

B.Tech Civil Engineering

U20MABT03 - Transforms and Boundary Value Problems

Course File

School of Civil and Infrastructure Engineering

Vision and Mission of the Department

Vision

The Department of Civil Engineering is striving to become as a world class academic centre for quality education and research in diverse areas of civil engineering, with a strong social commitment.

Mission

Mission of the department is to achieve international recognition by:

M1: Producing highly competent and technologically capable professionals.

M2: Providing quality education in undergraduate and post graduate levels, with strong emphasis on professional ethics and social commitment.

M3: Developing a scholastic environment for the state – of –art research, resulting in practical applications.

M4: Undertaking professional consultancy services in specialized areas of civil engineering.

Program Educational Objectives (PEOs)

PEO1: PREPARATION

Civil Engineering Graduates are in position with the knowledge of Basic Sciences in general and Civil Engineering in particular so as to impart the necessary skill to analyze, synthesize and design civil engineering structures.

PEO2: CORE COMPETENCE

Civil Engineering Graduates have competence to provide technical knowledge, skill and also to identify, comprehend and solve problems in industry, research and academics, related to recent developments in civil and environmental engineering.

PEO3: PROFESSIONALISM

Civil Engineering Graduates are successfully work in various Industrial and Government organizations, both at the National and International level, with professional competence and ethical administrative insight so as to be able to handle critical situations and meet deadlines.

PEO4: SKILL

Civil Engineering Graduates have better opportunity to become a future researchers/ scientists with good communication skills so that they may be both good team-members and leaders with innovative ideas for a sustainable development.

PEO5: ETHICS

Civil Engineering Graduates are framed to improve their technical and intellectual capabilities through life-long learning process with ethical feeling so as to become good teachers, either in a class or to juniors in industry.

PROGRAMME OUTCOMES (POs)

On completion of B.Tech in Civil Engineering Programme, Graduates will have to

- 1) Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of complex civil engineering problems
- 2) **Design/Development of Solutions:** Design solutions for complex civil engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 3) Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 4) Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 5) **Problem analysis:** Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 6) Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 7) **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 8) Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 9) Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- **10)** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- 11) Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 12) Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

COURSE FILE

FACULTY	Dr. S. ANUSUYA	FACULTY DEPT	MATHEM
SUBJECT	TRANSFORMS AND BOUNDARY VALUE PEOBLEMS	SUBJECT CODE	020 MAB T03
YEAR	2020-2023	SEMESTER	odd
DEG &BRANCH	CSE - B.Jech	DURATION	REMARKS
SL.NO	DETAILS IN COURSE FILE		KENTAKKS
1.	LEARNING OUTCOMES		
2.	LESSON PLAN &CO-PO MAPPING		
3.	SYLLABUS WITH COURSE OUTCOMES		-
4.	INDIVIDUAL TIME TABLE		
5.	TEXT BOOK AND REFERENCE BOOK		
6.	LECTURE NOTES (FOR ALL UNITS)		
7.	INTERNAL ASSESSMENT I - QUESTION PAPER		
8.	INTERNAL ASSESSMENT I - KEY		
9.	INTERNAL ASSESSMENT I – SAMPLE ANSWER SHEETS	3	
10.	INTERNAL ASSESSMENT II - QUESTION PAPER		
11.	INTERNAL ASSESSMENT II - KEY		
12.	INTERNAL ASSESSMENT II-SAMPLE ANSWER SHEETS		
13.	INTERNAL ASSESSMENT III- QUESTION PAPER		
14.	INTERNAL ASSESSMENT III - KEY		
15.	INTERNAL ASSESSMENT III– SAMPLE ANSWER SHEETS		
16.	INTERNAL ASSESSMENT IV-ASSIGNMENT QUESTION	8	
17.	SAMPLE ASSIGNMENTS		
18.	END SEMESTER QUESTION PAPER		
19,	END SEMESTER ANSWER KEY		
20.	STUDENT PERFORMANCE RECORD		
21.	STUDENT ATTENDANCE RECORD		
22.	COURSE END SURVEY		
23.	CO ATTAINMENT		

HOD

DEAN S&H

Declared as Deemed to be University under section 3 of UGC act 1956

173, Agaram Main Road, Selaiyur, Chennai – 600 073,Tamil Nadu

BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH

Department of Science and Humanities/ Mathematics

LEARNING OUTCOMES:

Degree and Programme	B.E & Common for all branches
Year and Semester:	II year & III Semester
Subject Code and Subject Title:	U20MABT03 / BS and Transforms and Boundary Value problem
Prerequisite:	Diploma
Course Category	BS
LTPC	3 1 0 4
Date of commencement:	
Faculty Incharge:	Dr. S. Anusuya

Transforms and boundary value problems are fundamentals to virtually all of higher mathematics and its applications in the natural, social, and management sciences. These topics, therefore, form the core of the basic requirements in mathematics both for mathematics majors and for students of science and engineering

Course Objectives:

- Expand given function using the knowledge of Fourier Series and frequently needed practical harmonic analysis that an Engineer may have to make from discrete data..
- Solve PDE and Higher order with constant co-efficient and physically interpret the results.
- Apply PDE in Boundary Value Problems and Analyze the solution involving PDE.
- Solve many problems in Engineering by applying Fourier Transforms with the possible special cases with attention to their applications.
- Apply the basics of Z- Transforms in its applicability to discretely varying functions gained the skill of formulate certain problems in terms of difference equation and solve them using the Z- Transforms techniques.

Declared as Deemed to be University under section 3 of UGC act 1956

173, Agaram Main Road, Selaiyur, Chennai – 600 073,Tamil Nadu

LESSON PLAN & CO-PO MAPPINGS:

CO-PO Mappings

Mapping of Course Outcome with Programme Outcomes (PO) & PSO (H/M/L indicates strength of correlation) H – High, M – Medium, L – Low

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PS01	PS02	PS03
CO1	3	3			<u> </u>	-				-	-	1			
CO2	3	3	-	-	1	۰.	2 2 1	-		•	8	2			
CO3	3	3	-	~	2	-	87	ŝ	-	-	-	2			
CO4	3	3	2	-	1	-	-	-	-		10	1			
CO5	3	3	1	-	-	्रम	÷	2 1 820	-	1.	-	2			

(Tick mark or level of correlation: 3-High, 2-Medium, 1-Low)

<u>Course Plan</u>

Content delivery methods:

- ✓ Lecture interspersed with discussion (chalk and board)
- ✓ Online through PDF and Video Conference
- ✓ Presentation slides (PPT)

Assessment methods:

- ✓ Internal Assessment test
- ✓ Assignments (Problems, Seminars)

Declared as Deemed to be University under section 3 of UGC act 1956

173, Agaram Main Road, Selaiyur, Chennai – 600 073,Tamil Nadu

LEARNING RESOURCES

TIME TABLE ACADEMIC YEAR 2021 - 2022 (ODD SEMESTER)

Reference Code	Description
R1	Kandasamy, P., etal., Engineering Mathematics, Vol. II & Vol. III (4th revised edition), S.Chand & Co., New Delhi, 2000
R2	Grewal B.S, "Higher Engg Maths", Khanna Publications, 42nd Edition, 2012.
R3	Kreyszig.E, "Advanced Engineering Mathematics", 10th edition, John Wiley & Sons. Singapore,2012
R4	Sivaramakrishna Das P. and Vijayakumari.C, A text book of Engineering Mathematics III, Viji''s Academy,2010
R5	Narayanan. S., Manickavachagom Pillay. T. and Ramanaiah, G., Advanced Mathematics for Engineering students, Volume II & III (2nd edition), S,Viswanathan Printers and Publishers, 1992
R6	Venkataraman, M,K., Engineering Mathematics - Vol.III - A & B (13th edition), National Publishing Co., Chennai, 1998.
R7	Veerarajan, T., "Engineering mathematics", Tata McGraw-Hill (Education) India Pvt.Ltd, 2006
R8	P.A.Anand, QUANTITATIVE APTITUDE for competitive examinations, Wiley Publications, 2016

2. Teaching Tool Planned:

Type Code	Teaching Tool Planned
T1	Black board etc.
T2	Power Point Presentation
T3.	Tutorial and Problem Solving
T4	Video Presentation
T5	Notes

Declared as Deemed to be University under section 3 of UGC act 1956

173, Agaram Main Road, Selaiyur, Chennai – 600 073,Tamil Nadu

3. Other Resources (Online Resources or others):

- Partial differential equations (<u>https://www.math.uni-leipzig.de/~miersemann/pdebook.pdf</u>)
- Fourier Series (<u>https://www.studocu.com/row/document/makerere-university/electrical-engineering/fourier-series-engineering-mathematics/6364142</u>)
- Boundary value problems (<u>https://sites.ualberta.ca/~niksirat/ODE/chapter-7ode.pdf</u>)
- Fourier Transforms (<u>https://www.thefouriertransform.com/</u>)
- Z Transforms (<u>https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_jan2008/</u> Workbook21/21_2_bscs_z_trnsfm_thry.pdf)

INDIVIDUAL TIME TABLE

Year / Sem: II / III

Individual Timetable

Day/ Period	l 9.00 AM – 9.50 AM	11 9.50 AM - 10.40AM		III 10.50 AM – 11.40 AM	IV 11.40 AM – 12.30 PM		V 1.30 PM – 2.20 PM	VI 2.20 PM 3.10 PM	VII 3.10 PM – 4.00 PM
MON	S6 SA303			S18 SA311					S24 AM302
TUE	S18 SA311		в	S6 SA303		L			S24 AM302
WED		S18 SA311	RE		S6 SA303	U N	S24 AM302		
THUR		S6 SA303	A K		S24 AM302	С Н	S18 SA311		
FRI	S6 SA303			S24 AM302			S18 SA311		

Declared as Deemed to be University under section 3 of UGC act 1956

173, Agaram Main Road, Selaiyur, Chennai – 600 073,Tamil Nadu

ONLINE TIME TABLE 2021 TERM-III (Odd Semester)

Day/ Period	I 9.30 AM – 10.30 AM	II 10.40 AM – 11.40AM	III 11.50 AM – 12.50 AM	IV 1.50 PM – 2.50 PM	V 3.00 PM – 4.00 PM
MON	L SA311		C SA303		N AM302
TUE	N AM302	C SA303		L SA311	
WED	L SA311		N AM302	C SA303	
THUR	N AM302		L SA311		C SA303
FRI	C SA303		N AM302		L SA311

Declared as Deemed to be University under section 3 of UGC act 1956

173, Agaram Main Road, Selaiyur, Chennai – 600 073,Tamil Nadu

	SUMMARY OF COURSE CONTENT	Hrs	CO's
0.1	UNIT I - FOURIER SERIES	1	CO1
01	Introduction to Differentiation, integration and Basic		
	Formulas		
02	Periodic functions, Dirichlet's Condition and Definition	1	CO1
02	of Fourier Series		
03	To Knows the definition of Fourier series and problems	1	CO1
	under Fourier series.	1	CO1
04	Problems in the intervals $(0,21)$ and $(0, 2\pi)$.	1	CO1
05	Solving More Problems in the intervals (0,21) and (0,	1	CO1
	2π	1	CO1
06	Problems to find expansion in the interval (-1, 1) and (- π ,	1	CO1
	π).	1	C01
07	Problems under odd and even function in the intervals (-	Т	
	1,1) and		
	$(-\pi,\pi).$	1	C01
08	Tutorial	1	CO1
09	Half Range sine and Cosine series in $(0, \pi)$ and $(0, l)$		
10	Tutorial	1	C01
11	Harmonic analysis and Solving Problems under	1	CO1
	Harmonic analysis.		
12	Tutorial	1	C01
13	UNIT II PARTIAL DIFFERENTIAL EQUATIONS	1	CO2
10	Introduction to Partial Differential Equations, Formation		
	of PDE by		
	elimination of arbitrary constants -Problems		
14	CDDE 1 limitation of arbitrary functions-	1	CO2
	problems		607
15	Formation of PDE by elimination of arbitrary functions	1	CO2
	$in \phi(u, v) = 0$		
1(1 1 1 to doud tripog of Dartial	1	CO2
16			

Declared as Deemed to be University under section 3 of UGC act 1956

173, Agaram Main Road, Selaiyur, Chennai – 600 073,Tamil Nadu

17	Methods to solve the standard types of Partial	1	CO2
11	differential equations – Type - 4, 5 and 6		
18	Tutorial	1	CO2
10	Methods to solve the first order partial differential	1	CO2
17	equations with constant coefficient -Type-1, Type-2 and		
20	Type -3. Methods to solve the first order partial differential	1	CO2
20	equations with constant coefficient -Type-4, and Type 5		
21	Tutorial	1	CO2
21	Lagrange's Linear Equations-Method of Grouping	1	CO2
22	Lagrange's Linear Equations- Method of Multipliers.	1	CO2
23	Tutorial	1	CO2
24	UNIT III -BOUNDARY VALUE PROBLEMS FOR	1	CO3
23	PARTIAL DIFFERENTIAL EQUATIONS		
	Classification of 2nd order linear partial differential		
	equations.		
26	Introduction to one dimensional Wave Equation.	1	CO3
27	Initial value theorem and final value theorem and	1	CO3
2.	solving problems.		
28	One dimensional Wave Equation Boundary and initial	1	CO3
	value Problems with zero velocity.		602
29	Boundary and initial value Problems with zero velocity	1	CO3
	nrohlems	1	CO3
30	Boundary and initial value Problems with Non-zero	1	
	velocity.	1	CO3
31	Tutorial		CO3
32	One dimensional heat equation - problems with zero		
	boundary values.	1	CO3
33	Tutorial Standy state conditions and Non-zero boundary		CO3
34	Sleady state conditions and rous	1 ×	
	conditions	1	CO3
35	Steady and transient states - problems	1	CO3
36	Tutorial	<u> </u>	

Declared as Deemed to be University under section 3 of UGC act 1956

173, Agaram Main Road, Selaiyur, Chennai – 600 073,Tamil Nadu

37	UNIT IV-FOURIER TRANSFORMS	1	CO4
	Introduction to Fourier transforms - statement of Fourier		
20	integral theorem. Problems on Fourier Transforms in $(-\infty,\infty)$	1	CO4
38 39	Problems in inverse Fourier Transforms in $(-\infty,\infty)$	1	CO4
39 40	Tutorial	1	CO4
40 41	Properties of Fourier transforms	1	CO4
41	Properties of Fourier sine & cosine Transforms	1	CO4
42	Problems on Fourier sine & cosine Transforms in $(0,\infty)$	1	CO4
43	Transforms of simple functions	1	CO4
44	Tutorial	1	CO4
45	Convolution Theorem	1	CO4
40	Parseval's Identity; Integral equations	1	CO4
47	Tutorial	1	CO4
49	UNIT V- Z-TRANSFORMS AND DIFFERENTIAL	1	CO5
47	EQUATIONSIntroduction to Z-transforms		
50	Properties of Laplace transform	1	CO5
51	Problems based on Z- transform and its properties	1	CO5
52	Inverse Z-transform, related problems, long division method	1	CO5
53	Tutorial	1	CO5
54	Inverse Z-transform - residue theorem method	1	CO5
55	Solving problems on general Inverse Z-transform	1	CO5
56	Convolution theorem and Based Problems	1	CO5
57	Solving Problems on Convolution theorem based problems	1	CO5
58	Tutorial	1	CO5
59	Solution of linear difference equations with constant coefficients using Z-transform	1	CO5
60		1	CO5

Declared as Deemed to be University under section 3 of UGC act 1956

(9+3)

(9+3)

173, Agaram Main Road, Selaiyur, Chennai – 600 073,Tamil Nadu

CONTENT OF THE COURSE

SYLLABUS

U20MABT03 / BS Transforms and Boundary Value problem

FOURIER SERIES UNIT I

Dirichlet's conditions-General Fourier series - Half range Sine and Cosine series-Parseval's Identity- Harmonic Analysis. (9+3)

PARTIAL DIFFERENTIAL EQUATIONS UNIT II

Formation-Solutions of standard types of first order equations-Lagrange's linear equations - Linear partial differential equation of second and higher order with constant coefficients.

BOUNDARY VALUE PROBLEMS FOR PARTIAL UNIT III

DIFFERENTIAL EQUATIONS

Classifications second order linear partial differential equations - Solution of one dimensional wave equation - One dimensional heat equation - Steady state solution of two dimensional heat equation -Fourier series solutions in Cartesian coordinates. (9+3)

FOURIER TRANSFORMS UNIT IV

Fourier integral theorem (without proof) - Fourier transform pairs - Fourier sine and cosine transform - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

Z- TRANSFORMS AND DIFFERENCE EQUATIONS (9+3)UNIT V Z - Transform - Elementary properties - Inverse Z - Transform - Convolution theorem -Formation of difference equations-Solution of difference equations using Z-Transform.

COURSE OUTCOMES

	Course Outcomes	Bloor
CO's NO.		Leve
CO1	Expand given function using the knowledge of Fourier Series and frequently needed practical harmonic analysis that an Engineer may have to make from discrete data.	3
CO2	Solve PDE and Higher order with constant co-efficient and physically interpret the results.	3
CO3	Apply PDE in Boundary Value Problems and Analyze the solution involving PDE.	3
CO4	Solve many problems in Engineering by applying Fourier Transforms with the possible special cases with attention to their applications.	3
CO5	Apply the basics of Z- Transforms in its applicability to discretely varying functions gained the skill of formulate certain problems in terms of difference equation and solve them using the Z- Transforms techniques.	3

Bharath Institute Of Higher Education and Research (BIHER)

	TRANSFORMS AND BOUNDARY	L	T	P	C
U20MABT03	VALUE PROBLEMS Total Contact Periods: 60	3	1	0	4
	Prerequisite-U20MABT01 and U20MABT02 of Department:-Department of Mathematics	or Dipionia			

- Grasp the Fourier series expansion for given periodic function in specific inter \geq and their different forms.
- Learn techniques of solving the standard types of first order and second order partial 2 differential equations.
- Learn solving wave and heat equation using Fourier series.
- Understand the problems using Fourier transform and their properties. >
- Understand the problems using Z-transform and their properties. 2

Cou	arse Outco	ome(C	COs)			.1	langu	ladae	ofFo	urier	Series	s and	frequ	ently	need	ed
CO	1 Expan	d give	en fur	iction	usir	ng the	know	ineer	may	have	to mal	ke fro	m dis	crete	data	
		al hai	rmon	c and	arysia	r wit	h cons	tant c	peffic	ients	and p	hysica	ally in	nterpi	et the	5
CO	2 Solve	PDE	and h	ignei	orue	SI WIL		curre e								
	results 3 Apply		1 1.0	C	tiol a	anati	onsin	bound	larv V	Value	Probl	ems a	nd an	alyze	e the	
CC	3 Apply solution	parti	al dif	leren	ual c	diffe	rential	equat	ions							_
			1	1	100 01	nane	ering i	ועוא ער	71 V 1112	TOUL	ier tra	nsfor	n wit	h the		
CC	4 Solve possib	many	prou		with	atter	tion to	o their	appl	icatio	ns.					
	possib 5 Apply	ole spo	ecial	-f 7	7 Tr	ansfo	rm in	its apt	olicat	oility 1	to disc	retely	vary	ing		
CC													of dif	feren	ice	
	functi equat															
	equat	ions a	ind so	-fC	ourge	Outo	comes	with	Progr	am ou	utcom	es				
		Mar	ping	01 C	ourse	trengt	h of c	orrela	tion)3	-Hig	h,2-M	edium	1,1 <i>-</i>			
			1/2/31	nuic	alcos	uong			í.					DC	PS	PS
		OW PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 11	PO 12	PS O1	02	0.
1	COs/POs	1	2	3	4	5	6	7	8	9	10	11	12	01		
2	CO1	3	3						1.				2			
	CO2	3	3			1			-				2		ŝ	
	CO3	3	3			2								-		
Ŋ.,	CO4	3	3	2	1	1							1	4		
1		-	3	1	1		-					l	2			
	CO5	3			(DS	2)									-	
_		Lac	10 SC1	ence	SIDE	2)										
3	Category Approva	Das	10 0.01		E A -	adam	in Con	incil								

UNIT I FOURIER SERIES

(9+3)

(9+3)

Dirichlet's conditions-General Fourier Series-Half range Sine and Cosine series-Parseval's Identity- Harmonic Analysis.

