{S}{S^{2} + 4} + 3x \frac{3}{S^{2} - a} + 5x \frac{1}{S}$$$$

$$= \frac{1}{3!3} - \frac{2S}{3^{2}+4} + \frac{9}{3^{2}-9} + \frac{5}{3}$$

7. a) find $L[e^{st} sinst]$ as $L[sinat] = \frac{a}{3^{2}+a^{2}}$

$$= \frac{3}{3^{2}+a^{2}}$$

$$= \frac{3}{3^{2}+a^{2}}$$

$$= \frac{3}{3^{2}+a^{2}}$$

$$= \frac{3}{3^{2}+a^{2}}$$

$$= \frac{2}{3^{2}+a^{2}}$$

$$= \frac{2}{3^{2}+a^{2}}$$

$$= \frac{2}{3^{2}+a^{2}}$$

$$= \frac{2}{3^{2}+a^{2}}$$

$$= \frac{2}{3^{2}+a^{2}}$$

$$= \frac{2}{(s-3)^{2}+4}$$

$$= \frac{2}{(s-3)^{2}+4}$$

$$= \frac{2}{(s-3)^{2}+4}$$

$$= \frac{2}{3^{2}+a-5+4}$$

$$= \frac{2}{3^{2}-65+43} = \frac{2}{3^{2}-65+43}$$

1. $\frac{PART-A(5x3=10)}{PART-A(5x3=10)}$

1. $\frac{PART-A(5x3=10)}{PART-A(5x3=10)}$

2. $\frac{P}{F}$ us vector point, finite, differentiable function in the scafing R enclosed or bound by the subface so for bound of the subface so for bound so for bound by the subface so for bound so for bound by the subface so for bound so for bound by the subface so for bound so for bound by the subface so for bound so for bound by the subface so for bound so for bound by the subface so for bound so for bound by the

· e = 0 e = 1

2.

Prove that LTe^{-at}] = 1 Sta to prove: LTe-at]= 1 Sta we know that $LTF(H) = \int e^{-st} F(H) dF$ =) $L[e^{-at}] = \int_{e^{-st}}^{\infty} e^{at} dt$ = jest-at $= \int_{0}^{\infty} e^{-t(s+a)} dt$ $OP \quad \int 6 \frac{Qx}{Qx} = \overline{60x}$ $= \frac{\left[e^{-t(Sta)}\right]_{0}^{\infty}}{-(Sta)}$ $= \frac{1}{-(Sta)}\left[e^{-\omega} - e^{0}\right]$ $= \frac{1}{-(S+\alpha)} (0-1)$ = 1Sta hence proved. Prove that $L[sinhat] = \frac{\alpha}{s^2 - \alpha^2}$ 3. TO prove $L \ t \ sinhat \ J = \frac{\alpha}{s^2 - \alpha^2}$ we know that $s^2 - \alpha^2$ $L \ f(t) \ J = \int e^{-St} F(t) \ dt.$ $\sinh at = \frac{e^{0} - e^{-0}}{2}$

L [Sinhat] =
$$\frac{1}{9}$$
[L [e⁴⁰ - e⁰]
= $\frac{1}{9}$ [L [e⁴⁰] - L [e⁰]]
flow 0 = at
= $\frac{1}{9}$ [L [e^{4at}] - L [e^{at}]]
as use known
L [e^{-at}] = $\frac{1}{54a}$ and L [e^{at}] = $\frac{1}{5-a}$
= $\frac{1}{9}$ [$\frac{-1}{54a}$ + $\frac{1}{5-a}$]
= $\frac{1}{9}$ [$\frac{-1}{54a}$ + $\frac{1}{5-a}$]
= $\frac{1}{9}$ [$\frac{-54a + 5 + 4a}{5^2 - a^2}$]
= $\frac{1}{9}$ [$\frac{-54a + 5 + 4a}{5^2 - a^2}$]
= $\frac{1}{9}$ [$\frac{-5a}{5^2 - a^2}$]
= $\frac{1}{9}$ [$\frac{5a}{5^2 - a^2}$]
= $\frac{1}{9}$ [$\frac{5a}{5^2 - a^2}$]
= $\frac{1}{9}$ [$\frac{5a}{5^2 - a^2}$]
= $\frac{1}{9}$ [$\frac{1}{9}$]
 $\frac{1}{9}$]
 $\frac{1}{9}$ [$\frac{1}{9}$]
 $\frac{1}{9}$ [$\frac{1}{9}$]
 $\frac{1}{9}$]
 $\frac{1}{9}$]
 $\frac{1}{9}$ [$\frac{1}{9}$]
 $\frac{1}{9}$]