PARTIAL DIFFERENTIAL EQUATIONS

Formation-Solutions of standard types of first order equations-Lagrange's linear equations - Linear partial differential equation of second and higher order with constant coefficients.

UNIT III BOUNDARY VALUE PROBLEMS FOR PARTIAL DIFFERENTIAL EQUATIONS (9+3)

Classifications of second order linear partial differential equations – Solution of one dimensional wave equation – One dimensional heat equation – Steady state solution of two dimensional heat equation –Fourier Series solutions in Cartesian coordinates.

UNIT IV FOURIER TRANSFORMS

(9+3)

Fourier integral theorem (without proof) – Fourier transform pairs – Fourier sine and cosinetransform – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

UNIT V Z-TRANSFORMS AND DIFFERENCE EQUATIONS (9+3) Z - Transform - Elementary properties - Inverse Z - Transform - Convolution theorem -Formation of difference equations- Solution of difference equations using Z-Transform.

TEXTBOOK:

- 1. B.S.Grewal, Higher Engineering Mathematics, KhannaPublishers, 42nd Edition, 2016.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Willie & Sons,2006.

REFERENCES:

- 1. R. Haberman, Elementary Applied partial differential equations with Fourier Series and BoundaryValue Problems, 4thEd., PrenticeHall,1998.
- 2. Manish Goya and .N.P Bali I, Transforms and Partial Differential Equations, University SciencePress, Second Edition, 2010.
- 3. Venkataraman. M. K. "Engineering Mathematics Volume III", 13th Edition NationalPublishingCompany, Chennai, 1998.
- 4. George B. Thomas Jr., Maurice D. Weir, Joel R. Hass., Thomas' Calculus, 12th Edition, Addison-Wesley, Pearson.
- 5. S. J. Farlow, Partial Differential Equations for Scientist and Engineers, DoverPublications 1993.
- 6. Shanmugam, T.N.: http://www.annauniv.edu/shan/trans.h

ent

Staff Name : Dr. S. ANUSUYA

Designation : Assistant Professor

Department : Mathematics

Subject : Transforms and Boundary value problems –

U20MABT03 (II - CSE-SA301, CSE-SA306, CSE-SA114,)

TIME TABLE 2021 TERM-III (Odd Semester)

0	Day/ Period	I 9.00 AM – 9.50 AM	П 9.50 AM – 10.40AM		III 10.50 AM – 11.40 AM	IV 11.40 AM – 12.30 PM		V 1.30 PM – 2.20 PM		VII 3.10 PM – 4.00 PM
	MON	S6 –MATHS (SA301)						S12 -MATHS (SA306)		
	TUE		S12 –MATHS (SA306)	в		S6 MATHS (SA301)	L		CB-MATHS (SA114)	
	WED	S6 –MATHS (SA301)		R E	S12 -MATHS (SA306)		U N			CB-MATHS (SA114)
	THUR	S12 -MATHS (SA306)		A K		CB- MATHS (SA114)	С Н	S6 -MATHS (SA301)		S12 MATHS (SA306)
	FRI				CB-MATHS (SA114)			S6 -MATHS (SA301)		CB-MATHS (SA114)

Signature of the Staff

(S. ANUSUYA)

DEPARTMENT OF MATHEMATICS COURSE FILE – ACADEMIC YEAR – 2021-2022

SEMESTER / TERM / YEAR: ODD / I / IICOURSE CODE: U20MABT03COURSE NAME: TRANSFORM

: TRANSFORMS AND BOUNDARY VALUE PROBLEMS

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Biotechnology

н К

.

te	Year / Sem	ester	8	12.10 2022-	.2022/C	DD						
iration	I cal / Sch	icster	ž.	60 m								D1
Q.No				Quest	ion					Weightage	CO	Bloom's Level
				PART	– A (4X	(2=8)An	swer al	l qu	estions			
1	Write dov	wn the Fe	ourier ser	ies formu	la.			-		2	CO1	2
2	Find a_0					$x < \pi$.				2	CO1	2
3			ondition							2	CO1	2
4				identity f	ormula.					2	CO1	2
				RT – B (12) Ans	wer eit	her	or que	stion		
5	(a) Find	a and		fourier se						6	CO1	2
	f(x) =											2
				(0	r)							
	(b) Find	a and	a the	fourier s	eries fo	r the fun	ction			6	CO1	2
			- x), in (-
6	(a) Find function	the Half $f(x)$	range cos $= x, in$ (sine series 0, <i>1</i>).	and Ha	lf range s	ine serie	es fo	or the	6	CO1	2
				(0)r)							
	(b) Find function	the Hal $f(x)$	f range co $= x, in$ (osine serie $(0,\pi)$.	s and H	alfrange	sine ser	ies f	for the	6	CO1	2
			PA	RT – C	(1X10	=10) An	swer ei	ithe	er or qu	estion		
7	(a) Find	the Fou	rier serie	s for the f	unction	in $f(x) = x$	x+x2 in	(π,	,-π)	10	CO1	2
	and de	duce tha	at $\sum_{n=1}^{\infty} \frac{1}{r}$	$\frac{1}{2^2} = \frac{\pi^2}{6}$.								
					Dr)					10	CO1	2
	(b)Find	the four	ier series	expansior	of peri	od 2π for	the fund	ction	1 y=	10	CO1	
	X	0	π/3	2π/3	π	4π/3	5π/3	1	2π			
	У	1.0	1.4	1.9	1.7	1.5	1.2		1.0			2
	f(x) wh given b	ich is de	fined in (),2π) by n	neans of	the table	of the	valu	les			

CO	Weightage
CO1	30
CO2	

IQAC/ACAD/008

.

CO3	
CO4	
CO5	
CO6	
Total	50

Prepared by	Staff Name H.SASIKALA	Signature
Verified by	HoD Dr.S.V. Manemaran	Signature

UDMARTOS - Transform 2 Boundary Value
Probleme
Internal Assessment - I.
A)
i)
$$f(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx)$$

2). $a_0 = 0$, $a_n = 0$.
3). $f(x)$ is periodic, continuous.
4) $\frac{1}{2\pi} \int_{0}^{2\pi} f(x) \int_{0}^{2} dx = a_0^2 + \frac{1}{2} \int_{n=1}^{\infty} (a_n^2 + b_n^2)$
B) $5(a) a_0 = \frac{8l^2}{3}$, $a_n = -\frac{4}{n^2 \pi^2}$.
b) $a_0 = \frac{4l^2}{3}$, $a_n = -\frac{4}{n^2 \pi^2}$.
6) $a) a_0 = l$, $a_n = \frac{2l}{n^2 \pi^2} [(-1)^n - 1]$
b) $a_0 = \pi$, $a_n = \frac{2}{\pi n^2} [(-1)^n - 1]$
c) $7(a) a_0 = \frac{2\pi^2}{3}$, $a_n = -\frac{4}{n^2} (-1)^{n+1}$, $b_n = \frac{2}{n^2} (-1)^{n+1}$
b) $-f(x) = 1.45 + (-0.36 \cos x + 0.173 \sin x) + (-0.1 \cos 2x - 0.057 \sin 2x) + (-0.053 \cos 3x)$.

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Biotechnology

×.

ate	U20MABT03 – TRANSFORMS AND BOUNDARY VA 21.11.2022			
	Year / Semester 2022-2023/ODD			
uration	: 90 min		00	Dloom'r
Q.No	Question	Weightage	CO	Bloom's Level
	PART – A (4X2 = 8) Answer all questions			
1	Classify the differential equation	2	CO3	
	$3\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} + 6\frac{\partial^2 u}{\partial y^2} - 2\frac{\partial u}{\partial y} - u = 0.$			2
2	State the Fourier integral theorem.	2	CO4	2
3	If $F\{f(x)\} = F(s)$, then $F\{f(x)\cos ax\} =$	2	CO4	2
4	What are the various solutions of one dimensional wave equation?	2	CO3	2
	PART – B (2X6 = 12) Answer either-or qu	estion	1	
	r = 0	6	CO3	
5	(a) A tightly stretched string with fixed end points $x = 0$			
	and $x = l$ is initially at rest in its equilibrium position. If it			
	is set vibrating giving each point a velocity $k(lx - x)$, then			2
	show that $y(x,t) = \frac{8kl^3}{a\pi^4} \sum_{n=1,3,5}^{\infty} \frac{1}{4} \sin \frac{n\pi x}{l} \sin \frac{n\pi at}{l}$. (OR)			
	(b) Find the Fourier transform of $f(x)$ if		CO4	
	1 x < 1			2
	$f(x) = \begin{cases} 1, & x < 1 \\ 0, & x > 1. \end{cases}$			
	[0, x > 1.			
6	(a) State and prove shifting theorem. (OR)	6	CO4	2
	(b) State and prove Modulation theorem.		CO4	2
	PART – C (1X110 =10) Answer either or q	uestion		
7	(a) A metal bar 30cm has its end A and B 20°C and 80°C		CO3	
· · ·	respectively until steady state conditions prevail. The			
	temperature at each end is then suddenly reduced to 0°C and			2
	kept so. Find the resulting temperature distribution function			
	u(x,t) taking x=0 at A.			
		10	CO4	
	(b) Show that the Fourier transform of	10	04	
	(b) blow that the Fourier (c) blow the Fourie			2
	Hence deduce that $\int_{-\infty}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos \frac{s}{2} ds = \frac{3\pi}{16}.$			

Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Biotechnology

14

CO	Weightage
CO1	
CO2	
CO3	10
CO4	20
CO5	
CO6	
Total	30

Prepared by	Staff Name H.Sasikala	Signature
Verified by	HoD Dr.S.V. Manemaran	Signature

1)
$$B^{2}-4AC = -56$$
, Ellipse.
2) $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{i(x-t)s} dt ds.$
3) $F \{f(x)\cos ax\} = \frac{1}{2} [f(s+a) + f(s-a)]$
4) $Y(x,t) = (c_{1}e^{px} + c_{2}e^{-px}) (c_{3}e^{pat} + ce^{-pot})$
 $Y(x,t) = (c_{1}\cos px + c_{2}\sin px)(c_{3}\cos pat + c_{4}\sin pat)$
 $Y(x,t) = (c_{1}x + c_{2}) (c_{3}t + c_{4}).$

5) b)
$$f(x) = \sqrt{\frac{2}{T}} \cdot \left(\frac{\sin s}{s}\right)$$
.

8

6) a) chifting them

$$F[f(x)] = F(s)$$
 then
 $F[f(x-a)] = e^{isx} F(s)$
b) Modulation then
 $F[f(x)] = F(s)$ then
 $F[f(x)] \cos ax] = \frac{1}{2} [F(s+a) + F(s-a)].$
7) a) $C_2 = 20$, $C_1 = \frac{60}{k}$ $P = \frac{n\pi}{r}$, $b_n = \frac{2}{n} \frac{n\pi}{r} \frac{1}{r} \frac{1}{r}$

b) $F(s) = 2\sqrt{2} \int sins - scoss \int \frac{1}{2} \int \frac$

DEPARTMENT OF ABT, IBT, GENETICS

CONTINUOUS LEARNING ASSESSMENT - III

U20MABT03 – TRANSFORM AND BOUNDARY VALUE PROBLEMS

Date	: 26.12.2022
Academic Year / Semester	:2022-2023/ODD
Duration	:1 hour 15 mins
Instructions	: Part A- Answer all questions
	Part B - Answer either A or B for the questions 5 and 6

Part C- Answer either A or B for the question 7

Q.No	Questions	Weightage	СО	Bloom's Level
	PART A (5X2=10)			
1	Form the partial differential equation by eliminating the arbitrary function in $Z = f(x^2 + y^2)$.	2	CO2	R
2	Solve $pe^{y}=qe^{x}$.	2	CO 2	R
3	Prove that $Z[n] = \frac{z}{(z-1)^2}$.	2	CO 5	U
4	Find $Z[\frac{1}{n}]$.	2	CO 5	U
	PART B (2x6=12)	1		
5	(a) Solve $Z = px + qy + p^2 - q^2$ (OR) (b) Solve the equation $(D^2 - 2DD' + {D'}^2)z = \cos(x - 3y)$	6	CO2	U
6	(a)Find the Z – transform of the following, i) Z [1] ii) Z $[a^n]$ (OR) (b) Solve $(mz - ny)p + (nx - lz)q = ly - mx$	6	CO 5	U
	PART C (1x10=10)			
7	a)Solve $(D^2 - DD^{\dagger} + 2D^{\dagger^2})z = 2x + 3y + e^{3x+4y}$	10	CO 2	U
	b)Find $Z^{-1}[\frac{Z}{Z^2+5Z+6}]$			

CO	Weightage
CO1	
CO2	20
CO3	
CO4	
CO5	10
CO6	-
Total	30

 \sim

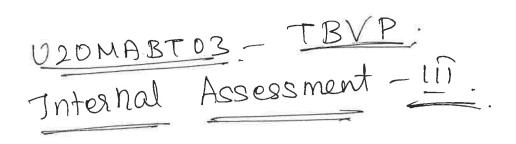
Prepared by	Faculty Name	Signature
	Mrs. H. SASIKALA	
Verified by	Hod	Signature
	Dr. S.V. MANEMARAN	

. .

 \cap

Õ

0



Ê

1)
$$py-qx=0$$
.
2). $z = \int pdx + \int qdy$.
 $z = k \left[e^{x} + e^{y}\right] + c$.
3) $z(n) = \frac{z}{(z-1)^{2}}$
4) $z(y_{n}) = \log\left(\frac{z}{z-1}\right)$
5) $a/z = \frac{k}{1-k} \left(\frac{x^{2}}{2}\right) - k\left(\frac{y^{2}}{2}\right) + a$
 $b) c \cdot F = f_{1}(y+x) + x f_{2}(y+x)$
 $p \cdot I = -\frac{1}{16} \cos(x - 3y)$.
 $z = f_{1}(y+x) + x f_{2}(y+x) - \frac{1}{16} \cos(x - 3y)$
(c) $a) = c_{1} = \frac{z}{z-1}$, $z(a^{2}) = \frac{z}{z-a}$
 $b) \frac{x^{2}}{2} + \frac{y^{2}}{2} + \frac{z^{2}}{2} = c_{1}$, $lx + my + nz = c_{2}$
(c) $a) c \cdot F = f_{1}(y+2x) + f_{2}(y-x) + \frac{5x^{3}}{6} + \frac{5x^{2}y}{3} - \frac{1}{35}e^{\frac{5x^{4}y}{5}}$
 $b) A = -l_{1} B = l$, $x(n) = l(2)^{n} - (-2)^{n}$.

07	ac	27	26	25	24	2	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4		°	2	1-1		SNo
02101	1121BR030	U21BR028	U21BR02/	U21DNV20	CUaatori	1171BR025	U21BR024	U21BR023	U21BR022	U21BR021	U21BR020	U21BR019	U21BR018	U21BR017	U21BR016	U21BR015	U21BR014	UZIBRUIS	U21BR012	U21BK011	U21BR010	U21BR009	UZIBRUVO	U21BRUU/	U21BKUV0	U21DN00	110100100	101001004	U21BR002	U21BR001		Reg. No
	30 DIVYADHARSHINI					5 SKINAKOLANDA		SAMYUKIHAUK	RAKSHAAU				PRAPANJANAN	POUJA PILLAI	PADIMINI	MANJULAD	MAUESTIL	NUNTITATI	VICI AV PRASAD	JUSINITUT DANWAR		JHANAUTHA D	TTANANI K G	TENTEER D	TAVAKIMAR M	UARINT PRIVA A	DADAM TEJASREE	ARUNACHALAM A	CHARULATA DEVI	BALACHANDRAN	ADITH	Name
)	P 47	5	40	36	45				38	45	95	40	46	49	46	45	45	39	20	42	46	46	46	35	44	45	46	49	44		43	U20MABT03

48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
U21BR051	U21BR050	U21BR049	U21BR048	U21BR047	U21BR046	U21BR045	U21BR044	U21BR043	U21BR042	U21BR041	U21BR040	U21BR039	U21BR038	U21BR037	U21BR036	U21BR034	U21BR033	U21BR032	U21BR031
MOHAMED ISMAIL S	ABDUL KALAM M	DARUNGANESH B.N	NIVETHA E	PRAVEEN U	SHANA M	KODIMUDI DEEPTHI	SASIDHARAN S	SELVA FINA T	NATINT	CIDDIOUE	SARANYA S	LEELASHREE P	HARINI K	VISHAL V	VINSLIN JOE A J	PRIYAVARSHINI U	PRIYADHARSHINI S	LAKSHMI M	GADDAM SUJITHA
30	44	41	40	41	44	41	41	46	41	47	36	32	44	34	46	43	45	39	43

 \tilde{k}

<u>S.No</u>	Roll. No	Name	U20MABT03
1	U21AC001	AJAYARAVINDU G	30
2	U21AC002	AKSHAYA SHREE P	49
3	U21AC003	ANBARASAN S	37
4	U21AC004	ANUGU MADHAVA REDDY	25
5	U21AC005	ARISH K	38
6	U21AC006	CHENGALA REKHA RANI	49
7	U21AC007	DANYASI SUSHMITHA	49
8	U21AC008	DARAM SAIRAM REDDY	40
9	U21AC009	DHARAVATH SAICHANDUNAIK	38
10	U21AC010	DURAIMURUGAN A	25
11	U21AC011	JAYAPRATHEEP M	32
12	U21AC012	KAMINI SREE HARSHA VARDHAN RED	35
13	U21AC013	MAGESH KUMAR E V	39
14	U21AC014	MANDAVA HARI KRISHNA SRI	15
15	U21AC018	SACHIN C	35
16	U21AC019	SEETHAMANI MAJHI B	46
17	U21AC020	SHOBITHA SHREEMAYI M	46
18	U21AC021	THIVITHKUMAR R K	45
19	U21AC023	VISHAL A G	44
20	U21AC024	VUDUTHUKU CHANDKA MOULISWARA B	45
21	U21AC026	PITHANI VVSS LAKSHWI PRAVEEN	41
22	U21AC027	SAMINENI ANILKUMAR	38
23	U21AC028	SHAIK KHASIM SURAJ	40
24	U21AC029	ULLAMPAKII JAYA KIRAN	40
25	U21AC030	VAISHNAVI K	46
26	U21AC031	DASAKI NAGENDKA PRASAD	38
27	U21AC032	DHAKSHAN P V	48
28	U21AC033	MEKALA RAVI SHANKAR	40
29	U21AC034	NIKHILA S	38
30	U21AC035	KOPPALA MEGHANA	45
31	U21AC036	CHINNAKOTALA	45
32	U21AC037	ADORNA J	46
33	U21AC038	AVULA MADHAV	45
34	U21AC039	THOMAS DANIEL	38
35	U21AC041	VASEEKARAN D	40
36	U21AC042	TAMILSELVAN A	45
37	U21AC044	RUBASRI T	45
38	U21AC045	ADAPA ABHINAY	40
39	U21AC046	CHILUKURI SRAVYA	43

40	U21AC047	PAVITHRA G	44
41	U21AC048	SETHUPATHY S	38
42	U21AC049	KEERTHANA S	44
43	U21AC050	PAVITHRA B	44
44	U21AC051	RAJESH P	45

 \bigcirc

Roll. No Name U21BT001 BASHABOINA VINAY U21BT002 CHAKRALA THANUJA U21BT003 JALADI DIVYA U21BT004 KALAISELVAN K U21BT005 KAMALESH A U21BT006 KAUSHIK M N U21BT007 KODUMUNURI AKSHAYA U21BT010 KAUSHIK M N U21BT011 RAVI LALITH U21BT012 SHIBIN B U21BT013 VANGA DHARMA REJA U21BT014 VISHAL V S U21BT015 ANURAG SURESHBABU U21BT016 VANGA DHARMA REJA U21BT017 T P KARTHIKEYAN U21BT018 PALAKONDU SRESHBABU U21BT021 PRANEET PATEL U21BT021 PRANEET PATEL U21BT022 BALVA U21BT023 GUGULOTH NIKHIL KUMAR U21BT024 JATTOTH SHASHANK U21BT025 PUTTUR ANUSHA U21BT026 FUNKAL DIANASREE U21BT027 MANT SKUDHAK LILY U21BT028 MOKA DHANASREE U21BT029 DUGGIR
0290227 10 10 10 10 10 10 10 10 10 10 10 10 10

 \bigcirc

×

Bloom's 7 Level 2 2 2 2 2 2 e-1 COL COL COI 00 ŝ U20MABT03 – TRANSFORMS AND BOUNDARY VALUE PROBLEMS 12.10.2022 emester 2022-2023/ODD COI CO COL COL COI COI CO Weightage 10 10 0 φ 9 0 r: 9 2 PART - C (1X10=10) Answer either or question cI PART - B (2X6 = 12) Answer either-or question (b) Find the Half range cosine series and Half range sine series for the function f(x) = x, in $(0, \pi)$. PART - A (4X2 = 8)Answer all questions (a) Find the Half range cosine series and Half range size series for the function f(x) = x, in (0, l). (a) Find the Fourier series for the function in $f(x) = x + x^2$ in (π, π) and deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. (b)Find the fourier series expansion of period 2π for the function y= 1.0 f(x) which is defined in (0,2 π) by means of the table of the values given below. Find the series up to to third harmonic. 2π 5π/3 1.2 (b) Find a_0 and a_n the fourier series for the function (a) Find a_0 and a_n the fourier series for the function $4\pi/3$ 1.5 Find a_0 and a_n , if f(x) = x, $in - \pi < x < \pi$ Write down the Parseval's identity formula 17 × (JO) 60 min Question (0¹) (0r) Write down the Fourier series formula $2\pi/3$ 19 $f(x) = x(2\pi - x), in (0, 2\pi)$ State Dirichlet conditions. l.4 7/3 $f(x) = x^2$, in (0, 2l). 1 0 0 Academic Year / Semester × 9 Duration t. 'n 12 --4 Date

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Electrical and Electronics Engineering

•

				50
CO3	CO4	CO5	C06	Total

Prepared by	Prepared by Staff Name	Signature
	H.SASIKALA	
Verified by	HoD	Signature
	Dr.S.V. Manemaran	

IQAC/ACAD/008

Bharath Institute Of Higher Education and Research (BIHER)

ŝ

Weightage 30 C02 G 8

2

2

$$\frac{\text{U2DMABET }_{03} - \text{Transform}}{\text{Problems}} \underbrace{\text{Boundary Value}}_{\text{Problems}} \underbrace{\text{Internal Assessment}}_{-\text{I}} = \underbrace{\text{I}}_{.}$$

$$A)_{(1)} f(x) = \underbrace{a_{0}}_{2} + \underbrace{a_{0}}_{n=0}^{\infty} (a_{n}\cos nx + b_{n}\sin nx))$$

$$2). \quad a_{0} = D, \quad a_{n} = 0.$$

$$3). \quad f(x) \text{ is periodic, continuous,}$$

$$4) \quad \underbrace{1}_{2\pi} \int_{0}^{2\pi} f(x) \int_{0}^{2} dx = a_{0}^{2} + \underbrace{1}_{2} = \underbrace{a_{0}}_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}))$$

$$B) \quad 5)_{a} a_{0} = \underbrace{8k^{2}}_{3}, \quad a_{n} = -\underbrace{4}_{n^{2}\pi^{2}}_{n=1}, \quad a_{n}^{2} + b_{n}^{2} = \underbrace{k}_{n}^{2} + b_{n}^{2} + b_{n}^{2} = \underbrace{k}_{n}^{2} + b_{n}^{2} = \underbrace{k}_{n}^{2} + b_{n}^{2} = \underbrace{k}_{n}^{2} + b_{n}^{2} = \underbrace{k}_{n}^{2} + b_{n}^{2} + b_{n}^{2} + b_{n}^{2} + b_{n}^{2} + b_{n}^{2} + b_{n}^{2} + b_{n}^{2$$

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Electrical and Electronics Engineering

1 .

 \odot

	U20MABT03 – TRANSFORMS AND BOUNDARY VAI			
te				
	Year / Semester : 2022-2023/ODD 90 min			
ration	Question	Weightage	CO	Bloom's
Q.No	Question			Level
	PART – A (4X2 = 8) Answer all questions			
		2	CO3	1
1	Classify the differential equation	2		2
	$3\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} + 6\frac{\partial^2 u}{\partial y^2} - 2\frac{\partial u}{\partial y} - u = 0.$			
2	State the Fourier integral theorem.	2	CO4	2
Z		2	CO4	2
3	If $F{f(x)} = F(s)$, then $F{f(x)}\cos ax$ =			2
4	What are the various solutions of one dimensional wave	2	CO3	2
	equation?			
	PART – B ($2X6 = 12$) Answer either-or qu	estion		
			1 000	1
5	(a) A tightly stretched string with fixed end points $x = 0$	6	CO3	
	(a) A tightly successful at rest in its equilibrium position. If it and $x = l$ is initially at rest in its equilibrium position.			
	is set vibrating giving each point a velocity $k(lx - x)$, then			2
	show that $y(x,t) = \frac{8kl^3}{a\pi^4} \sum_{n=1,3,5}^{\infty} \frac{1}{4} \sin \frac{n\pi x}{l} \sin \frac{n\pi at}{l}$. (OR)			
	f = f(x)		CO4	
	(b) Find the Fourier transform of $f(x)$ if	6		2
	1, x < 1			
	$f(x) = \begin{cases} 1, & x < 1 \\ 0, & x > 1. \end{cases}$			
		6	CO4	2
6	(a) State and prove shifting theorem. (OR)		004	2
	(b) State and prove Modulation theorem.		CO4	2
	PART – C (1X110 =10) Answer either or q	uestion		
	(a) A metal bar 30cm has its end A and B 20°C and 80°C		CO3	
7	respectively until steady state conditions prevail. The			
	temperature at each end is then suddenly reduced to 0°C and	10		2
	kept so. Find the resulting temperature distribution function			
	u(x,t) taking x=0 at A.			16
	•	10	CO4	-
	(b) Show that the Fourier transform of	10	00.	
	$\left 1-x^2 \right < 1$ $\left 2 \right < 1 \leq 2 \left \sin s - s \cos s \right $			
	(b) Show that the function $f(x) = \begin{cases} 1 - x^2 & x < 1\\ 0 & x > 1 > 0 \end{cases}$ is $2\sqrt{\frac{2}{\pi}} \left(\frac{\sin s - s \cos s}{s^3}\right)$. Hence deduce that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos \frac{s}{2} ds = \frac{3\pi}{16}$.			2
	$\int_{c}^{\infty} \sin s - s \cos s$ $s = 3\pi$			
	Hence deduce that $\int \frac{\cos 2 - \cos 2}{2} ds = \frac{16}{16}$.			

Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Electrical and Electronics Engineering

٩

 $\tilde{\mathbf{y}}$

CO	Weightage
CO1	
CO2	
CO3	10
CO4	20
CO5	
CO6	
Total	30

Prepared by	Staff Name H.Sasikala	Signature	
Verified by	HoD Dr.S.V. Manemaran	Signature	

585 X

 $^{\circ}$

1)
$$B^{2}-4AC = -56$$
, $Ellipse$.
2) $f(x) = \frac{1}{2\pi} \int_{0}^{\infty} f(t) e^{i(x-t)s}$.
3) $F \{f(x) \cos sax \} = \frac{1}{2} [f(s+a) + f(s-a)]$
4) $y(x,t) = (c_{1}e^{px} + c_{2}e^{-px}) (c_{3}e^{pat} + ce^{pat})$.
 $y(x,t) = (c_{1}\cos px + c_{2}\sin px) (c_{3}\cos pat + c_{4}\sin pad)$
 $y(x,t) = (c_{1}x + c_{2}) (c_{3}t + c_{4})$.
5) $b f(x) = \sqrt{\frac{2}{\pi}} \cdot (\frac{\sin s}{s})$.
6) a) $Chiffing + Am$
 $F[f(x)] = F(s) + Can$
 $F[f(x)] = F(s) + Can$
 $F[f(x)] = F(s) + Can$
 $F[f(x)] = F(s) + F(s)$
b) Modulation fhm
 $F[f(x)] = f(s) + F(s-a)]$.
7) $a) C_{2} = 20$, $C_{1} = \frac{60}{k}$ $P = n\frac{\pi}{V}$, $bn = \frac{2n}{n\pi}(1+4t^{-3})]$
b) $F(s) = 2\sqrt{\frac{2}{\pi}} \left[\frac{sins - scoss}{s^{3}}\right]$

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

CONTINUOUS LEARNING ASSESSMENT – III

U20MABT03 – TRANSFORM AND BOUNDARY VALUE PROBLEMS

Date	

ں ر

: 26.12.2022

Academic Year / Semester :2022-2023/ODD

Duration :1 hour 15 mins

Instructions

: Part A- Answer all questions

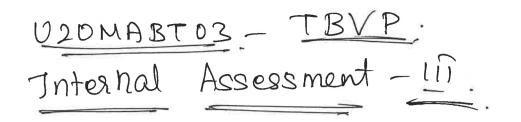
Part B - Answer either A or B for the questions 5and 6

Part C- Answer either A or B for the question 7

Q.No	Questions	Weightage	СО	Bloom's Level	
	PART A (5X2=10)				
1	Form the partial differential equation by eliminating the arbitrary function in $Z = f(x^2 + y^2)$.	2	CO2	R	
2	Solve $pe^{y} = qe^{x}$.	2	CO 2	R	
3	Prove that $Z[n] = \frac{z}{(z-1)^2}$.	2	CO 5	U	
4	Find $Z[\frac{1}{n}]$.	2	CO 5	U	
	PART B (2x6=12)				
5	(a) Solve $Z = px + qy + p^2 - q^2$ (OR) (b) Solve the equation $(D^2 - 2DD' + {D'}^2)z = \cos(x - 3y)$	6	CO2	U	
6	(a)Find the Z – transform of the following, i) Z [1] ii) Z [a^n] (OR) (b) Solve $(mz - ny)p + (nx - lz)q = ly - mx$	6	CO 5	U	
	PART C (1x10=10)		1		
7	a)Solve $(D^2 - DD^{\dagger} + 2D^{\dagger^2})z = 2x + 3y + e^{3x+4y}$	10	CO 2	U	
	b)Find $Z^{-1}[\frac{Z}{Z^2+5Z+6}]$				

СО	Weightage
CO1	
CO2	20
CO3	
CO4	
CO5	10
CO6	-
Total	30

Prepared by	Faculty Name	Signature
	Mrs. H. SASIKALA	
Verified by	Hod	Signature
	Dr. S.V. MANEMARAN	



1)
$$py - qx = 0$$
.
2). $z = \int p dx + \int q dy$.
 $z = k \left[e^{x} + e^{y} \right] + c$.
3) $z(n) = \frac{z}{(e^{-1})^{2}}$
4) $z(y_{n}) = \log\left(\frac{z}{z^{-1}}\right)$
5) $a)z = \frac{k}{1-k} \left[\frac{x^{2}}{2}\right] - k\left(\frac{y^{2}}{2}\right) + a$
 $b) c \cdot F = f_{1}(y + x) + x f_{2}(y + x)$
 $p \cdot I = -\frac{1}{16} \cos(x - 3y)$.
 $z = f_{1}(y + x) + x f_{2}(y + x) - \frac{1}{16} \cos(x - 3y)$
6) $a) = c(1) = \frac{z}{z^{-1}}$, $z(a^{2}) = \frac{z}{z^{-a}}$
 $b) \frac{x^{2}}{2} + \frac{y^{2}}{2} + \frac{z^{2}}{2} = c_{1}$, $lx + my + nz = c_{2}$
(1) $a) c \cdot F = f_{1}(y + 2x) + f_{2}(y - x) + \frac{5x^{3}}{6} + \frac{5x^{2}y}{2} - \frac{1}{16} e^{3x + 4y}$
 $b) A = -1$, $B = 1$, $x(n) = (-2)^{n} - (-3)^{n}$.

, O

P

0

~

BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCI

Department of Electrical and Electronics Engineering II YEAR 2021 BATCH INTERNAL MARKS

0.11	DUN	Student Name	U20MABT03 TB&
S.No	Roll No.		60
1	U21EE001	KARTHIK P KOTHAKOTA NARENDRABABU	90
2	U21EE002		94
3	U21EE003	MEDISHETTI CHAITANYA	94
4	U21EE004	NAGULA VENKANNA BABU	93
5	U21EE005	GUDIKADI VAMSHI KRISHNA	85
6	U21EE006	GUNTI KOTESHWAR RAO	80
7	U21EE007	CHINTHALAPALL IPANI KUMAR REDDY	
8	U21EE008	KANCHARLAPALLI SAI DHANUSH	82
9	U21EE009	SIDDAVATAM BALA SAINATH REDDY	85
10	U21EE010	YERUVA SIVA REDDY	79
11	U21EE011	A GOVARDHAN REDDY	75
12	U21EE012	SIDDANNA VENKATA KARUNAKAR	50
13	U21EE013	BIJINIVEMULA NAVEEN KUMAR REDD	83
14	U21EE014	JUTURU AJAY KUMAR REDDY	98
15	U21EE015	BOLLAE JAGADEESHWARA	80
16	U21EE016	ADABALA AYYAPPA SWAMI	73
17	U21EE017	THATIGUTLA LOKESHWAR REDDY	83
18	U21EE018	ADAKA VENKATESWARLU	85
19	U21EE019	SEETHARU ESWAR REDDY	67
20	U21EE020	JOHN VESLY M	85
20	U21EE020	ADAVI MADHUSUDHAN	85
		KOTTE CHANDRA SEKHAR	84
22	U21EE022	PURNENDU KUMAR YADAV	0
23	U21EE023	MOLAKA GOVARDHAN REDDY	80
24	U21EE024	MOLAKA GOVARDHAN KEDDI M BHARATH KALYAN	70
25	U21EE025	VIJAYA KUMAR A	91
26	U21EE026		82
27	U21EE701	Aakash Vijay Doss.V	75
28	U21EE702	Akkinapalli Vijaya Prakash	65
29	U21EE703	Balakrishnan.B.N	74
30	U21EE704	Barige Venkata Srinu	75
31	U21EE705	BHUKYA KESHAVARDHAN NAYAK	
32	U21EE706	Dasari Vinesh Kumar	70
33	U21EE707	Eeda Tharun	79
34	U21EE708	GAJULA MADHU CHARAN	83
35	U21EE709	Honi Tatam	85
36	U21EE710	Jayasurya K	77
37	U21EE711	Kambala Poorna Kumar	85
38	U21EE712	Kancheti Venkat	88
39	U21EE713	Linto David.K	88
40	U21EE714		95
41	U21EE715		96
42	U21EE716		86
43	U21EE717		88
	U21EE718		77
44	U21EE719		0
45	U21EE719		78
46			78
47	U21EE721		82
48	U21EE722		92
49	U21EE723		88
50	U21EE724	Sridhar.E	00

Ques	Туре
Question	Туре
What is the suitable expansion for the Fourier series?	MCQ
Find the Fourier constants b_n for xsinx in $(-\pi, \pi)$	MCQ
Find the value of a n from Fourier series $f(x) = x^3 in(-\pi, \pi)$	MCQ
Find the half range cosine series for the function $f(x) = x \sin x$ value a_n	MCQ
Form the partial differential equation by eliminating the arbitrary constants from $z=ax+by+a^{2}+b^{2}$	MCQ
What is the form of equation in Clairaut's type ?	MCQ
Which of the following is Lagrange's Method	MCQ
When the R.H.S of a given PDE is in exponential, then to find particular integral, we will substitute	MCQ
Which of the following represents a^2 in the wave equation?	MCQ
Which one of the following is the most suitable solution of one dimensional wave equation?	MCQ
Classify the equation if B^2-4AC=0 ?	MCQ
When the ends A and B of a rod length 10 cm have their temperature 20 ⁰ C and 70 ⁰ C. Find the steady state temperature on the rod?	мсq
What is the Fourier Cosine Transform F_C [f(ax)] = ?	MCQ
What is the value of $F[f(x-a)]$? If $F(s)$ is the Fourier transform of $f(x)$.	MCQ
Find the Fourier cosine transform of e^-x	MCQ
Find the Fourier sine transform of e ⁻ -x	MCQ
Find $Z(n) = ?$	MCQ
When $z(\sin n\theta) = Z\sin \theta/(Z^2 - 2z\cos \theta + 1)$ then $\sin(n\pi/2) = ?$	MCQ
Find $Z[a^n f(n)] =$	MCQ
Form the difference equation of $y_n = a + (b 3^n)$	MCQ

 \cap

Option1	Option1	Option2	Option2M	
Answer 1	Answer	Answer 2	Answer 2	
aperiodic function	0	periodic function	1	
0	1	2π	0	
π	0	2 π	0	
(\pi^2)/3	1	(2π^2)/3	0	
$z = ax+by+a^2+b^2$	0	$z = px + qy + a^2 + b^2$	0	
Z=px+qy+f(p,q)	1	Z=px+qy	0	
By elimination of arbitrary constants	0	By elimination of arbitrary functions	0	
D=a. D'=b	1	D=1/a. D'=1/b	0	
Tension/ Mass per unit length	1	Mass/Tension per unit length	0	
y(x,t) = (Acospx-Bsinpx)(Ccospat-Dsinpat)	0	y(x,t) = (Acospx-Bsinpx)(Ccospat+Dsinpat)	0	
Parabolic	1	Hyperbolic	0	
u(x) = 5x + 20	1	u(x) = 5x+2	0	
1/a F_C [s]	0	F_C [s/a]	0	
e^ias F(s)	1	e^ias F(s/a)	0	
$\sqrt{(2/\pi)} [1/(-1-s^2)]$	0	$\sqrt{(2/\pi)} [s/(-1-s^2)]$	0	
$\sqrt{(2/\pi)} [s/(1+s^2)]$	1	$\sqrt{(2/\pi)} [s/(-1-s^2)]$	0	
Z/(Z-1)	0	Z/(Z)^2	0	
Z/(1- Z^2)	0	Z/(Z^2+1)	1	
F[z/a]	1	F[z]	0	
$\frac{r[2/a]}{2y_{(n+2)}} \frac{[4y]}{(n+1)} \frac{(n+1)}{[3y]} n=0$	0	$y_{n+2} = [4y] _{n+1} + [3y] _{n=0}$	1	

Option3	Option3M Option4			
Answer 3	Answer 3	3 Answer 4		
series function	0	both periodic and aperiodic		
π/2	0	1		
0	1	π/2		
(π^2)/9	0	(π [^] 2)/6		
z= ax+by+p^2+q^2	0	$z = px + qy + p^2 + q^2$		
Z=f(p,q)	0	Z=px+qy+f(a,b)		
Methods of multiplier	1	By Method of Division and Multiplication		
D= 2a. D'=2 b	0	D=-a. D'= -b		
Tension/ Force per unit length	0	Tension/ Force per unit length		
y(x,t) = (Acospx+Bsinpx)(Ccospat-Dsinpat)	0	y(x,t) = (Acospx+Bsinpx)(Ccospat+Dsinpat)		
Elliptic	0	Rectangular Hyperbola.		
u(x) = 15x+20	0	u(x) = 6x+20		
1/a F_C [s/a]	1	1/a F_C [1/a]		
e^-ias F(s)	0	e^ias F(-s)		
$\sqrt{(2/\pi)} [1/(1+s^2)]$	1	none		
$\sqrt{(2/\pi)} [s/(1-s^2)]$	0	$\sqrt{(2/\pi)} [s/(-1+s^2)]$		
Z/(Z-1)	0	Z/(Z-1)^2		
Z/(Z^2-1)	0	Z/(Z^2)		
F[az]	0	F[a]		
$y_{n+2} [y] _{n+1} + [3y] _n=0$	0	$y_{(n+2)-} [4y] _{(n+1)+} [y] _{n=0}$		

ŧ

 $(\bigcirc$

ption4Mar	CorrectA	WrongAr	DescAns	Marks	GroupID
swer 4 Ma	Right Answe r (1 to 5)				GroupID
0	Option2			1	Part A
0	Option1			1	Part A
0	Option3			1	Part A
0	Option1			1	Part A
1	Option4			1	Part A
0	Option1			1	Part A
0	Option3			1	Part A
0	Option1			1	Part A
0	Option1			1	Part A
1	Option4			1	Part A
0	Option1			1	Part A
0	Option1			1	Part A
0	Option3	-		1	Part A
0	Option1			1	Part A
0	Option3			1	Part A
0	Option1			1	Part A
1	Option4			1	Part A
0	Option2	2	_	1	Part A
0	Option			1	Part A
0	Option2	2		1	Part A