$$= \left[\frac{e^{-St}}{s} \right]_{0}^{\infty}$$

$$= \frac{1}{-S} \left[e^{-\infty} - e^{0} \right]$$

$$= \frac{1}{-S} \left[0 - 1 \right]$$

$$= \frac{1}{3}$$
hence proved.

5. Fund
$$L [\cos 4t \cos 2t]$$

as $(\cos A \cos B = (\cos (A+B) + (\cos (A-B)))$

$$= (\cos (4t+2t) + \cos (4t-2t))$$

$$= (\cos (4t+2t) + \cos (4t-2t))$$

$$= (\cos (4t) + \cos 3t)$$

$$L [\cos 4t (\cos 2t] = \frac{1}{2} L [(\cos (6t)) + (\cos (9t))]$$

$$= \frac{1}{2} [L [(\cos (6t)) + L [(\cos (9t))]]$$

$$as L [(\cos at] = \frac{S}{S^{2}+a^{2}}$$

$$= \frac{1}{3} [\frac{S}{S^{2}+6^{2}} + \frac{S}{S^{2}+8^{2}}]$$

$$= \frac{1}{3} [\frac{S}{S^{2}+6^{2}} + \frac{S}{S^{2}+4}]$$

$$= \frac{1}{3} [\frac{S}{S^{2}+36} + (\frac{S}{S^{2}+4})]$$

$$= \frac{S}{3} [\frac{1}{S^{2}+36} + \frac{1}{S^{2}+4}]$$

COSD+B + COSA-B osacose. $\cos a t = \frac{9}{5^2 + a^2} = \frac{1}{9} \left[\frac{9}{5^2 + 6^2} + \frac{9}{5^2 + 2^2} \right]$ = 1 [3 + 5 S [52+136 52+4] e-3t - 2 cos2t + 3 sinh3t + 5 $\frac{1}{3+3} - \frac{3}{3^2+4} + \frac{3}{5^2+3^2} + \frac{5}{5}$ $\frac{1}{S+3} - \frac{2S}{S^{2}+4} + \frac{9}{s^{2}-9} + \frac{5}{S}$ 1. 1. 1. 1. ezy Snzt Sim t = 2 $Cat = S^{2} + 4$ $Cat = S \rightarrow S - a$ = 2 = 2 (5-3)2+10 s=65+9+4 0200 ((1) 200 / 1 / (1) 14 201 / 1 Setion 52. 65+12 12 -64. 17 12 2

Name: V.Havishankar Reg no: U22 cc 018 Section: CSE - R Subject : U20MABT02 CODO Subject: ADVanced calculus and Eomplex Analysis Date : 31.05 2023 SET-B en. v Past - A ŀ bravis Divergence Theorem. JER dy = JJJEF du R $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - xz)\vec{j} + (z^2 - xy)R$ 11- (+39) 1 2. Soli given $L[e^{-\alpha t}] = \frac{1}{Sta}$ By the definition $L[f(t)] = \int_{0}^{\infty} e^{-St} f(t) dt$ $\Gamma\left[6_{-\alpha f}\right] =$ [est e^{at}dt $= \int e^{(Sta)t} dt$ $= \left(\frac{e^{-(S+q)}}{-(S+q)} \right)$

$$= \int_{a}^{b} \frac{1}{(Sta)} \left[e^{-x} - e^{a} \right]$$

$$= \int_{a}^{b} \frac{1}{(Sta)} \left[(0-1) \right]$$

$$L \left[e^{-at} \right] = \frac{1}{Sta}$$
Hence the proved
$$= \int_{a}^{a} \int_{a}^{b} \int_{a}^{b}$$

given Soli L[1] = /s 4. By the defination $\Gamma[t(f)] = \int_{0}^{\infty} e^{-st} f(t) dt$ L[1] jest midt $\frac{F}{1-52} \left[\frac{e^{-St}}{-S} \right]^{\infty} \left[\frac{f^{-St}}{-S} \right]^{\infty} \left[\frac{f^{-St}}{-S} \right]^{\infty}$ L[1] =]. Hence proved 5. 501: $L \left[\cos 4t \cos 2t \right] = L \left[\cos 6t \cdot f \cos 2t \right]$ = $\frac{1}{2}$ L [cosbt] $\frac{1}{2}$ [cosbt] $\frac{1}{2}$ $= \frac{1}{2} \left(\frac{S}{S^2 + 3b} + \frac{S}{S^2 + y} \right)$ 1

Name: Mohammad Nodern Rg no: 1228M066 Branch: Biomedical B1 Subject: ACCA N. set -CIA-Q TCOMR. Part-C 8)b) To verify Gauss divergence Theorem: hiven $\vec{F} = (n^2 - yz)\vec{i} + (y^2 - zn)\vec{j} + (z^2 - ny)\vec{k}$ n=0, n=a, y=0, y=b, z=0, z=0. To prove LHB=RHS by hann divergence. || Frids = || Fdv. RITZ ff div Fdu $\vec{F} = \vec{F} \nabla \cdot \vec{F} = \frac{\partial F_1}{\partial \chi} + \frac{\partial F_2}{\partial q} + \frac{\partial F_3}{\partial z}$ $=\frac{\partial}{\partial x}(x^{2}-y)+\frac{\partial}{\partial y}(y^{2}-zx)+\frac{\partial}{\partial z}(z^{2}-xy)$ 216+6 $\nabla F = Q(\lambda + y + z)$ = 1 = ff(x yx+zx) draydz.

$$\begin{aligned} & \left| \prod_{a} = \overline{y} + dv = \int_{a}^{b} \int_{a}^{c} g(x_{i}y_{i+2}) dx dy dz \\ = \int_{a}^{b} \left(\frac{a^{2}}{a} + y^{2} + zx \right) \\ = \int_{a}^{b} \left(\frac{a^{2}y}{a} + \frac{y^{2}a}{a} \right) dz \\ = \int_{a}^{b} \left(\frac{a^{2}b}{a} + \frac{a^{b}}{a} + a^{b}z \right) dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{c} + \frac{a^{b}}{a} + \frac{a^{b}z}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}z}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}z}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}z}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}z}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}z}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}z}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}z}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}z}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[\frac{a^{2}b}{a} + \frac{a^{b}}{a} + \frac{a^{b}}{a} \right] dz \\ = \int_{a}^{c} \left[$$

M (x2-y2)dydz $\iint (x^2y - \frac{y^2}{2} + dz)_{\infty}^{b}$ $\left(\left(x^{2}y - \frac{y^{2}}{2} + dz \right) \right)$ $\int (a^2 b dz - \frac{b^2}{R} dz)$ $\left[a^2bz-\frac{b^2}{a}dz\right)$ $\begin{bmatrix} a^{L}b^{Z} - \frac{b^{L}}{2} & \frac{2^{L}}{R} \end{bmatrix}$ $a^2bc-\frac{b^2}{2}\frac{1}{2}$ $\iint a^2bc = \frac{b^2c^2}{a}$ (g²-xo)it (2ª-xy) k² c-i) dydn + $\iint (x^2 - yz) dy dz$ $\iint \mp nds = \frac{b^2 c^2}{4}.$ LITS = RITI.