 $(\bigcirc$

Ques	Type
Question	Type
Find the value of b n for the Fourier series for $f(x)=x^{2}$ in $(-\pi,\pi)$?	MCQ
The function $f(x) = \cos x$ is	MCQ
Find a 0 for the function $f(x)=1/2(\pi-x)$ in $(0,2\pi)$	MCQ
Which of the following function is periodic?	MCQ
What is the form of the equation $\sqrt{p} + \sqrt{q} = 1$ is?	MCQ
Which of the following represented in Lagrange's Method	MCQ
Which of the linear partial differential equation of the first order is known as clairaut's form	MCQ
When the R.H.S of a given PDE is in exponential, then to find particular integral, we will substitute	MCQ
Classify the equation if B^2-4AC=0 ?	MCQ
When the ends A and B of a rod length 10 cm have their temperature 20 ^o 0 C and 70 ^o 0 C, Find the steady state temperature on the rod?	MCQ
What is the name of equation $(\partial^2 y)/(\partial t^2) = a^2 (\partial^2 y)/(\partial x^2)$	MCQ
Which one of the following is the most suitable solution of one dimensional wave equation?	MCQ
What is the value of $F[e^{ix} f(x)]$, when $F(s)$ is the Fourier transform of $f(x)$.	MCQ
Find the Fourier cosine transform of e^-x	MCQ
Find the Fourier sine transform of e^-x	MCQ
Find the value of Z(n).	MCQ
When $z(\sin n\theta) = Z\sin\theta/(Z^2-2z\cos\theta+1)$ then $\sin(n\pi/2) = ?$	MCQ
Find $Z[a^n f(n)]$.	MCQ
Form the difference equation of $y_n = a + (b 3^n)$	MCQ
What is the simple pole at the point for the function $F(z) = \frac{z}{((z-1) (z-2) ^2})?$	MCQ

 $(\bigcirc$

Option1	ption1Mar	Option2	Option2Mark
Answer 1	iswer 1 Ma	Answer 2	nswer 2 Marl
0	1	1	0
Even	1	Odd	0
3	0	1	0
log x	0	Exponential	0
f(p,q,z)=0	0	f(p,q,y)=0	0
By elimination of arbitrary constants.	0	Methods of grouping.	I
z= px+qy+f(p,q)	1	Px+Qy=R	0
D=a. D'=b	1	D=1/a. D'=1/b	0
Parabolic	1	Hyperbolic	0
u(x) = 5x + 20	1	u(x) = 5x + 2	0
Laplace Equation	0	Wave equation	1
y(x,t) = (Acospx-Bsinpx)(Ccospat-Dsinpat)	0	y(x,t) = (Acospx-Bsinpx)(Ccospat-	0
F(s-a)	0	F(s)	0
$\sqrt{(2/\pi)} [1/(-1-s^2)]$	0	$\sqrt{(2/\pi)} [s/(-1-s^2)]$	0
$\sqrt{(2/\pi)} [s/(1+s^2)]$	1	$\sqrt{(2/\pi)} [s/(-1-s^2)]$	0
Z/(Z-1)	0	Z/(Z)^2	0
Z/(1- Z^2)	0	Z/(Z^2+1)	1
F[z/a]	1	F[z]	0
2y_(n+2)- [4y] _(n+1)+ [3y] _n=0	0	y_(n+2)- [4y] _(n+1)+ [3y] _n=	1
z=0	0	z=1	1

*

Option3	Option3Marl	Option4	Option4Mark
Answer 3	nswer 3 Mar	Answer 4	nswer 4 Marl
2	0	3	0
Neither even nor odd	0	Indefinite	0
2	0	0	1
sin x	1	x	0
f(p,q)=0	1	f(p,q,x)=0	0
By elimination of arbitrary function	0	By Method of Division and Multiplication	0
dx/P=dy/Q=dz/R	0	u=a and v=b	0
D= 2a. D'=2 b	0	D= -a. D'= -b	0
Elliptic	0	None	0
u(x) = 15x+20	0	u(x) = 6x + 20	0
Heat equation	0	Difference equation	0
y(x,t) = (Acospx+Bsinpx)(Ccosp	0	y(x,t) = (Acospx+Bsinpx)(Ccospat+Dsin	1
F(s+a)	1	F(a)	0
$\sqrt{(2/\pi)} [1/(1+s^2)]$	1	none	0
$\sqrt{(2/\pi)} [s/(1-s^2)]$	0	$\sqrt{(2/\pi)} [s/(-1+s^2)]$	0
Z/(Z-1)	0	Z/(Z-1)^2	1
Z/(Z^2-1)	0	Z/(Z^2)	0
F[az]	0	F[a]	0
$y_{n+2} = [y]_{n+1} + [3y]_{n+2}$	0	y_(n+2)- [4y] _(n+1)+ [y] _n=0	0
z=2	0	z=3	0

i.

ż

 (\cup)

CorrectAnswer	WrongAnswer	DescAns	Marks	GroupID
Right Answer (1 to 5)				GroupID
Option1			1	Part A
Option1			1	Part A
Option4			1	Part A
Option3			1	Part A
Option3			1	Part A
Option2			1	Part A
Option1			1	Part A
Option1			1	Part A
Option1			1	Part A
Option1			1	Part A
Option2			1	Part A
Option4			1	Part A
Option3			1	Part A
Option3			1	Part A
Option1			1	Part A
Option4			1	Part A
Option2			1	Part A
Option1			1	Part A
Option2			1	Part A
Option2			1	Part A

 \bigcirc

()

BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH

Declared as Deemed to be University under section 3 of UGC act 1956 173, Agaram Main Road, Selaiyur, Chennai – 600 073, Tamil Nadu

End SemesterExaminations - Nov-2021

Programme(s)	Year	Semester	Course Code(s)	Course Title
B. TECH	II Year	- 111	U20MABT03	Transforms and Boundary value problems
: Three Hours		1	Max Ma	arks: 100

No. of Pages:02

	Part – B: (5 X 6 = 30 Marks)	Marks	BT	со
	Answer either (a) or (b)			
21a (or)	Find the half range Fourier cosine series of $f(x) = x$ in $(0, l)$	6	U	1
21b	Obtain the Fourier series to represent the function $f(x) = x , -\pi < x < \pi$	6	U	1
22a ´or)	Form the P.D.E by eliminating the arbitrary function from $z = f\left(\frac{y}{x}\right)$	6	A	2
22b	Solve $(D^2 + 2DD' + D'^2)z = e^{x-y}$	6	A	2
23a (or)	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially in a position given $y(x,0) = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position. Find the displacement y(x,t) at any distance x from one end at any time t .	6	A	3
23b	A rod of length l with insulated sides is initially at a uniform temperature u_0 . Its ends are kept at $0^{\circ}C$ and kept so. Find the temperature distribution.	6	A	3
24a (or)	Show that the function $e^{\frac{-x^2}{2}}$ is self-reciprocal under Fourier transform.	6	A	4
24b	Find the Fourier sine and cosine transform $f(x) = e^{-\alpha x}$	6	A	4
25a (or)	Find $Z(r^n \cos n\theta)_{\text{and}} Z(r^n \sin n\theta)_{\text{also find}} Z(\cos n\theta)_{\text{and}} Z(\sin n\theta)$	6	A	5
25b	Find $Z^{-1}\left(\frac{z}{(z-1)(z-2)}\right)$ using Residue theorem.	6	A	5

Part – C: (5 X 10 = 50 Marks)	Marks	BT	co
Answer either (a) or (b)			

26a	Express as a Fourier series of a poriod in the interval	1	T	1
(or)	Express as a Fourier series of a period in the interval Hence deduce that the sum of the series	10	U	1
26b	Find the Fourier series for $f(x) = x^2 in^{-\pi} < x < \pi$. Hence show that			
	$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$. Hence show that	10	U	1
27a (or)	Solve $(mz - ny)p + (nx - lz)q = ly - mx$	10	A	2
27b	Solve $(D^2 - DD' - 2D'^2)z = 2x + 3y + e^{3x+y}$	10	A	2
28a (or)	A string is stretched and fastened to two points $x = 0$ and $x = l$ apart. Motion is started by			
	displacing the string into the form $y \equiv k(lx - x^2)$ from which it is released at time $t = 0$. Find the displacement of any point on the string at a distance of x from one end at time t	10	A	3
28b	A rod of length l has its ends A and B kept at $0^{\circ}C$ and $150^{\circ}C$ respectively, until steady state conditions prevail. If the temperature at B is reduced to $0^{\circ}C$ and kept so, while that of A is maintained so, find the temperature $u(x,t)$ at a distance x form A and at time t .	10	A	3
29a (or)	$f(x) = \begin{cases} 1 - x^2, & in x \le 1 \\ 0, & in x > 1 \\ 0, & s = \begin{cases} \sin s - s \cos s \\ \sin s - s \cos s \\ \sin s - s \cos s \end{cases}.$ Hence prove that $\int_{0}^{\infty} \left(\frac{\sin s - s \cos s}{s^3}\right) \cos \frac{s}{2} ds = \frac{3\pi}{16}$	10	A	4
29b	Find $F_s(e^{-ax}) \& F_c(e^{-ax})$ and hence deduce that (i) $\int_0^{\infty} \frac{x^2 dx}{(x^2 + a^2)^2} \int_0^{\infty} \frac{dx}{(x^2 + a^2)^2} a^{>0}$	10	A	4
30a (or)	Find $Z^{-1}\left(\frac{z^3+3z}{(z-1)^2(z^2+1)}\right)$ by using Partial fraction method.	10	A	5
30b	Find $Z^{-1}\left(\frac{8z^2}{(2z-1)(4z+1)}\right)$ by using Partial fraction method. Find $Z^{-1}\left(\frac{8z^2}{(2z-1)(4z+1)}\right)$ by using Convolution theorem.	10	А	5

ssessme	ent Summary:						
COs	Remember	Understand	Apply	Analyze	Evaluate	Create	T ()
CO1		16	1.661	Andryze	Lvaluale	Create	Tota
CO2			16				16
CO3							16
			16				16
CO4			16		14		16
CO5	·		16				
CO6							16

Name : Tangala prija leg no? - U
fourier series :
8f f(x) is a period function and div
then it can be represented by an infinite
let f(x) be a periodic function defined
series.

$$f(x) = a_0 + \sum_{n=1}^{\infty} (ancosnx+bnsinnx))$$

where $a_0 = \frac{1}{\pi} \int_{\pi} f(x) dx$
 $a_1 = \frac{1}{\pi} \int_{\pi} f(x) dx$
 $b_1 = \frac{1}{\pi} \int_{\pi} f(x) dx$
there a_0, b_1, a_0 are called fourier series
 (2) Dirichlet's Conditions:
 $g_1 = a_0 + \sum_{n=1}^{\infty} (a_n cosnx + b_n sinnx))$
where $a_0 = \frac{1}{\pi} \int_{\pi} f(x) dx$, $a_1 = \frac{1}{\pi} \int_{\pi} f(x) cosnx dx$
there $a_0 = \frac{1}{\pi} \int_{\pi} f(x) dx$, $a_1 = \frac{1}{\pi} \int_{\pi} f(x) cosnx dx$
 $f(x) = a_0 + \sum_{n=1}^{\infty} (a_n cosnx + b_n sinnx))$
where $a_0 = \frac{1}{\pi} \int_{\pi} f(x) dx$, $a_1 = \frac{1}{\pi} \int_{\pi} f(x) cosnx dx$
provided the following dirichlet's condition
 $(i) f(x)$ is single valued f finite in (46+1).
 $(i) f(x)$ is has a finite number of maxim

(4)
$$f(x) = \pi - x \text{ for scale } e^{-\pi - x} e^{-\pi - x}$$

Step 2 °-
To find as °-

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$$

 $= \frac{2}{\pi} \int_0^{\pi} x dx$
 $= \frac{2}{\pi} \left[\frac{\pi}{2} \right]_0^{\pi}$
 $a_0 = \pi \rightarrow \odot$
Step 3 °-
To find as °-
 $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$
 $= \frac{2}{\pi} \int_0^{\pi} x \cos nx dx$
 $= \frac{2}{\pi} \left[\frac{\pi \sin n\pi}{n} + (1) \cos n\pi}{n^2} \right]_0^{\pi}$
 $= \frac{2}{\pi} \left[(\frac{\pi \sin n\pi}{n} + \frac{\cos n\pi}{n^2}) - (0 + \frac{\cos(0)}{n^2}) \right]$
 $= \frac{2}{\pi} \left[(\cos n\pi - \cos(0)) \right]$
 $= \frac{2}{n^2\pi} \left[(-1)^n - 1 \right]$
 $a_0 = \int_0^{-\frac{4}{2}} if^{(1)} 0^{(1)} \sin 0 dd$

 \bigcirc

Step 4 °-
To find by °-
bn =
$$\frac{1}{e} \int_{0}^{24} f(x) \sin \frac{n\pi\pi}{2} dx$$

= $\frac{1}{e} \left(\int_{0}^{2} f(x) \sin \frac{n\pi\pi}{2} dx + \int_{2}^{2} f(x) \sin \frac{n\pi\pi}{2} dx \right)$
= $\frac{1}{e} \left(\int_{0}^{2} f(x) \sin \frac{n\pi\pi}{2} dx + e^{2} \right)$
= $\frac{1}{e} \left(-\frac{k}{k} x \sin \frac{\cos n\pi\pi}{4} + \frac{k}{k} \sin \frac{\pi\pi\pi}{2} \right)$
= $\frac{1}{e} \left(-\frac{k}{k} x \cos n\pi\pi - k \sin \pi\pi}{n\pi\pi} \right)^{2} - (0+0) \right]$
= $\frac{1}{e} \left(\frac{-k}{n\pi\pi} \left(\cos n\pi\pi \right) - \frac{k}{n\pi\pi} \sin \frac{\pi\pi}{2} \right) - (0+0) \right]$
= $\frac{1}{e} \left(\frac{-k}{n\pi\pi} \left(\cos n\pi\pi \right) \right)$
= $\frac{-k}{n\pi\pi} \left(\cos n\pi\pi \right)$
bn = $-\frac{k}{n\pi\pi} \left[(\cos n\pi\pi) \right]$
Step 5 °-
the required fourier services substituting (2)
f(x) = $\frac{a_{0}}{2} + \frac{e}{n\pi\pi} an \cos n\pi\pi + \frac{e}{2} - \frac{k}{n\pi\pi} \left[(-1)^{n} \right]$

(8] step1 :-(b) the fourier series for for) is $f(x) = \frac{ao}{2} + \frac{e}{\epsilon} a_0 \cos \frac{n\pi x}{2} + \frac{e}{\epsilon} b_0 \sin \frac{n\pi x}{2} \rightarrow (1)$ step 2 :-To find 20:a = - 1 fende = 1 [S Kada + Soda] = [[Ka2]x = 1 [K 2] $a_0 = \frac{kl}{5} \rightarrow (2)$ step 3 ?to find 20 ° an= 1 f f (n) cos NTX dx = 1 [fex) cosmattda + f fex) cosmittada] = 1 [j Ka cos mitada to] = 1 (j ka sin not x 2 + K cos matrix] 2 n2112 nThe

$$= \int_{0}^{2} (2X - X^{2}) \cos nx dx$$

= $\left[(2X - X^{2}) \sin \frac{nX}{n\pi} + (2 - 2X) \cos \frac{nX}{n^{2}\pi} - 2 \sin \frac{n\pi}{n^{3}\pi} \right]$
= $\left[(0 - \frac{2}{n^{2}\pi^{-}} - \frac{D}{n^{2}\pi^{-}} - \left[0 + \frac{2}{n^{2}\pi^{-}} - 0 \right] \right]$
= $\left[\frac{-2}{n^{2}\pi^{-}} - \frac{2}{n^{2}\pi^{-}} \right] = \left[\frac{-4}{n^{2}\pi^{-}} - \frac{1}{n^{2}\pi^{-}} \right]$
 $\alpha_{n} = -\frac{4}{n^{2}\pi^{-}} - \frac{1}{n^{2}\pi^{-}} = \left[\frac{1}{n^{2}\pi^{-}} - \frac{1}{n^{2}\pi^{-}} \right]$
 $\alpha_{n} = \frac{-4}{n^{2}\pi^{-}} - \frac{1}{n^{2}\pi^{-}} = \left[\frac{1}{n^{2}\pi^{-}} - \frac{1}{n^{2}\pi^{-}} \right]$
 $(x - y) = \int_{0}^{2} (2x - x^{-}) \sin n\pi\pi x dx$
 $= \int_{0}^{2} (2x - x^{-}) \sin n\pi\pi x dx$
 $= \left[(2x - x)^{2} - \frac{\cos n\pi^{-}}{n\pi^{-}} + (2 - 2x) \sin n\pi\pi x - 2 \cos \frac{\pi^{-}}{n^{2}\pi^{-}} - \frac{1}{n^{2}\pi^{-}} \right]$
 $= \left[(2 + 0 - \frac{2}{n^{3}\pi^{-}}) - \left(-\frac{2}{n^{3}\pi^{-}} \right] \right] = D$
Substituting $(2) = \frac{1}{2} + \frac{2}{n^{2}} a_{1} \cos n\pi x + \frac{2}{n^{2}} b_{1} \sin n\pi x$
 $= \frac{2}{3} + \frac{2}{n^{2}} a_{1} \cos n\pi x + \frac{2}{n^{2}\pi^{2}} b_{1} \sin n\pi x$
 $= \frac{2}{3} + \frac{2}{n^{2}} \left[\frac{-4}{n^{2}\pi^{2}} \cos n\pi x + \frac{1}{n^{2}\pi^{-}} \right]$
 $\left[f(x) = \frac{a_{0}}{a} + \frac{2}{n^{2}} (a_{1} \cos n\pi x + b_{1} \sin n\pi)$
 $= \frac{1}{n^{2}} + \frac{2}{n^{2}} (a_{2} \cos n\pi x + b_{1} \sin n\pi)$