A

abc[a+b+c] = abc[a+b+c].Part-B $6) (a) L [e^{-st} - 2 coust + 3 sinh st + 5]$ $(e^{-3}) - L[2(m2t] + L[3(mh3t) + L[5])$ $(e^{-3t}) - \frac{6}{a^2 - s^2} + \frac{s^2}{at - s} + \frac{1(5)}{2}$ $\begin{bmatrix} a^2 b^2 - \frac{b^2}{2} & \frac{3}{8} \end{bmatrix}$ 2 bc - s z $\frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{$ + 3- [(p-=,)] : 2b.a.]] $(hpb) Ci-\gamma Ci (pk-20) Fi(0) - S(0)$ $S_{r} \in \left\{ s \mid p - 1 \right\}$

(onthinucus Lecoring Argenment is
Nome Area Tayle V
Register no U22 8moot
Subject (cde: U200mg for
Date: 23/6/23
Sec: 8:0-A (62)
Date: 23/6/23
Sec: 8:0-A (62)
SET-B
RP =) U = e² (zeesy - y Sinzy)
= e² x cesy - e² y Sinzy
To find:
f(z) and conjugate:
U_x (x,y) = cesy (e^xx + e^x(1)) - e^z y Sinzy
= e² x cesy + e² ces(0) - e^z (0) Sin20
= e² z z + e² = P1 (z_{10})
U_x (z_{10}) = (cus 0)e^z z + e² (0) (0) - e^z y Sinzy
= e² z z + e² = P1 (z_{10})
U_y (x_{19}) = e^x z (-Sing) - e^x (y (cesy) + Sing(1))
= e^x z Siny - e^x y Sin20
U_y (z_{10}) = (-e^z z Sin0 - e^z (0) ces(0) - e^z Sino
= 0 - 0 - 0
= 0 =
$$\frac{1}{2} (2,0)$$

By milne thomson method we know. if Real part is given $F(z) = \int (\phi_1(z_0) - i\phi_2(z_0)) dz$ $= \left[\left(e^{2}(z+1) \right) - i(0) \right] dz$ $= \int (e^{z} (z+i)) dz$ $J = (z+1)e^{z} - 1e^{z} + 0(e^{z}) \quad \text{full} \quad 0 = z+1 \quad v_{1} = e^{z}$ = z/z = z/z = 0 $U' = 1 \quad v_{2} = e^{z}$ $U'' = 0 \quad v_{3} = e^{z}$ $f(z) = e^{z} \cdot z$ TO find conjugate. Parel's fcz) = utiv Z = xtig $U + iV = e^{\chi + iy} \cdot (\chi + iy) = e^{\chi + iy} = e^{\chi} \cdot e^{\chi}$ $= e^{\mathbf{x}} \cdot e^{\mathbf{i}\mathbf{y}} (\mathbf{x} + \mathbf{i}\mathbf{y})$ e^{io} = coso tisino $= e^{2} (\cos \theta + i\sin \theta) (x + iy)$ $= e^{\chi} (\chi \cos \theta + i\chi \sin \theta + i\chi \cos \theta + i\chi \sin \theta)$ $= e^{x} \cos \theta + i e^{x} \sin \theta + i e^{x} y \cos \theta - e^{x} y \sin \theta$ U+iV $= e^{\chi}(x\cos\theta - y\sin\theta) + i(e^{\chi}x\sin\theta + e^{\chi}y\cos\theta)$ comparing on both sides The conjugate of the real past is imaginary Part which is ex (xsino + ycoso).