Step 5 :-
deduction
Put x=0 in (1)
LHS. put (1) implies

$$f(x) = x$$

 $f(x) = x$
 $f(x) = D$
R.H.J. put (1) implies
 $= \frac{\pi}{2} - \frac{4}{\pi} \left[\frac{\cos x}{12} + \frac{\cos 5x}{32} + \frac{\cos 5x}{52} + - - \right]$
 $\frac{\pi}{2} = \frac{4}{\pi} \left[\frac{\cos 0}{12} + \frac{\cos 5x}{32} + \frac{\cos 5x}{52} + - - \right]$
 $\frac{\pi}{2} = \frac{4}{\pi} \left[\frac{\cos 0}{12} + \frac{\cos 5x}{32} + \frac{\cos 5x}{52} + - - \right]$
 $\frac{\pi}{2} = \frac{1}{\pi} \left[\frac{1}{12} + \frac{1}{32} + \frac{1}{52} + - - \right]$
 $\frac{\pi}{2} = \left[\frac{1}{12} + \frac{1}{32} + \frac{1}{52} + - - \right]$
 $\frac{\pi}{2} = \left[\frac{1}{12} + \frac{1}{32} + \frac{1}{52} + - - \right]$
(H) Step 1 %-
the half range cosine sever of f(x) in (0,1)
 $f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos mx \rightarrow 0$
 $(xp = 2)^{2}$
To find g0 %-
 $a_0 = \frac{2}{\pi} \int_{0}^{\infty} f(x) dx$
 $= \frac{2}{\pi} \int_{0}^{\infty} x dx$
 $= 2 \int_{0}^{\infty} \int_{0}^{\infty} 1^{\pi}$

$$= \frac{2}{\pi} \left(1 \frac{\sin \pi h}{h} + \frac{11}{11} \frac{\cos \pi h}{h} + \frac{11}{11} \frac{\cos \pi h}{h} + \frac{11}{11} \frac{\cos \pi h}{h} \right)$$

$$= \frac{2}{\pi} \left(\frac{0 + \cos \pi h}{h} - \frac{1}{h} \right)$$

$$= \frac{2}{\pi} \left(\frac{\cos \pi h}{h} - \frac{1}{h} \right)$$

$$= \frac{2}{\pi} \left(\frac{\cos \pi h}{h} - \frac{1}{h} \right)$$

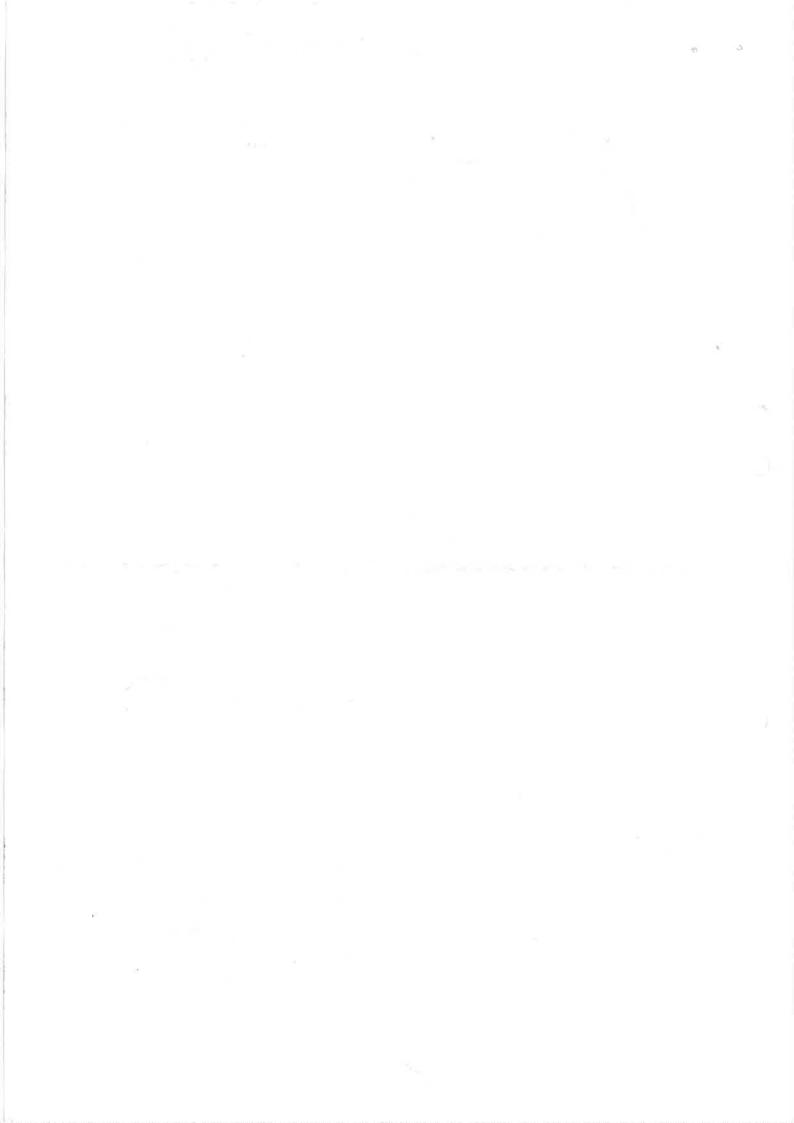
$$= \frac{2}{h} \left[(-n)^{h} - 1 \right]$$

$$= \frac{2}{h} \left[(-n)^{h} - 1 \right]$$

$$= \frac{1}{h^{2} \pi} \left[(-n)^{h} - 1 \right]$$

$$= \frac{1}{h^{2} \pi}$$

6 Dernoutli's formula :
Beenoutli's form of integration by parts
Judy = 21v - 21v; t2"v2 - 21" V3+ ---
[21] - differentation
[v] - integration
(v] - integration
f(x) =
$$\frac{e}{2}$$
 bn Sin MITX
 r_{2}
To findan :-
 $an = \frac{1}{2} + \int f(x) Sin MITX dx$
 $= \frac{1}{2} \int x Sin MITX dx$
 $= \frac{1}{2} \int x Sin MITX dx$
 $= \frac{1}{2} \int x Sin MITX dx$
 $= \frac{2}{2} \left(x \left(-\frac{\cos MITX}{nTT} \right) - U \right) \left(-\frac{\sin MITM}{2} -\frac{n^{2}T}{nTT} \right)$
 $an = 21 \left(-2 \cos MTT \right)$
 $= \frac{2}{2} \left(-2 \cos MTT \right)$
 $an = 21 \left(-10^{M+1} \right)$
 $f(x) = \frac{2}{21} \frac{21}{x} \left(-10^{M+1} \right) \frac{1}{x}$



UZOCNIULI S.Svi chaitonya

助元;

A Jan x and corre have period TI

Liged then stars the of a fit

$$b = \frac{1}{\pi} \int_{0}^{\pi} f(\pi_{-} x) dx$$

= $\sqrt{\pi} \int_{0}^{\pi} (\pi_{-} x) dx$
= $\sqrt{\pi} \left(-(\frac{\pi_{-} x)^{2}}{2} \right)_{0}^{\pi}$
= $\frac{1}{\pi} \left(-0 + \frac{\pi_{-}^{2}}{2} \right)$
= $\frac{1}{\pi} \left(-0 + \frac{\pi_{-}^{2}}{2} \right)$
= $\frac{1}{\pi} \left(\pi \frac{\pi_{-}^{2}}{2} \right)$

5) 508 -

0

 \bigcirc

$$f(\pi) = \frac{1}{2} + \sum_{n=1}^{2} a_n \frac{\log n \pi \pi}{n!} + \sum_{n=1}^{2} \frac{\log \sin \pi \pi}{n!} \text{ in the}$$

$$\lim_{n \to \infty} \log \frac{1}{n!} \int_{0}^{2^{d}} f(\pi) d\pi$$

1

x, n=1

6) sol - Bernoumis Lormula.

Surda =
$$uv_1 - u'v_2 + u''v_3 \dots$$

where u and v are functions of
 $u'' = du$
 $u'' = d^2u$
 $u''' = d^2u$
 $u''' = d^2v$
 du^2
 $u''' = d^2v$
 du^3

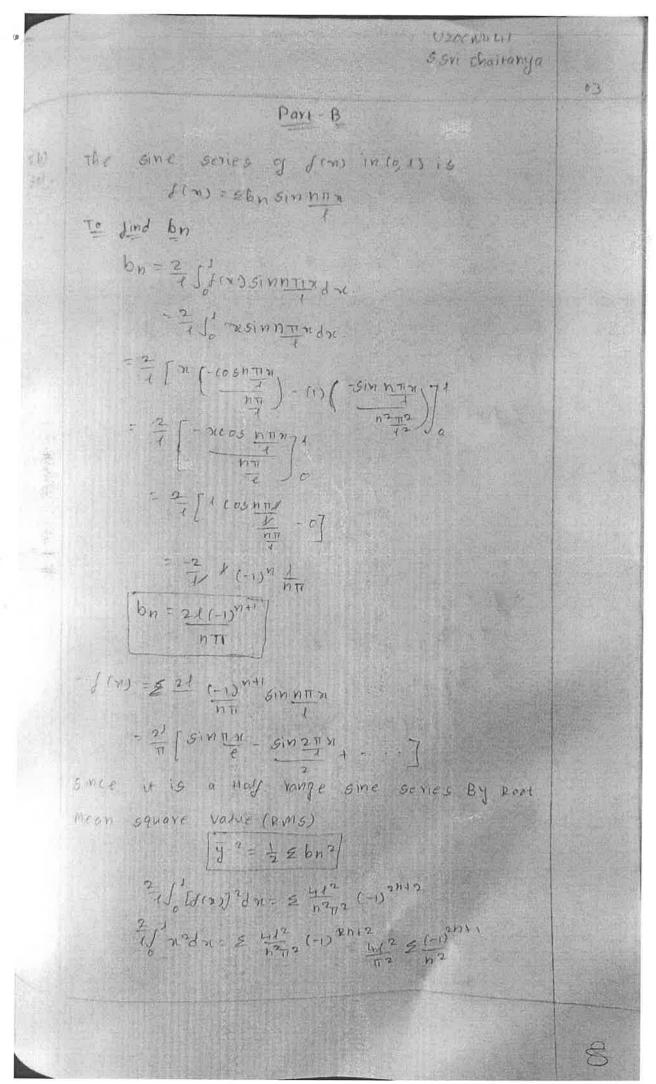
40

Scanned with CamScanner

B

	mains un	sri chaitanya locululu o MABTO 3	01
rans-	Fourier series Part-A		
	let from be a periodic function	define on t-un)	
	Jourier series of fras is defined		
	$f(x) = \frac{\alpha_0}{2} + \frac{\beta}{2} \left(o_n \cos x + b_n \sin x \right)$	>	
	where $a_{0} = \frac{1}{T^{2}} \int_{-\pi}^{\pi} d(x) dx$		
	$\Omega_{H} = \frac{1}{TT} \int_{-TT}^{T} \int_{-TT}^{T} f(\alpha) c asn_{H} d_{H}$		
	$b_{in} = \frac{1}{\prod_{j=1}^{n} d_{inj}} \dim_{M} d_{X}.$		
	here a , on by are called downer serie	25	
) ang -	Divictifier's conditions		
	UTI IIXI is defined and single val	ued except	
	possibly at a finite number of point.	s in (0,2 h 2 con)	
	(-T,T)		
	intry grap is periodic with poind to	, 2 TT)	
	") for 2 for one precevise		
) on si-	penodic <u>Sunction</u> .		
	Let Jens be a real valued o	lunction and	
	if there exist a dealst positive		
1	T such that dix + TS= dim. Then Jim		
	be periodic junction with period		
	Resulti-		
	* All inigometric function are p * sinx, cos n, cosecu, secx, have pend	erio di c Junctions d	

Scanned with CamScanner



UZOCNHUI S.Sri Chananya

 $\frac{2}{7} \int \frac{3\sqrt{3}}{3} \int \frac{1}{6} = \frac{4d^{2}}{\pi^{2}} \int \frac{1}{10} + \frac{1}{50} + \frac{1}{10} +$ $\frac{2}{3} \times \frac{\pi^{2}}{2^{2}} = \frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \cdots =$ $\boxed{\frac{1}{16}} = \frac{1}{12} + \frac{1}{22} + \frac{1}{32} + \cdots + \frac{1}{32}$

S.a) God -

The half rong casine services function forms is given by

fors = a o is a neasure To find 00

 $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$ $=\frac{2}{\pi}\sqrt{\pi}\left[\pi^{2}\right]dx$

= = [23] = = = [= =] 10 c = 2 T 2

To find an

 $a_{n} = \frac{2}{\pi} \int_{0}^{\pi} e^{-iy} \cos n x dx, \qquad u = x^{2} \quad dx = \cos n x dx$ $a_{n} = \frac{2}{\pi} \int_{0}^{\pi} e^{-iy} \cos n x dx, \qquad u = x^{2} \quad dx = \cos n x dx$ $a_{n} = \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2} \cos n x dx, \qquad u = x^{2} \quad dx = \cos n x dx$ $u^{2} = 2 \quad \sqrt{1 = \cos n x dx}$ $h^{2} = 2 \quad \sqrt{1 = \cos n x dx}$ $= \frac{2}{2} \left[n^{2} \left(\frac{\sin n^{2}}{n} \right) - \frac{2\pi}{n^{2}} \left(\frac{\cos n^{2}}{n^{2}} \right) + 2 \left(\frac{\sin n^{2}}{n^{2}} \right) \frac{2}{n^{2}} \right] \frac{1}{n^{2}}$

 $=\frac{2}{\pi}\left[2\pi\frac{\cosh \pi}{h^2}\right]^{\frac{1}{2}}$ $\frac{\frac{2}{\pi} \left[2\pi \frac{1}{2} \frac{\log n\pi}{2} \right]}{\left[\frac{2}{\pi} \frac{1}{2} \frac{\log n\pi}{2} \right]}$

The required fourier series is

 $= \int (nL) = \frac{\pi^2}{3} + 4 \frac{2}{n+1} \frac{(-1)^n (n + n)}{n^2}$

() of
$$d(x) = \frac{\pi}{2} h_n \sin n \frac{\pi n}{2}$$

 $a_n = \frac{\pi}{2} \int f(x_n) \sin n \frac{\pi n}{2} dx$
 $= \frac{\pi}{2} \int f(x_n) \sin n \frac{\pi n}{2} dx$
 $= \frac{\pi}{2} \int f(x_n) \sin n \frac{\pi}{2} dx$
 $f(x) = \frac{\pi}{2} \int \frac{\pi}{2}$

 \bigcirc

 \bigcirc

 \bigcirc

S.Sri chaitonya

66

Te find an = ZJACOSHNda $= \frac{2}{70} \left[\frac{n \sin n x}{n} + \frac{d \log n x}{n} - \frac{\pi}{n} \right]_{0}^{T}$ $=\frac{2}{\pi}\left[\left(\pi\frac{s+m\pi}{12}-\frac{1}{12}\cos^{2}\right)-\left(0+\cos^{2}(0)\right)\right]$ $= \frac{2}{11} \int \frac{\cos n\pi}{n^2} \frac{\cos (c)}{n^2} \frac{7}{7}$ $= \frac{2}{N^2T} \left[\cos n \pi - \cos (o) \right]$ = 2 nº2 T [(-1) = 1] an = 1 = 4 h = 1 = 1 d h is odd if viseven- B The required fourier series substituing 6 and 6 in 0 we get 1(n) = 11/2 = = = od d = 12 (coshn $=\frac{\pi}{2}-\frac{4}{\pi}\sum_{n=0}^{\infty}\frac{\cos n^{2}}{n^{2}}$ $J(x) = \frac{\pi}{2} - \frac{4}{\pi} \int \frac{\cos x}{\pi^2} + \frac{\cos x}{3^2} + \frac{\cos x}{3} + \frac{1}{3} - 0$ Deduction Putzed in h LHS Prort B implies 8 (4) = 31 1 (0) = 0 PUS Part Limplier

UDROWHHI S.S. chailonya

67

 $= \frac{\pi}{2} - \frac{14}{R} \left[\frac{105 \times 1}{12} + \frac{1053 \times 1}{5^2} + \frac{1005 \times 1}{5^2} + \frac{1}{5^2} \right]$ $\frac{T}{2} = \frac{4}{T} \left[\frac{ros(ro)}{1^2} + \frac{cos(ro)}{3^2} + \frac{cos(ro)}{5^2} + \cdots \right]$ TH TT - TT = [- 1 + - + - - -] $\frac{T^2}{P} = \begin{bmatrix} \frac{1}{12} + \frac{1}{52} + \frac{1}{52} + \frac{1}{52} + \frac{1}{52} \end{bmatrix}$

6 6)

Ô

.)

soft The half range cosine series of four is (etc) is 10x2 = 20 + f encosnic - O To find as $a = \frac{2}{\pi} \int_{a}^{b} \frac{1}{2} dx$ - Zada = = []]] . 二学 [五学] To find on $=\pi$ - \mathcal{D} $a_{m} = 2 \int_{T_{i}}^{T} \int_{J(x)} cosnuction.$ - The cost Are - 2 [DI SIMME + 11) COSHDUT TI = 2 [(0 + (05n Ri)) - (0 1 1 2)] - 2 [(asmo - 1)] = 12 [(05 hT1 -1]

Scanned with CamScanner

-9-

USOCNULI GGYI Chaitania

= 2 11 [(+1) = 1] an= for when h is even The required cosine series substituting (B) and (B) in O we get 1 (21) = 0 0 + 2 an cosny $= \frac{\pi}{2} + \frac{3}{2} = -\frac{4}{5\pi} \cos n d$ The parseval's Identify for fourier basine series in $T1^{2} = \frac{2}{\pi} \int \frac{\pi}{2} (x) \int \frac{2}{3} x = \frac{\alpha^{2} \alpha}{2} + \frac{\beta}{n} = \frac{\alpha^{2} n}{2}$ $\frac{2\pi^2}{3} = \frac{\pi^2}{2} + \frac{16}{\pi^2} = \frac{1}{\pi^2} = \frac{1}{\pi^2}$ $\frac{2\pi^2}{3} - \frac{\pi^2}{2} - \frac{16}{\pi} \cdot \frac{5}{2} = \frac{16}{\pi} \cdot \frac{5}{2}$ 4 71 2- 371 2 - 1-6 - $\frac{\pi^2}{6}\frac{\pi^2}{16} = \frac{2}{n \text{ odd}} \frac{\sqrt{n^4}}{n^4}$ $\frac{11}{96}^{4} = \left[\frac{11}{74} + \frac{1}{34} + \frac{1}{54} + \frac{1}{54} + \frac{1}{54}\right]$

Q

Time: Three Hours 🐧

Date: 23.01.2023 / FN

		100000000000000000000000000000000000000		Part A	. – (10 x 2 swer All	2 = 20 M	arks) 181			
0 N	1			(An	Question		<u></u>		BL	со
Q.No				Compula					R	Ç01
2	Write dow								U	COI
	Find a_0 and Find the co	nd a _n , ij	f(x) =	x, -l	< x < l	•			U	CO2
3 4	Find the co	implete s	solution of	pq = 1.				a state and the state of the state of the	U	CO2
	Solve (D^2)	$e(D^2 - 7DD' + 6D'^2)z = 0.$ sify the partial differential equation $4\frac{\dot{\sigma}^2 u}{\dot{\sigma} z^2} = \frac{\partial u}{\dot{\sigma} z}$								CO3
O	Classify th	e partial	different	ial equati	$\left(1+\frac{d}{dy^2}\right)$	$=\frac{\sigma_{ii}}{\sigma_{ii}}$				- 001
6			C 1	Justian					U U	CO3
7	If F(s) is the	ne Fourie	r transform	in of $f(x)$.	find the F	ourier tra	nsform of	F(ax), where $a > 0$.	R	CO-
8	State Parse	ate Fourier law of heat conduction: F(s) is the Fourier transform of $f(x)$, find the Fourier transform of F (ax), where a>0. ate Parseval's identity on Fourier transform.								CO
9	Prove that	Prove that $Z\left[\frac{1}{n!}\right] = e^{1/2}$. Form a difference equation from $y_n = a \cdot 3^n$.						Ap	co	
10	Form a dif	Terence	equation f	rom $y_n =$	a.3 ⁿ .				U	
				Pare	$\mathbf{D} = (\mathbf{D} \mathbf{x})$					
				(A)	nswer Al	Questi	ons)		Ap	TCC
11	Find the Fourier series for the function $f(x) = x$, in $(-l, l)$. Form the PDE by eliminating the arbitrary function \emptyset from						Ap			
12	Form the F	DE by e	liminating	g the arbit	brary funct	tion Ø fro	n		Ap	
	$\phi(x^2 + y)$	$^{2}+z^{2}$,	ax + by +	cz) = 0					1	C
13	Classifyth	ne partia	I different	ial equal	ion	211 2			Ap	
			$2U_{x}$	$r + 5U_{xy}$	$\frac{+U_{yy}}{+}$	$2U_{\chi} - 3$	$U_y \equiv 0.$		Ar	
14	Show that	the Four	ier transfo	$orm of e^{-1}$	zisei				4	-
(5)	State and p	prove co	nvolution	theorem.					A	p C
	L			Par	t C (5 x					
			(Ans	wer eith	ter (a) 01	• (b) of e	ach ques	tions)	en 1	
16(a)	Find the ha	alf range	cosine se	ries for j	$f(x) = x^2$	in $\in \pi$ <	$x < \pi$) OCXCIT	A	p (
					OR			1		
16(b)	Find the Fo	ourier se	ries as far	as the se	cond harr	nonic to 1	epresent t	he function given in	A	p (
										8.
	the followi	mg tata.								
	X	0	1	2	3	4	5			
	f(x)	9	18	24	28	26	20			1
	J (4)	,								
				h		L		1	_	
17(a)	Solve (3z	-4y)p	+ (4 <i>x</i> –	2z)q = 2	2y - 3x.					Ар
				.,	OR					

<u>an na se proposition de la proposition</u>

	$\int \frac{\partial^2 - 2DD^2 + D^2}{\partial x^3} \frac{\partial^2 - 2}{\partial x^2} \frac{\partial^3 z}{\partial x^3} + \sin(2x - 3y).$ Solv $\int \frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} e^{x + 2y} + \sin(2x - 3y).$ A tightly stretched string with fixed end points $x = 0$ and $x = l$ initially in a position are given by $y(x, 0) = y_0 \sin^3 {n^2 \choose x}$. It has released from rest from this position, find the	p (CO)	
(170) 18(a)	displacement v at any time and at any distance from the end $x = 0$.		
18(b)	A metal bar 30cm long has its ends A and B kept at 20° C and 30° C respectively until A metal bar 30cm long has its ends A and B kept at 20° C and 30° C respectively until steady state conditions prevail. The temperature at each end is then suddenly reduced to 0° C and kept so. Find the resulting temperature distribution function $u(x, t)$ taking $x = 0$	Λp CO Λp C	204
9(a)	at A. Find the Fourier Transform of $f(x)$ $\begin{cases} 1 - x if x < 1\\ 0 & if x > 1 \end{cases}$ Hence deduce that $\int_{0}^{\infty} (\frac{\sin t}{t})^{2} dt - \frac{\pi}{2}, \int_{0}^{\infty} (\frac{\sin t}{t})^{4} dt - \frac{\pi}{3}$		
	OR	Ap	COL
19(b)	(i). Find the Fourier cosine transform of $\frac{1}{1+x^2}$ (ii). Find the Fourier sine transform of $\frac{x}{1+x^3}$.	Ap	05
20(a)	(ii). Find the Z transform of (i) $r^n sinn\theta$ (ii) $r^n cosn\theta$ OR	Λp	005
20(b)	Solve the difference equation $y(k + 2) - 5y(k + 1) + 6y(k) = 4^n$ given $y(0) = 0, y(1) = 1$.		- <u></u> -

TO REPORT OF MALE OF

BIO-MEDICAL

00

 \bigcirc

math INSTITUTE OF HIGHER EDUCATION AND RESEARCH NAAC

(Declared as Deemed-to-be University under section 3 of UGC Act, 1956) DEPARTMENT OF BIO-MEDICAL

CONTINUOUS LEARNING ASSESSMENT – I

U20MABT03 – TRANSFORM AND BOUNDARY VALUE PROBLEMS

Date	:18-10-2022
Academic Year / Semester	:2022-2023/ODD
Duration	:1 hour 15 mins
Instructions	: Part A- Answer all questions
	Part B - Answer either A or B for the questions 5and 6

Part C- Answer either A or B for the question 7

No	Questions	Weightage	со	Bloom's Level
3	PART A (4X2=8)			
1	What are the various solutions of one dimensional wave	2	CO3	1
·*	equation?	2	CO4	1
2	State the Fourier integral theorem of $(x) = e^{-x} = 20$	2	CO4	2
3	Find the Fourier sine transform of $(x) = e^{-ax}, a>0$		CO4	1
4	State the Fourier Transform pair	2	04	1
	PART B (2x6=12)	÷	<u> </u>	
5 (A)	Find the Fourier transform of $f(x)$ if $f(x) = \begin{cases} 1, & x < 1 \\ 0, & otherwise \end{cases}$ Hence deduce that	6	CO4	3
5 (B)	Show that is a self reciprocal with respect to Fourier transform			
6 (A)	Find the Fourier sine transform of $f(x) =$		C04	3
6 (B)	Find the Fourier cosine transform of $f(x) =$			
0(2)	$PART ((1 \times 10 = 10))$			
7 (A) 7 (B)	A metal bar 30cm has its ends A and B kept $20^{\circ}C$ and $80^{\circ}C$ respectively, until steady state conditions prevail. The temperature at each end is then suddenly reduced to $0^{\circ}C$ and kept so. Find the resulting temperature distribution function $u(x, t)$ taking $x = 0$ at A A string is stretched and fastened to two point's at a distance apart. Motion is started by displacing the string into the form and then released it from this position at time t=0. Find the	10	CO3	3

СО	Weightage
CO1	
000	

arath INSTITUTE OF HIGHER EDUCATION AND RESEARCH NAAC (Declared as Deemed-to-be University under section 3 of UGC Act, 1956)

INDIA	
CO4	18
CO5	3¥
CO6	
Total	30

Department of mechatronics Continuous Learning Assessment-T U20MABT03 - Transform and Boundary Value problems (set) Answer Key: PART - A $(f(x)) = \frac{\alpha_0}{2} + \frac{\alpha_1}{2} \alpha_n \cos \frac{n\pi x}{2} + \frac{\alpha_2}{2} b_n \sin \frac{n\pi x}{2} .$ () find is defined and Single Valued except possibly at a finite number of points in (C, Ctar) ii) for is periodic in (C, ctar). first and first are piecewike continuous in (C, C+2L) iii) fen has finite number of Manima or Minima Ð in (0,217) $f(n) = \frac{\alpha_0}{2} + \frac{\beta}{n=1} a_n \cos n \times + \frac{\beta}{n=1} b_n \sin n \times \frac{\beta}{n=1}$ \bigcirc a = 1 strander, an = 1 sten) cosnader bn= ffiny Sinnada. B) f(x)=x=) f(-x)=-x=)-tex) is an odd function_ - $a_p=0$ $a_n=0$. $f(x) = x^2 = f(-x) = (-x)^2 = x^2 = f(x)$ is an even function (4) - bn=0. 5(a) fenseial is an even function ibn 20. Q=TT an = -4 if nis odd, - $f(x) = \overline{11} + \frac{2}{n} - \frac{4}{n^2 \pi} \cos nx$ Parseval's thm; I [fin)]dx = ao +1 = an $a_n = \begin{cases} -41 & \text{if n is odd.} \\ n^{2\pi} & \text{if n is even.} \end{cases}$ 6(a) appl

á)

$$f(x) = \frac{1}{2} = \frac{2}{p + 1} \frac{4k}{p^2 + 1^2} \cos \frac{n\pi x}{1}.$$

7(a) $a_0 = 2.9$ $a_1 = 0.37$ $q_2 = -0.1$ $b_1 = 0.17 \frac{2}{2} = 0.06$ rg = 1.45 - 0.37 cos x + 0.17 sin x - 0.1 cos 2x-0.06 sin 2x.

 $a_{0} = \frac{4}{3}e^{2} \quad a_{n} = -4e^{2} \quad b_{n} = 0,$ $f(n) = \frac{1^{2}}{3} - \frac{4e^{2}}{11^{2}} \quad b_{n} = 0,$ $f(n) = \frac{1^{2}}{3} - \frac{4e^{2}}{11^{2}} \quad b_{n} = \frac{1}{10} \cos \frac{n\pi n}{1},$

Answer Key
U20MABT03 - Transforms and Boundary
Value Problems
(CSE, AI, CC, IB)
Part - A
The Fourier series for a function m given
by numerical Values in Known as harmonic
analysis. In harmonic analysis the Fourier
Cecfficients ac, an, bn of the fun
$$y=f(x)$$

in (C, 2Ti) are given by
 $ac = 2 Emean value of y in (0, 2Ti)$

V

2.
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dn$$
, $f(x) = x^{t} in (-\pi, \pi)$
 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \sin nx \, dn = 0$ (It is called
 $odd fun$)
 $b_n = 0$ [: even xodd = odd]

Notations $p = \frac{\partial z}{\partial n}, q = \frac{\partial z}{\partial y}, r = \frac{\partial^2 z}{\partial x^2}, S = \frac{\partial^2 z}{\partial x \partial y}, t = \frac{\partial^2 z}{\partial y^2}$

4.
$$P.I = \frac{1}{9} \cos(3x + 2y)$$

1.

5. A=4, B=4, C=1, $\Rightarrow B^2-4AC = 16-4(4)(v=0)$ The given even in parabolic een.

6.
$$U_t = a^2 U_{xy}$$
,
 $a^2 = \frac{\kappa}{s_c}$ is known as diffusivity of the material
of the bar.

Scanned with CamScanner

Scanned with CamScanner

E.

13) Classify the diff can
$$\int x_{\pi} \int f_{\pi} = 0$$

Here $A = 1$, $B = 0$, $C = 1$
 $B^{2} = 4AC = 0$ = $4 \ge 0$ [Hyperbolic even]
 $B^{3} = 4AC = 4 \ge 0$ [Hyperbolic even]
142 Find the F.T by $\int G(x) = \sum_{n=1}^{\infty} \frac{1}{n} \frac{$

$$\frac{19}{2} = \frac{1}{2} \begin{bmatrix} \frac{2}{2} \\ \frac{2}{3} \\ \frac{2$$

Parl-C

Å.

16)
a)
$$y = \frac{a_0}{2} + a_1(0) + a_1(0) + b_1(0) + b_1($$

Scanned with CamScanner

G

$$a_{1} = \sqrt{2} \frac{g(w)(x)}{n} = 2\left[\frac{0}{6}, \frac{1}{6}\right] = 0$$

$$b_{1} = \sqrt{2} \frac{g(x)(nx)}{n} = 2\left[\frac{0.5156}{6}\right] = 0.17$$

$$b_{1} = \sqrt{2} \frac{g(x)(nx)}{n} = \sqrt{2}\left[\frac{0.1731}{6}\right] = -0.06.$$

$$16b) f(x) = x(2L-x) in(0, 2L).$$

$$f(x) = \frac{a_{2}}{2} + \frac{x}{2} a_{n} \cos(\frac{n\pi x}{x}) + \frac{x}{n} b_{n} \sin(\frac{n\pi x}{x})$$

$$a_{0} = \frac{1}{L} \int_{0}^{2L} f(x) dx = \frac{44L^{2}}{3}$$

$$a_{n} = \frac{1}{L} \int_{0}^{2L} f(x) \cos \frac{n\pi x}{L} dx = -\frac{44L^{2}}{n^{2}\pi^{2}}$$

$$b_{n} = \frac{1}{L} \int_{0}^{2L} f(x) \cos \frac{n\pi x}{L} dx = 0$$

$$f(x) = \frac{2}{3}L^{2} + \frac{x}{2}\left(-\frac{4L^{2}}{n^{2}\pi^{2}}\right) \cos(\frac{n\pi x}{x})$$

$$\frac{1}{12} + \frac{1}{3L} + \frac{1}{5L} + \cdots = \frac{\pi^{2}}{8}$$

$$17) Solve (D^{2} - DD' - 2D'^{2}) z = (2x+3y) + e^{3x+4y}$$

$$PT = \frac{5}{6}x^{2} + \frac{3}{2}x^{2}y - \frac{1}{35}e^{-2}$$

$$17b) Solve (D^{2} - DD' - 2D'^{2}) = -\frac{1}{35}e^{-3x+4y}$$

$$PT = \frac{5}{6}x^{2} + \frac{3}{2}x^{2}y - \frac{1}{35}e^{-2}$$

$$17b) Solve (D^{2} - 2DD') z = x^{3}y + e^{2x}$$

$$C F = \phi_{1}(y+\alpha) + \phi_{1}(y+\alpha)$$

$$C F = \phi_{1}(y) + d_{1}(y+\alpha)$$

$$C F = \phi_{1}(y) + d_{1}(y+\alpha)$$

$$C F = \phi_{1}(y) + d_{1}(y+\alpha)$$

$$C F = \phi_{1}(y) + \frac{x}{60} + \frac{e^{2x}}{4}$$

$$PT = \frac{x^{5y}}{20} + \frac{x^{6}}{60} + \frac{e^{2x}}{4}$$

Scanned with CamScanner

Ø

18a). The heat flow each is

$$\frac{\partial u}{\partial t} = \alpha^{1} \frac{\partial^{2} u}{\partial x^{1}}$$
Steady state conditions becomes

$$\frac{\partial^{2} u}{\partial x^{1}} = c$$

$$\therefore u(x) = an+b, \quad given \ l = 3c$$

$$u(x,t) = \frac{2x}{3} + 4c - \frac{4c}{7} \frac{z^{0}}{2} sin \frac{n\pi x}{15} e^{-\frac{\alpha' n\pi t}{225}}$$

186). Given $Y = 6(2\pi - \pi^2)$, t = 0Boundary conditions TL wave even in $\frac{2^2y}{2t^2} = a^2 \frac{2^2y}{2\pi^2}$ i). Y(0,t) = 0, $\forall t \neq 0$ ii) Y(t,t) = 0, $\forall t \neq 0$ iii) $\left(\frac{2y}{2t}\right)(\pi,0) = 0$, $0 \leq \pi \leq 1$ (iv). $Y(\pi,0) = 6(2\pi - \pi^2)$, $0 \leq \pi \leq 1$ Suitable solution. in $Y(\pi,t) = (1 \text{ aspatt}(2 \sin p_{m}))(3 \operatorname{aspatt}(4 \sin p_{m} t))$

Scanned with CamScanner

$$\begin{aligned} | \eta_{aj} | F \tau \int (x) &= \left\{ \begin{array}{c} 1 - x^{2}, \ dj \ |x| \leq 1 \\ o \ , \ dj \ |x| > 1 \right\} \\ &= \left[\left[S \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{iSx} dx = \frac{4}{\sqrt{2\pi}} \left(\begin{array}{c} \frac{sins - Scoss}{s^{2}} \\ \frac{sins - Scoss}{s^{2}} \\ f(x) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) e^{-iSx} ds = \frac{4}{\pi} \int_{0}^{\infty} \frac{sins - Scoss}{s^{2}} \\ e^{sins} - \frac{scoss}{s^{2}} \\ p(ut x - \frac{1}{2}) &= \int_{0}^{\infty} \int_{0}^{\infty} \frac{sins - Scoss}{s^{2}} \\ e^{sins} - \frac{scoss}{s^{2}} \\ e^{sins} - \frac{scos$$

Scanned with CamScanner

DEPARTMENT OF MATHEMATICS

 \square

COURSE FILE

U20MABT03 /TRANSFORMS AND BOUNDARY VALUE PROBLEMS

INSTITUTE OF HIGHER EDUCATION AND RESEARCH

(Declared as Deemed-to-be University under section 3 of UGC Act, 1956)

DEPARTMENT OF BIO-MEDICAL

CONTINUOUS LEARNING ASSESSMENT – II

U20MABT03 - TRANSFORM AND BOUNDARY VALUE PROBLEMS

Date	:18-10-2022
Academic Year / Semester	:2022-2023/ODD
Duration	:1 hour 15 mins
Instructions	: Part A- Answer all questions
	Part B - Answer either A or B for the questions 5 and 6

Part C- Answer either A or B for the question 7

Q.No	Questions	Weightage	CO	Bloom's Level
	PART A (4X2=8)			
1	What are the various solutions of one dimensional wave equation?	2	CO3	1
2	State the Fourier integral theorem	2	CO4	1
3	Find the Fourier sine transform of $(x) = e^{-ax}, a > 0$	2	CO4	2
4	State the Fourier Transform pair	2	CO4	1
	PART B (2x6=12)			
5 (A)	Find the Fourier transform of $f(x)$ if $f(x) = \begin{cases} 1, & x < 1 \\ 0, & otherwise \end{cases}$ Hence deduce that $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$	6	CO4	3
5 (B)	Showthat $e^{\frac{-x^2}{2}}$ is a selfreciprocal with respect to Fourier transform			
6 (A)	Find the Fourier sine transform of $f(x) = \begin{cases} sinx, & 0 < x < a \\ 0, & x > a \end{cases}$	6	C04	3
6 (B)	Find the Fourier cosine transform of $f(x) = \begin{cases} cosx, & 0 < x < a \\ 0, & x > a \end{cases}$			
	PART C (1X10=10)			
7 (A)	A metal bar 30cm has its ends <i>A</i> and <i>B</i> kept $20^{\circ}C$ and $80^{\circ}C$ respectively, until steady state conditions prevail. The temperature at each end is then suddenly reduced to $0^{\circ}C$ and kept so. Find the resulting temperature distribution function $u(x, t)$ taking $x = 0$ at <i>A</i>	10	CO3	3
7 (B)	A string is stretched and fastened to two point's at a distance <i>l</i> apart. Motion is started by displacing the string into the form $y(x, 0) = y_0 sin^3 \left(\frac{\pi x}{l}\right)$. and then released it from this position at time t=0. Find the displacement y at anyDistance x from one end at any time t			

INSTITUTE OF HIGHER EDUCATION AND RESEARCH

CO	Weightage
CO1	
CO2	
CO3	12
CO4	18
CO5	-
CO6	-
Total	30

Department of Mechatronics. Continuous Learning Assessment - T. U20MABT03 - Transform and Boundary Value Problem (Set2) Answer key: $| \cdot | = \frac{2\pi}{6}$ $f(x) = \frac{a_0}{2} + \frac{z}{n-1} a_n \cos \frac{n\pi x}{2} + \frac{z}{n-1} b_n \sin \frac{\pi x}{2}$ $a_0 = \frac{1}{2} \int f(x) dx. \quad a_n = \frac{1}{2} \int f(x) \cos \frac{n \pi x}{2} dx.$ $b_n = \frac{1}{\lambda} \int f(x) \cdot Sin n f(x) \, dx$ 3. $f(-\pi) = f(\pi)^2 = \pi^2 = f(\pi)$. $f(-\pi) = f(\pi)^2 = \pi^2 = f(\pi)$. $f(\pi) = f(\pi)^2 = \pi^2 = f(\pi)$. A. jufine is drefined and single valued except possibly at a finite number of points in (C, C+2L) ii) fran and f're piecewise continuoue in (C, C+2e) In for has finite number of Maxima or Minima in (0,20) $b_n = \begin{cases} \frac{1}{2} \frac{1}$ 5(A) $a = \frac{1}{n + 1} + \frac{1}{n + 1} \sin \frac{n + 1}{2}$ S(B) f(x)=1x) is an even function i. b_n=0. $a_0 = \frac{1}{11}$ $a_n = \frac{-4}{n}$ if n is odd. $f(x) = \frac{1}{2} + \frac{3}{n = 0} - \frac{4}{n^{2} \prod} \cos nx$

$$\begin{aligned} G(p) & Q_{0} = T, \qquad Q_{n} = \begin{cases} -\frac{h}{n^{2}T} & \frac{h}{t} + \frac{h}{n} \log dd, \\ 0 & \frac{1}{2}T + \frac{h}{n^{2}T} + \frac{h}{n} \log dd, \\ 0 & \frac{1}{2}T + \frac{h}{n^{2}T} + \frac{h}{n^{2}} + \frac{h}$$

UTE OF HIGHER EDUCATION AND RESEARCH INSTIT

(Declared as Deemed-to-be University under section 3 of UGC Act, 1956)

DEPARTMENT OF BIO-MEDICAL

CONTINUOUS LEARNING ASSESSMENT - III

U20MABT03 - TRANSFORM AND BOUNDARY VALUE PROBLEMS

Date	: 2.01.2023
Academic Year / Semester	:2022-2023/ODD
Duration	:1 hour 15 mins
Instructions	: Part A- Answer all questions

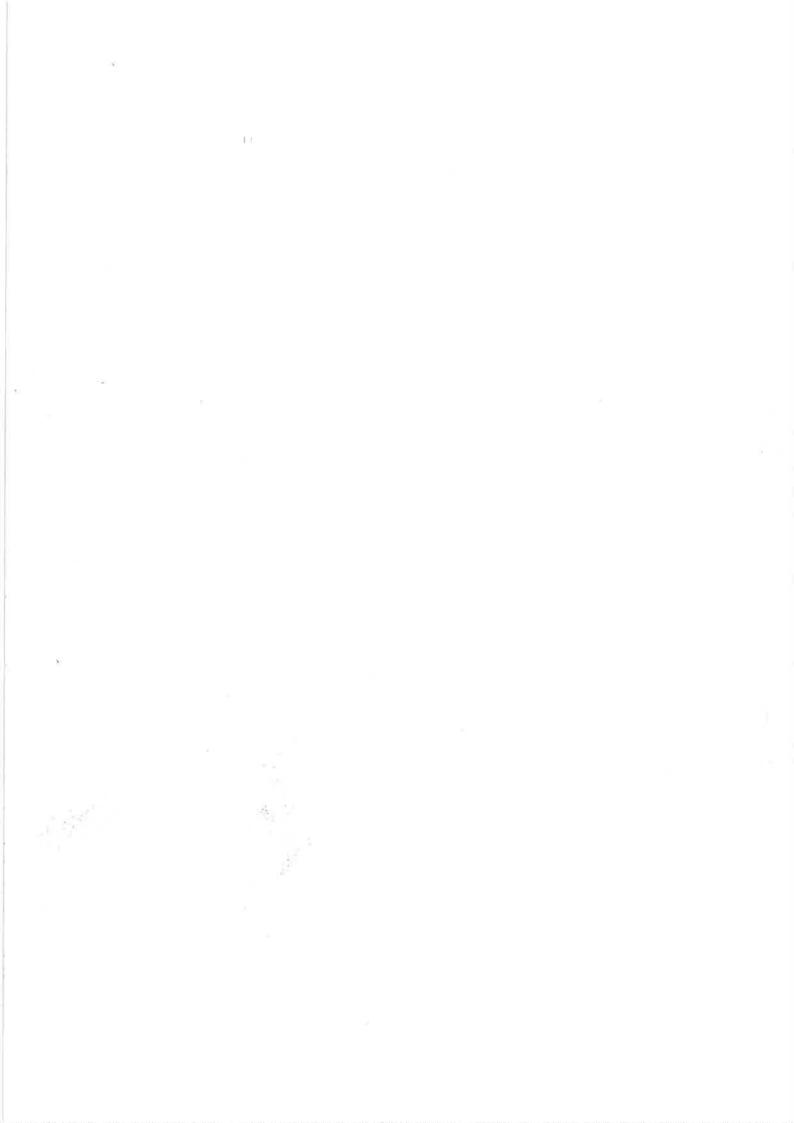
Part B - Answer either A or B for the questions 5and 6