$$\frac{PART-B}{(a)} = \frac{PART-B}{(a)} + \frac{PA$$

construct analytic function f(2) which real part excerts 6b)given. J $U = e^{\alpha} \cos y$ to find f(z) $V_{\chi}(x,y) = e^{\chi} \cos y$ replace x -> z y +0 $U_{x}(z_{0}) = e^{2} \cos(0)$ $= e^2 \times 1 \rightarrow \phi_1(2,0)$ $Vy(x_{iy}) = e^{\chi}(-siny)$ x + z y + o = - e siny $Vy(z_10) = -e^2 \sin(0) = 0 = \Phi_2(z_10)$ By miline thomson method $f(z) = \int (\phi_1(z_{10}) - i \phi_2(z_{10})) dz$ $= \int (e^{2} - i(0)) dz$ $f(z) = \int e^{z} dz$ S. S. S. Sala = p2 The analytic whose real part is excosy utiv = extig = e^x · e^{iy} = e ~ (cosay + i sinay) = excosy + i ex siny The imaginary part is exsiny.

$$\frac{1}{(z^{2}+u_{1})(z-2)}$$

Final under $\int_{C} \frac{4z^{2}-u_{2}z+1}{(z^{2}+u_{1})(z-2)} dz$ voltane C is the circle $|z|=1$
Using ranchy integral from ula
finen:
 $\int_{C} \frac{4z^{2}-4z+1}{(z^{2}+u_{1})(z-2)} dz$
Let know that
 $\int_{C} \frac{dz}{(z^{2}+u_{1})(z-2)} = \frac{hz_{1}B}{(z^{2}-b)} + \frac{C}{(z-2)}$
 $\frac{1}{2}z^{2}-u_{1}z+1 = \frac{hz_{1}B}{(z^{2}+u_{1})(z-2)} + \frac{C}{(z-2)}$
 $\frac{1}{4}z^{2}-u_{2}z+1 = (hz+B)(z-B) + C(z^{2}+u)$
 $\frac{1}{(z^{2}+u_{2})(z-2)} = \frac{(hz+B)(z-B) + C(z^{2}+u)}{(z^{2}+u_{2})(z^{2}+$

()

=)
$$\Re \times \frac{q}{\chi_{1}} + 10 + 1$$

 $B = 4 - \frac{q}{4}$
 $= \frac{36 - q}{4} - \frac{23}{4}$
=) $\int \frac{42^{2} - 42 + 1}{(2^{2} + 4)(2^{-2})} dt = \int \frac{93}{8} \frac{2 + 97}{(2^{2} + 4)} d2 + \int \frac{q}{g} \frac{q}{(2^{-2})}$
 $= \int \frac{93}{6} \frac{2 + 97}{(2^{2} + 4)} d2 + \int \frac{q}{g} \frac{q}{(2^{-2})}$
 $= \int \frac{2^{3}}{6} \frac{2^{2} + 97}{4} d2 + \int \frac{q}{g} \frac{q}{(2^{-2})}$
Comparing RHS with Cauchy integral formula
 $= \int 2^{2} + 4 = 2 - 26 = 0$
 $= \int 2^{2} = -4$
 $= \int 2^{2} = -4$
 $= 2^{2} = \frac{1}{2}$
 $= \frac{1}{2} = \frac{1}{2}$
 $= \frac{1}{2} = \frac{1}{2}$
 $2 = 2$
 $= \frac{1}{2} = \frac{1}{2}$
 $2 = 2$
 $2 = \frac{1}{2} = \frac{1}{2}$
 $2 = \frac{1}{2} = \frac{1}{2}$
 $2 = \frac{1}{2} = \frac{1}{2}$
 $4 = \frac{1}{2} + \frac{1}{2} = 1$
 $\sqrt{x^{2} + y^{2}} = 1$
As the point one outside the circle
 $4 = \frac{1}{2} + \frac{1}{(2^{2} + 4)(2^{-2})} d2 = 0$.
 c