Part C- Answer either A or B for the question 7

Q.No	Questions	Weightage	СО	Bloom's Level	
γ	PART A (4X2=8)		T		
) 1	$\frac{\partial^2 z}{\partial x \partial y} = \sin x.$	2	CO2	2	
	Find the general solution of $\partial x \partial y$	2	CO2	2	
2	Solve (. Prove that $Z[n] = .$	2	CO5	2	
3	Define inverse z transform	2	CO5	1	
4	PART B (2x6=12)				
			CO2	3	
5 (A)					
5 (B)	Solve				
6 (A)	Solve $(D^2 - 2DD^3) z = x^3y +$	6	CO2	3	
6 (B)	Find the Complete integral of the PDE	0	002		
	· PART C (1X10=10)		1		
7 (A)	Find [by using convolution method	10	CO5	3	
) 7 (B)	Solve by Z transform $U_{n+2}-2U_{N+1}+U_n = 2^n$ with $u_0 = 2$ and $U_1 = 1$	10			

СО	Weightage
CO2	16
CO5	14
Total	30

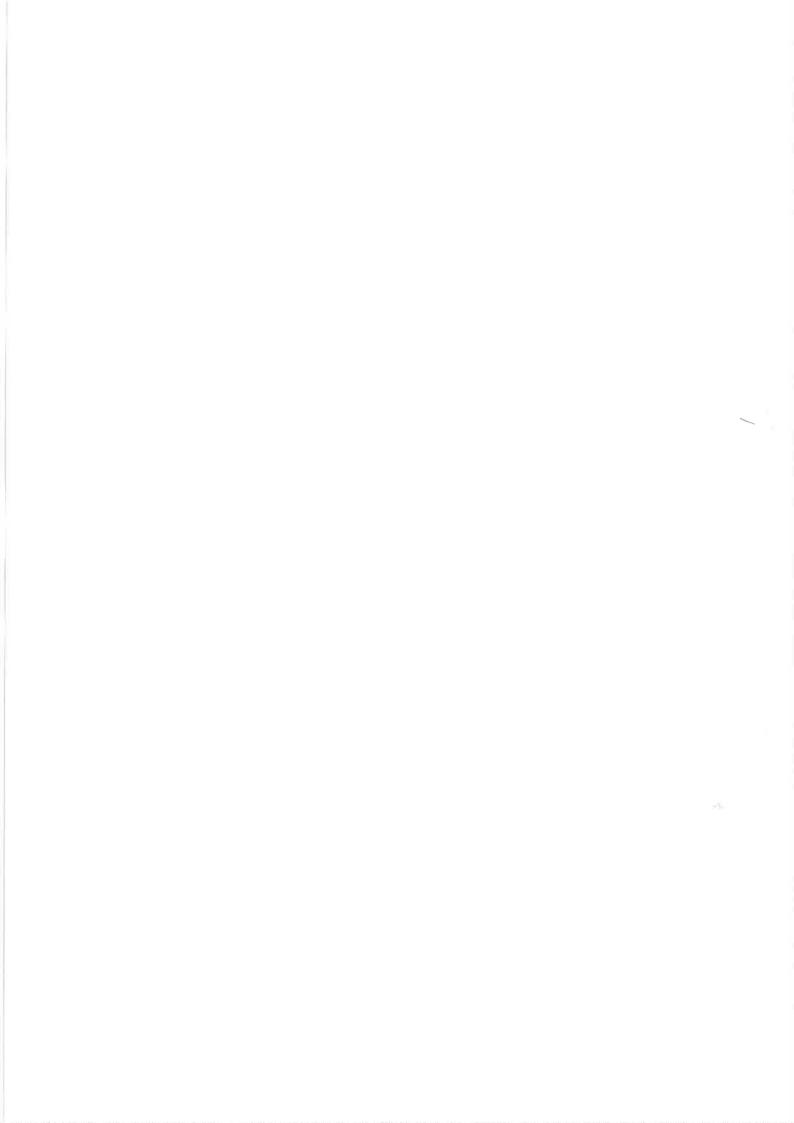
		I Ottal	
Prepared by	Staff Name A.HEMA	Sig	gnature
H.O.D		Sig	gnature



V20MABT03 - Transform and Boundary Value problems Department of Bio - Medical. Answer key: Part - A $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$, $a^2 = \frac{T}{m} = \frac{Tension}{Mass Perunit of the string}$ $f(x) = \frac{1}{\sqrt{2\pi}} \int F(t) e^{i(x-t)s} dt \cdot ds.$ 0 3 $F(S) = \sqrt{\frac{2}{T}} \left[\frac{S}{S^2 + a^2} \right]$ $F(s) = \frac{1}{\sqrt{2\pi}} \int f(x) e^{isx} dx$ Ð for) = 1 [Fis) e de. $5(9) \frac{Part - B}{F(s)} = \sqrt{\frac{Sin x}{s}} \frac{1}{s} \frac{Sin x}{s} dx = \frac{1}{2}$ 5(b) e-5/2 $\begin{array}{l} 6(a) \quad F_{S}(s) = \frac{1}{Vart} \left[\begin{array}{c} Sin(S-1)a \\ S-1 \end{array} - \frac{Sin(S+1)a}{S+1} \right] \\ Sin(S+1)a \end{array}$ $\begin{array}{l} \hline G(b) \\ \hline F_{c}(s) = \frac{1}{\sqrt{a\pi}} \left[\frac{\sin(sti)a}{sti} + \frac{\sin(sti)a}{st} \right] \\ \hline \end{array}$ $u(x_{t}) = \frac{40}{100} \left[\left[1 - 4(-1)^{2} \right] \sin \frac{100}{100} e^{-\frac{2}{100} \frac{1}{2} \frac{1}{400}} \right]$ (a) 7(b) Y(x,t) = 340 SinoTIX SinoTat - Jo Sin3TIX sin 3Tat.

<u>DEPARTMENT OF MATHEMATICS</u> <u>COURSE FILE – ACADEMIC YEAR – 2022-2023</u>

SEMESTER / TERM / YEAR		ODD / I / II
COURSE CODE	:	U20MABT03
COURSE NAME	:	TRANSFORMS AND BOUNDARY VALUE
		PROBLEMS



ECE

Ω,

$1 = \left\{ 1 \leq i \leq m \right\} + \left\{ 1 \leq i \leq m \right\}$

ABSIGN	Men	T - T	
RAHSFORMS	AHD	BOUNDAR	Y VALUE
PROBLEMS			
BID-MED.	CAL		

E P

e e

* (*) .

e.

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j$$

= 2 possing-cosse ds Put s= > ds = dx $F(x) = \frac{2}{\pi} \int_{0}^{\infty} \frac{\cos(x)}{x} \frac{\cos(x)}{x} dx$ Putx=1 PlxJ=1 $1 = \frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \lambda}{\pi \lambda} \cos^{2}(4) d\lambda$ Ty2= 500 sint dr Hence proved 2) Find the fourier transform of end 2, a so, Hence show th e-201/2 is a self reciprocal under the fourier transform. $F(x) = e^{-a^2 x^2}$ Ans: F(s)= 1/2 for flate isa de 2 Ten Searchissedx 2 - Var Se-a2x2 (cossx +isinsx) dx. $2 \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\alpha^2 x^2} \cos x \, dx + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\alpha^2 x^2} \sin x \, dx$ Se-card cosse is an even function Se-Caxiz spiss an odd function. $= \frac{2}{12\pi} \int_{0}^{\infty} e^{-(\alpha x)^{2}} \cos x \, dx$ $= F(s) = \frac{2}{\sqrt{2\pi}} \left(\frac{a}{a^2 + b^2} \right)^2 \left(\frac{a}{a^2 + b^2} \right)^2 \left(\frac{a}{a^2 + b^2} \right)^2$

(i) e-x7/2 is a set reciprocal Fourier transform $F(s) = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} F(x) e^{isx} dx$ $\frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} e^{-\chi^2/2} e^{jS\chi} d\chi$ = 1 1° e-x72 eisx. e⁵⁷2 e-S72 dx $2 \frac{1}{\sqrt{2\pi}} e^{-s^{2}/2} \int_{-\infty}^{\infty} e^{-x^{2}/2} + isx + s^{2}/2 dx$ $= \frac{1}{\sqrt{2\pi}} e^{-S^{2}/2} \int_{-\infty}^{\infty} e^{-\left(\frac{x-is}{\sqrt{2}}\right)^{2}} dx \left[\frac{-x^{2}}{2} \frac{2isx+s^{2}-(x-is)^{2}}{2} \right]$ let $t = \frac{x - is}{\sqrt{2}}$, $dt_2 = \frac{dx}{\sqrt{2}}$, $dt\sqrt{2} = dx$ x -> - ~ t -> - ~ t -> - $= \frac{1}{\sqrt{2\pi}} e^{-s^2/2} \int_{0}^{\infty} e^{-t} \sqrt{2} dt$ [:.etisaneven function $2\frac{1}{\sqrt{\pi}}e^{-5^{2}/2}$ $2\int_{n}^{\infty}e^{-t^{2}}dt$ = e T e - 572 & [VK] 50 F(S) = C-S72

3) Find the Adurier bransform of
$$f(x) = \begin{cases} a - bxi for [x] < a \\ a < f(x) = \frac{1}{\sqrt{2\pi\pi}} \int_{-\infty}^{\infty} f(x) e^{ixx} dx$$

 $f(x) = a - x - a > x < a = \frac{1}{\sqrt{2\pi\pi}} \int_{-\alpha}^{\alpha} (a - x) (cosser + issin + x) dx$
 $= \frac{1}{\sqrt{2\pi\pi}} \int_{-\alpha}^{\alpha} (a - x) (cosser + issin + x) dx$
 $= \frac{1}{\sqrt{2\pi\pi}} \int_{-\alpha}^{\alpha} (a - x) (cosser + issin + x) dx$
 $\int_{-\alpha}^{\alpha} (a - x) (cosser + \frac{1}{\sqrt{2\pi\pi}} \int_{-\alpha}^{\infty} sin sx (a - x) dx$
 $\int_{-\alpha}^{\alpha} (a - x) coss x dx + \frac{1}{\sqrt{2\pi}} \int_{-\alpha}^{\infty} sin sx (a - x) dx$
 $\int_{-\alpha}^{\alpha} (a - x) cos x dx = x + \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} (a - x) cos sx dx$
 $= \frac{2}{\sqrt{2\pi\pi}} \int_{0}^{\infty} (a - x) cos sx dx$
 $= \frac{2}{\sqrt{2\pi\pi}} \left[\frac{-cossa}{s^{2}} + (-1) \frac{cossx}{s^{2}} \right]_{0}^{\alpha}$
 $= \frac{2}{\sqrt{2\pi\pi}} \left[\frac{1 - cossa}{s^{2}} + \frac{1}{s^{2}} \right]$
 $F(s) = \frac{2}{\sqrt{2\pi\pi}} \left[\frac{1 - cossa}{s^{2}} \right]$
 $Tn verse Fourier bransform$
 $f(x) = \frac{1}{\sqrt{2\pi\pi}} \left[\frac{1 - cossa}{s^{2}} \right] (cos sx - sin sx) ds$
 $= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(s) e^{sisx} ds$
 $= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \left(\frac{1 - cossa}{s^{2}} \right) (cos sx - sin sx) ds$
 $= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \left(\frac{1 - cossa}{s^{2}} \right) (cos sx - sin sx) ds$

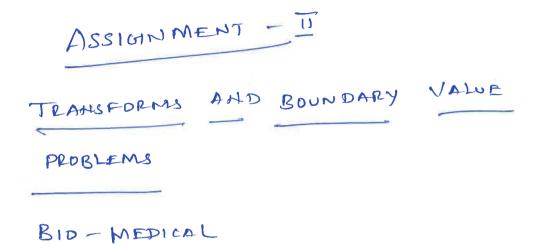
W.k-T (1-cossa) cossi is an even function $\int_{-\infty}^{\infty} \left(\frac{1-\cos s\alpha}{s^2}\right) \sin sx \text{ is an odd function.}$ [: 1- casa = 2 sin² 0/2] $2 \frac{2}{\pi} \int_{1}^{\infty} \left(\frac{1-\cos \alpha}{s^2} \right) \cos \alpha ds$ $a - x = \frac{2}{\pi} \int \frac{2sinsa}{2sins2} \cos sx dx$ Pubx=0 $a = \frac{4}{T} \int_0^\infty \left(\frac{\sin sa}{c}\right)^2 (1) ds$ Put sa = t, S= 2t, ds= 1/a.2.dt $a = \frac{1}{\pi} \int_0^\infty \left(\frac{\sinh t}{2 \cdot \sqrt{2}} \right) \cdot \frac{1}{2} \cdot \frac$ $a = \frac{4\pi}{T} \cdot \frac{1}{2} \left(\int \frac{\sin t}{t} \right)^2 dt$ Tra = So (sint) dt ... 4) Find the fourier transform of $f(x) = \begin{cases} 1-x^2 & |x| < 1 \end{cases}$ Hence show that $\int_{1}^{\infty} sins - scoss \cos \frac{1}{2} \cdot ds = \frac{3\pi}{16}$ Also show that $\int_{0}^{\infty} (2c \cos 2c - \sin 2c)^2 dz = T/15?$ Anst Fourier transform F(s) = / Jan Sf(x) eisx dx.

 $\frac{2}{\sqrt{2\pi}} \int (1-x^2) (\cos x + \sin x) dx$ = $\frac{1}{\sqrt{2\pi}} \int_{1}^{1} (1-x^2) \cos x \, dx + \frac{1}{\sqrt{2\pi}} \int_{1}^{1} (1-x^2) \sin x \, dx$ J_(1-x2)cossa is an even function ('CI-22) sinsx is an odd function. 2 2 Sp (1-x2) cossedx $= \frac{2}{19\pi} \left[(1-x^2) \frac{\sin 3x}{s} - 2x \cos 3x + 2\sin 5x}{s^2} \right]_{0}^{1}$ $\frac{2}{\sqrt{2\pi}} \int \frac{-2\cos s}{s^2} + \frac{2\sin s}{s^3}$ FLS)=4 [sins-scoss] Inverse fourier transform $F(x) = \frac{1}{12\pi} \int F(s) e^{-isx} ds$ 2 1/2TR Job 4 [sins-scoss] (cossx - isinsx)ds. $2 \frac{3}{T} \int_{-\infty}^{\infty} \left(\frac{\sin s - s\cos s}{s^3}\right) \cos z \, ds - \frac{2i}{T} \int_{-\infty}^{\infty} \left(\frac{\sin s - s\cos s}{s^3}\right) \sin s$ 5° sins-scoss cosser is an even function. 5° sins-scass sinsx is an odd function

1-x2= 4 [sins-s cos cos se ds. Putaz/2 is continuous subegn D 1- (X2)= 4/TT So sins-scoss los % ds $3/4 \times 7/4 = \int_0^\infty \frac{\sin s - s \cos s}{s^3} \cos^3 2 ds$ $\frac{3\pi}{16} = \int_0^\infty \frac{\sin s - s \cos s}{c^3} \cos \frac{s}{2} ds_{1,1}$

it using passeval's identity $z \int_{\infty}^{\infty} |F(x)|^2 dx = \int_{\infty}^{\infty} |F(s)|^2 ds$ $= \int_{0}^{\infty} (1-x^{2})^{2} dx = \int_{0}^{\infty} (\frac{1}{\sqrt{2\pi}} (\frac{\sin s - s \cos s}{s^{3}}))^{2} ds.$ $= \int_{0}^{1} (1-x^{2})^{2} dx = 2 \cdot \frac{16}{2\pi} \int_{0}^{\infty} \left(\frac{\sin s - s \cos s}{s^{2}} \right)^{2} ds$ Puts= $= \int_{0}^{1} (1^{2} + x^{4} - 2x^{2}) dx = \frac{16}{T} \int_{0}^{\infty} (\frac{\sin x - x \cos x}{x^{3}})^{2} dx$ ds =dx $= \int x + \frac{x^{5}}{5} - 2\frac{x^{3}}{3} \int_{0}^{1} x \frac{x}{16} = \int_{0}^{\infty} \left(\frac{\sin x - x\cos x}{x^{3}} \right)^{2} dx$ $\frac{16}{15} \times \frac{11}{16} = \int_0^\infty (\sin x - x \cos x)^2 dx.$ $\pi |_{15} = \int_0^\infty (\sin x - x \cos x)^2 dx$ $TT/15 = \int_0^\infty - \left[x \cos x - \sin x \right]^2 dx$

5) Find the fourier sine bransform of 1/2? Anst Fs(s) = (7TT S F(x) sinsteador = VIT Joo 1 sinsx die Putsoc='y, $x = \frac{y}{s}$, $dx = \frac{dy}{s}$ = VZTE So sing dy 2 VZ So siny dy = 12/1 ["/2] FLS] = TY2 OF VT/V2 $\frac{1}{2} \int_{x}^{\infty} \frac{1}{x} = \frac{1}{x} = \frac{1}{x}$ == (xent x - xali)] .] .] = xb ("x = -" + + + +)] + [= = *]] * [= = * [[* *]] *] *] * [* *] * [* *] *



8

2 X X

Find the pourier sine transform of 1/2?? 5. $F_{s}(s) = \sqrt{\frac{2}{2}} \int f(sc) \sin sx dx$ And = J= J-sinsxdx Put 5x = y, x = y, $dx = \frac{dy}{5}$ = $\sqrt{\frac{2}{4}} \int \frac{\sin y}{y} \cdot \frac{dy}{5}$ = J2 Siny dy = 小学区 F(S) = IOH JI $\int \frac{\sin x}{x} dx = \frac{T}{2}$ Express the function $f(x) = \begin{cases} 1 & \text{for } |x| \leq 1 \\ 0 & \text{for } |x| \geq 1 \end{cases}$ as a four integral. Hence evalute $\int \frac{\sin \lambda \cos \lambda x}{\lambda} dx$ and find the value of $\int \frac{\sin \lambda}{\lambda} dx$ 4. $F(5) = \frac{1}{\sqrt{2\pi}} \int f(x) e^{i5x} dx$ Arr $= 1 \qquad -1 < x < 1$ = $\frac{1}{\sqrt{2\pi}} \int 1 (\cos x + i\sin x) dx$ $f(\infty) = 1$ $= \frac{1}{\sqrt{2\pi}} \int \cos x \, dx + \frac{1}{\sqrt{2\pi}} \int \sin x \, dx$ f cossoc is an even junction Sinsoc is an odd punction

 $= \frac{2}{\sqrt{2T}} \int \cos x dx$ $= \frac{2}{\sqrt{2T}} \begin{bmatrix} sinsx \\ S \end{bmatrix}_{A}$ $F(S) = \frac{2}{\sqrt{2\pi}} \begin{bmatrix} \sin S \\ S \end{bmatrix}$ Inverse pousier transposim $p(x) = \frac{1}{\sqrt{2\pi}} \int F(s) e^{-iST} dsc$ $= \frac{1}{\sqrt{2\pi}} \int \frac{2}{\sqrt{2\pi}} \left[\frac{\sin 5}{5} \right] (\cos 5\chi - i \sin 5\chi) d\chi$ $= \frac{2}{2\pi} \int \frac{\sin s}{s} \cos x \, dx - \frac{2i}{2\pi} \int \frac{\sin s}{s} \sin x \, dx$ $\int \frac{\sin s}{s} \cos sx \quad is \quad an \quad even \quad \text{function}$ $= \frac{2}{\pi} \int \frac{\sin s \cos x}{s} \, ds$ put s = 1 $ds = d\lambda$ $\psi(x) = \frac{2}{\pi} \int \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$ put x = 1 f(x) = 1 $1 = \frac{2}{\pi} \int \frac{\sin \lambda}{\lambda} \cos \lambda(1) d\lambda$ $\frac{T}{2} = \int \frac{\sin \lambda}{\lambda} d\lambda$ 2. Find the power transport of end a >0. Hence show that end is a self reciprocal under the power transform.