1. find fixed points of transformation

$$W = \frac{67-9}{2}$$

$$Z = \frac{62-9}{2}$$

$$Z = \frac{62-9}{2}$$

$$Z = 3,3$$

$$Z =$$

$$\begin{bmatrix} \operatorname{Rondum} G_{1}^{k} f(z) \\ z = -1 \\$$

NAME: K. DIYN
REG. ND: UDDBMD25 B3'ACC
SUBJECT: DOVINGED CALCULUS AND COMPLEX ANALYSIS. UDDMBBTD2
DATE: 23/6/23
CLA-TI SET: B
PART-C
(3)
a)

$$e^{X} (x coxy. ysiny) = e^{X} x cosy - e^{X} ysiny
diff. w.r.t X & y ?
Ux = (e^{X} cosy + x e^{X} cosy) - e^{X} y siny
Uy = -e^{X} x siny - e^{Y} (y cosy + siny) •
Uy = -e^{X} x siny - e^{Y} y cosy - e^{X} siny
Replace X by 2, y by 0:
Ux = e^{2} + 2e^{2} - e^{2}(0) = e^{2} + 2e^{2} = \phi_{1}(z, 0)
Uy = 0 = \phi_{2}(z, b)
 \Rightarrow using Milne Thomson Method:
 $f(2) = \int [\phi, (z, 0) - i\phi_{2}(z, 0)] dy$
 $= \int (e^{2} + 2e^{2}) dz$
 $= \int (e^{2} + 2e^{2}) dz$
 $= \int e^{2} [i+2] dz \rightarrow Uv' - vu'$
 $= (z+1)e^{2} - 1 \cdot e^{2}$
 $\Rightarrow Ze^{2} + e^{2} - e^{2} = 2e^{2}$$$

To find conjucate,
$$f(z) := 2e^{2}$$

$$\int u+iv = (x+iy)e^{x} + iye^{y} + iye^$$

(1)
$$f(2) = \frac{\sin 2}{2}$$

Put,
 $2 = 0 \rightarrow \frac{(\sin 2)}{2} \Rightarrow \infty$
 \therefore No Alternative for this function.
(3) $2 = 0$
 $f(2) = \cot 2$.
 $\Rightarrow f(0) = (\cot 2)$
 $\Rightarrow \frac{1}{2} = \frac{1}{(2-1)^2}$
 $\Rightarrow \frac{1}{2} = \frac{f(2)}{(2-1)^2}$
 $\Rightarrow \frac{1}{2} = \frac{f(2)}{(2-1)^2}$
 $(2-1)^2 = 0$
 $g_{y, \text{ on both sides}}$
 $\Rightarrow \frac{1}{2-1=0} = \frac{1}{2} = \frac{2^2}{(2-1)^2}$
 $(2-1)^2 = 0$
 $g_{y, \text{ on both sides}}$
 $\Rightarrow \frac{1}{2-1=0} = \frac{1}{2} = \frac{$

$$\begin{cases} To find z_{0}, 2\pi \Gamma_{-}^{0}(12z) \\ = 2\pi \Gamma_{-}^{0}(12z) \\ = 2\pi \Gamma_{-}^{0}(11) \\ = 2\pi \Gamma_{-}$$

NAME : Psampoorna Lakshi Register NO; U22 BM077 section: B1 sub : Advance d calculus and complex trains set: B PART-C 8 (9) Given ex (x cos y - y siny) explosy - exysiny Vy = exx (sin y- costai) - ex yoisy Vy = exx (siny- (osy) - exy sing CXX (ex) - coscers) - exy sing According to million thomson method $e^{\chi} (e^{\chi} - e^{\chi}) - e^{\chi} + siny$ $f(z) = z^2 - z$ Pind out conjugation $f(z) = z^2 - z$ $f(z) = z^2 \cdot z$ $f(z) = \overline{p},$ (z²:i

conjugation of the P(2) the f(2) 5 2 . 5=xcosex-ysiny z = x cos ex - etsiny is the conjugation 2 = 2-1 the Z = Z2-1ex cos x - ex ysin y JF(2) - #c = iz-ze- (1) is the consultaded princes ex(xcoss-35kg) is verified. 小学的 制度 大学

173, Agaram Main Rd., Selaiyur, Chennai, Tamil Nadu 600073

www.bharathuniv.ac.in