 $\psi(x) = e^{-\alpha^2 x^2}$ $F(S) = \frac{1}{\sqrt{2\pi}} \int f(x) e^{iSX} dx$ Ane $= \frac{1}{\sqrt{2\pi}} \int_{e}^{e} a^{2}x^{2} isx dx$ $= \frac{1}{\sqrt{2\pi}} \int_{c}^{c} e^{-\omega^{2}x^{2}} (\cos x + i\sin x) dx$ $= \sqrt{2\pi} \int e^{-\alpha^2 x^2} \cos x \, dx + \frac{1}{\sqrt{2\pi}} \int e^{-\alpha^2 x^2} \sin x \, dx$ Je-carc)²cosse is an even function $\int e^{-(\alpha x)^{2}} \sin 5x \, is \, an \, odd \, function$ $= \frac{2}{\sqrt{2\pi}} \int e^{-(\alpha x)^{2}} \cos x \, dx$ $\therefore F(S) = \frac{2}{\sqrt{2\pi}} \left[\frac{a}{a^2 + b^2} \right]^2 \qquad (\therefore \int e^{-a \mathcal{K}} \cos s x dx = \frac{a}{a^2 + b^2} \right]$ (ii) e-x2/2 is a self recipnocal Fourier Frank fay $F(5) = \prod_{V \ge T} \int_{V} f(x) e^{i5x} dx$ $= \int_{\sqrt{2\pi}}^{1} \int e^{-\chi^2/2} e^{iSX} dx$ $= \frac{1}{\sqrt{2\pi}} \int e^{-x^{2}/2} e^{iSx} e^{3^{2}/2} e^{-3^{2}/2} dx$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{5^2}{2}} \int e^{-\frac{3^2}{2}} e^{$ $=\frac{1}{\sqrt{2\pi}}e^{-5^{2}/2}\int_{-\infty}^{\infty}e^{-(5c-is)^{2}}dx \qquad \left[\frac{\cdots-x^{2}+2isx+s^{2}}{2}=-\frac{(x-is)^{2}}{2}\right]$

let $t = \frac{x - is}{\sqrt{2}}$ $dt = \frac{dx}{\sqrt{2}}$ $dt \sqrt{2} = dx$ $= \frac{1}{\sqrt{2\pi}} e^{-5^{2}/2} \int e^{-t^{2}} \sqrt{2} dt$ Fietz is an even function $= \frac{1}{\sqrt{2}} e^{-\frac{s^2}{2}} \cdot 2 \int e^{-\frac{t^2}{2}} dt$ = 1 e-5/2. x 2 [4] $F(S) = e^{-S_{12}^{2}}$ Find the poweries transport of $f(x) = \sum_{n=1}^{\infty} \frac{1}{n!} \frac{1}{$ $F(S) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(x) e^{iSX} dx$ azxea f(x) = a - x $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} (a - x) (\cos 5x + i \sin 5c) dx$ $= \frac{1}{\sqrt{2\pi}} \int_{-a}^{a} (a - x) \cos x \, dx + \frac{i}{\sqrt{2\pi}} \int_{-a}^{a} \sin x (a - x) \, dx$ f(a-x) cossx is an even function a (a-sc) sinsx is an odd punction $= \frac{2}{\sqrt{2\pi}} \int_{\alpha-x}^{\infty} \cos x \, dx$ $= \frac{2}{\sqrt{2\pi}} \left[(a-x) \frac{\sin 5x}{5} + (-1) \frac{\cos 5x}{5^2} \right]_{0}^{a}$

3.

And

$$\begin{aligned} = \frac{2}{\sqrt{2\pi}} \left[\frac{-\cos ss_{a}}{s^{2}} + \frac{1}{s^{2}} \right] \\ F(S) &= \frac{2}{\sqrt{2\pi}} \left[\frac{1-\cos sa}{s^{2}} \right] \\ Involse Foundation thankfull m \\ \frac{1}{y(x)} &= \frac{1}{\sqrt{2\pi}} \int F(S) e^{-isx} ds s \\ &= \frac{1}{\sqrt{2\pi}} \int \frac{2}{\sqrt{2\pi}} \left(\frac{1-\cos sa}{s^{2}} \right) (\cos sx - sinsx) ds \\ &= \frac{1}{\sqrt{\pi}} \int \left(\frac{1-\cos sa}{s^{2}} \right) (\cos sx dx - \frac{9}{\pi} \int \left(\frac{1-\cos sa}{s^{2}} \right) sinsx ds \\ &= \frac{1}{\sqrt{\pi}} \int \left(\frac{1-\cos sa}{s^{2}} \right) (\cos sx dx - \frac{9}{\pi} \int \left(\frac{1-\cos sa}{s^{2}} \right) sinsx ds \\ &= \frac{1}{\sqrt{\pi}} \int \left(\frac{1-\cos sa}{s^{2}} \right) (\cos sx dx - \frac{9}{\pi} \int \left(\frac{1-\cos sa}{s^{2}} \right) sinsx ds \\ &= \frac{1}{\sqrt{\pi}} \int \left(\frac{1-\cos sa}{s^{2}} \right) (\cos sx dx - \frac{9}{\pi} \int \left(\frac{1-\cos sa}{s^{2}} \right) sinsx ds \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos sx ds f) \\ &= \frac{2}{\pi} \int \left(\frac{-\cos sa}{s^{2}} \right) (\cos s$$

$$a_{1} = \frac{\pi}{\pi} \cdot \frac{1}{2} \int \left(\frac{\sin t}{t}\right)^{2} dt$$

$$T_{2a} = \int \left(\frac{\sin t}{t}\right)^{2} dt$$

$$T_{2} = \int \left(\frac{\sin t}{t}\right)^{2} dt$$

$$T_{2} = \int \left(\frac{\sin t}{t}\right)^{2} dt$$

$$T_{2} = \int \left(\frac{\sin t}{t}\right)^{2} dt$$
(7). Find the power transform of $f(x) = \int_{0}^{1-x^{2}} \frac{i}{t} \frac{|x| < 1}{|x| \ge 1}$
Hence show that $\int \frac{\sin s - s \cos s}{s^{3}} \cos s - \frac{3T}{16}$
Also show that $\int \frac{\sin s - s \cos s}{s^{3}} \cos s - \frac{3T}{15}$
(1) Fouriest transform
$$F(s) = \frac{1}{\sqrt{2\pi}} \int f(x) e^{isx} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int (1-x^{2}) (\cos sx + \sin sx) dx$$

$$= \frac{1}{\sqrt{2\pi}} \int (1-x^{2}) (\cos sx + \sin sx) dx$$

$$\int (1-x^{2}) \cos sx \sin an even \text{ punction}$$

$$T_{1} = \frac{2}{\sqrt{2\pi}} \int (1-x^{2}) \cos sx dx$$

$$= \frac{2}{\sqrt{2\pi}} \int (1-x^{2}) \cos sx dx$$

 $F(3) = \frac{4}{\sqrt{2\pi}} \left[\frac{\sin s - 5\cos s}{s^3} \right]$ Inverse fousier transporm $f(x) = \frac{1}{\sqrt{2\pi}} \int F(s) e^{-isx} ds$ $=\frac{1}{\sqrt{2\pi}}\int_{\sqrt{2\pi}}^{4}\left[\frac{\sin s - s\cos s}{s^{3}}\right]\left(\cos sx - i\sin sx\right)ds s$ $= \frac{2}{T} \int \left(\frac{\sin s - 5\cos s}{s^3}\right) \cos x ds - \frac{2i}{T} \int \left(\frac{\sin s - 5\cos s}{s^3}\right) \sin x ds$ Jsins-scoss cossocial is an even punction $1 - \left(\frac{1}{2}\right)^2 = \frac{4}{7} \int \frac{\sin s - \sin s - \cos s}{\sin s - \sin s} \cos \frac{s}{2} ds$ $\frac{3}{4}x\frac{T}{4} = \int \frac{\sin s - \sin s}{5^3} \cos \frac{s}{2} ds$ $\frac{3T}{16} = \int \frac{\sin s - \sin s}{s^3} \cos \frac{s}{2} ds$ (ii) using pagiseval's identity $\int |f(x)|^2 dx = \int |f(s)|^2 ds$ $\int (1-x^2)^2 dx = \int (\frac{4}{\sqrt{2\pi}} (\frac{\sin s - s\cos s}{s^3}))^2 ds$

 $= \int (1-x^2)^2 dx = 2 \cdot \frac{16}{2T} \int \left(\frac{\sin s - 5\cos s}{s^3}\right)^2 ds$ put S = Xds = dx $= \int (1^{2} + x^{4} - 2x^{2}) dx = \frac{16}{\pi} \int \left(\frac{\sin x - x\cos x}{x^{3}}\right)^{2} dx$ $= \left[2C + \frac{x^5}{5} - 2\frac{x^3}{3} \right]_{0}^{1} X \frac{T}{16} = \int \left(\frac{\sin 2C - x\cos x}{x^3} \right)^2 dx$ $\frac{16}{15} \times \frac{11}{16} = \int \left(\frac{\sin x - x\cos x}{x^3}\right)^2 dx$ $\frac{T}{15} = \int \frac{(\sin x - x \cos x)^2}{3x^6} dx$ $\frac{T}{15} = \int -(2\cos x - \sin x)^2 dx$

arath Institute of Science and Technology (CBCS Department of Biomedical Engineering

Il Year Internal Marks (Out of 50)

	Il Year In	iternal Marks (Out of 50)	70)/0
S.No	REG.N0	NAME	TBVP
1	U21BM002	ARELLA MEGHANA	45
2	U21BM004	DHILIPAN S	48
3	U21BM005	GANDI ABHINAV	40
4	U21BM006	GOKUL C	46
5	U21BM008	JANANI D	45
6	U21BM010	KADIRI MANU SATHWIK NAIDU	44
7		KALAIYARASI H	49
8		KARUNYA E	44
9	U21BM013	ΚΑΥΥΑ S	46
10		KOTRA SANGEETHA	47
11		KRISHNA PRIYA	42
12		MADDELA SUJAY REDDY	40
13		MADESH RAJ M	41
14		MOHAN RAJ C	40
15	U21BM019		46
16		PRIYADARSHAN K	48
17		SAI AKASH V	47
18		SAMPREETH V	35
19		A SANJUVIGASINI K R	42
20		SEETHARAMAN S	40
21		5 SHAIK KARISHMA	41
22		7 SHRUTI VIJAY KUMAR SHARMA	44
23		8 SOWMIYA G	45
24		9 CHAITANYA GURRAM	46
25		1 LINGAREDY VEERA SIVA REDDY	38
26		2 MAMILLAPALLI SOUMYA	49
27		4 PANDI SARANYA R	45
28		5 SHAIK SAMEERA	46
29		6 BODDAPATI ASHA KIRANI	42
30		7 GS MADHAN KUMAR	38
31		8 NELLUTLA JOSHNA SRI	36
32		9 PODILA ASHRITH	40
33		1 SHANIGARAPU KEERTHANA	38
34		2 SPURGEON JAYAKARAN F	42
35		3 VALLISH KARTHIKEYA BANGARU	39
36		4 PITTAMALLA ANANTHARAJU	44
37		IS SHAIK FIROZ	47
38		16 BRACELIN L	40
39		17 ABINASH T	36
40		18 MULLA UMAR FAROOQ	34
40		19 KIRAN ZEHRA	46
41		50 HRISHIKESH HARIDAS	42
42		51 PUTTU MUNEESWARI	46
43		52 PULAGANI NANDHINI	47
44		53 CHILLAKURU SANJANA REDDY	40
	, 1021DIVIO.	54 SANGA SRAVANI	46

48	U21BM056	CHINTALAPALLI PREETHI	45
49	U21BM057	TUPILI SAI NIKHIL	44
50	U21BM058	ROHIT KUMAR SHARMA	47
51	U21BM059	VENKATA KRISHNA REDDY	46
52	U21BM060	MADIGA HARIVARDHAN	42
53	U21BM061	PODUGU UDAY KIRAN	45
54	U21BM062	ANNU ABHIRAM	38
55	U21BM064	NANDIGAM BOBBY	41
56	U21BM065	VETTRIVEL V	38
57	U21BM701	SRINIVASALU REDDY	45

CONTINUOUS LEARNING ASSESSMENT - I

U20MABT03- TRANSFORMS AND BOUNDARY VALUE PROBLEMS

Date	24.01.2022
Academic Year / Semester	2021-2022 / ODD
Duration	1.5 Hours (90 minutes)
Instructions	: Descriptive Type Questions

Q	Questions	Weighta ge	CO	Bloom*s Level
NO	PART A (6x2=12 Marks)			
-	Define Fourier Series.	2	COI	R
1	Define Dirichlet's condition.	2	COI	R
2	Define Periodic Function.	2	COI	R
3	Find u_0 for the function $f(x) = \pi - x$ in $0 \le x \le \pi$	2	COI	U
4	Write down the formula for the Fourier series in $(0,2l)$	2	CO1	R
5	Write down the formula for the Fourier series in (0,2)	2	COI	R
6	Write down the Bernoulli's formula. PART B (3x6=18 Marks)			
7	(a) Find the Fourier series for $f(x) = 2x - x^2$ in $0 < x < 2$ (OR) (b) Find the Fourier sine series for $f(x) = x$ in $0 < x < l$. Show that	6	COI	A
8	$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi}{6}$ (a) Obtain half range cosine series for $f(x) = x^2$ in $(0, \pi)$	6	CO1	A
	(OR) (b) Find the Fourier series for the function $f(x) = \begin{cases} kx, & 0 < x < l \\ 0, & l < x < 2l \end{cases}$		001	
9	 (a) Find the Fourier series of f(x) = x in (0,1) (OR) (b) Find the Fourier series for f(x) = x³ in (-π,π) 	6	COI	A
	PART C (2x10=20 Marks)	10	COI	A
10	(a) Obtain the Fourier series for the function $f(x) = \begin{cases} -x, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ and hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$ (OR) (b) Find the first two harmonic of the Fourier series of $f(x)$ given by the following table $\frac{x}{1} + \frac{1}{3} + \frac{1}{5^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$ (OR) (b) Find the first two harmonic of the Fourier series of $f(x)$ given by the following table $\frac{x}{1} + \frac{1}{3} + $			
11	(a) Find the Fourier series for $f(x) = x + x^2$ in $-\pi < x < \pi$. Hence show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + = \frac{\pi^2}{6}$ (OR) (b) Find the half range cosine series for $f(x) = x$ in $(0, \pi)$. Deduce that $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + = \frac{\pi^4}{96}$	10	COI	A

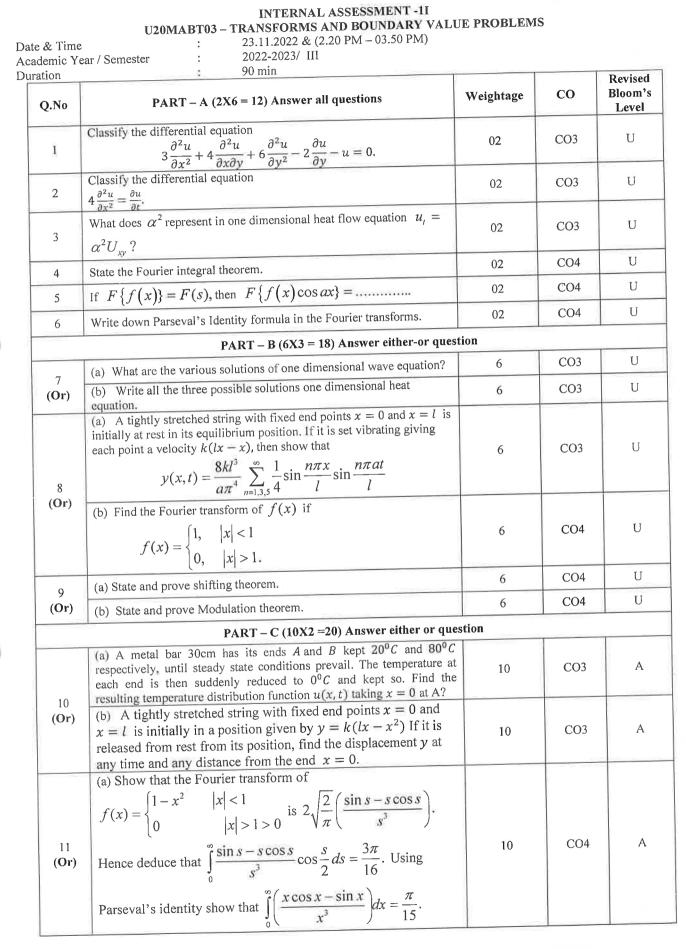
Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

	U20MABTO3- Transform and Boundary Value Internal Assessment I problems
	Internal Assessment - I preblems
	Answer Key
D	$f(x) = \frac{\alpha_0}{2} + \frac{\alpha_1}{n=1} (\alpha_n \cos \alpha + b_n \sin \alpha)$
	$a_0 = 0$ and $a_1 = 0$
3	bn = 0
Ð	$f(x) = \frac{a_0}{2} + \frac{a_1}{2} a_1 c_2 b_2$
Ð,	$f(x) = \frac{2}{n - j} bn Sinma.$
Ø	Parsevals Idensity:
0	Parsevals Idensity: $\frac{1}{2\pi} \int [f(x)]^2 dx = a_0^2 + \frac{1}{2} \int (a_n^2 + b_n^2).$

part-B.

 $a_{0} = \frac{812}{3}, a_{0} = \frac{-4}{5}, a_{0} = \frac{-4}{5}, a_{0} = \frac{-412}{5}, a_{0} = -\frac{412}{5}, a_{0} = -$ (7)· (a) (b) $a_0 = a_n = 0$, $b_n = \frac{-24}{n\pi} (-1)^n$. (8 (a) (08) $a_{p} = 2R^{2}$, $b_{m-1} = \frac{4R^{2}}{n^{2}\pi^{2}}(-1)^{m}$ $b_{m=0} = n^{2}\pi^{2}$ 6) ao=1, an= = 21[[=1]] a (9) رم ab = ff, $ab = \frac{2}{5} \left[\left(-12 \right)^{n} \right]$ part-c $a_0 = \frac{412}{3}$, $a_n = \frac{-412}{52\pi^2}$, $b_n = 0$. (0)(q) $a_0 = 2K + \frac{1}{2}$, $a_1 = \frac{1}{p^2 \pi} \begin{bmatrix} c - 1 \\ -1 \end{bmatrix}$ b $bn = \frac{15}{571} \left[(+1)^{7} - 1 \right].$ $a_0 = \frac{2\pi^2}{3}, a_n = \frac{4}{3\pi^2} (6)^2 = \frac{1}{5} b_n = \frac{1}{5} \left[\frac{1}{5} - \frac{1}{5} \right]$ (9)(0r) $a_{b} = -\frac{\pi}{2}$, $a_{b} = \frac{1}{\pi} ((-1)^{2} - 1)$ (b) $bn = \frac{1}{22} [1 - 2(-1)^{n}].$



Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Electronics and Communication Engineering

(b) Find the Fourier transform of $f(x)$ if $\begin{bmatrix} 1, & x < 1 \end{bmatrix}$			
$f(x) = \begin{cases} 1, & x < 1 \\ 0, & otherwise \end{cases}$	10	CO4	A
Hence deduce that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx = \frac{\pi}{2}$			

				SSMENT SUM Analyse	Evaluate	Create	Total (50)	Total (30)
COs	Remember	Understand	Apply	Anaryse	Livuluuto			
CO1								
CO2			10				22	13
CO3		12	10				28	27
CO4		18	10					
CO5								
CO6				1		1		

Prepared by	Staff Name Dr.V.VETRIVEL	Signature	
	HoD	Signature	
Verified by	Dr.H.UMMA HABIBA		

U20MABTO3-Transforms and Boundary Value problems, Internal Alselsment-I Answer Key Œ - 56 Ellips. D 132-4AG= 0 A = 4, B = 0, C = 05 and represent => K/pc $x^2 = k/pc$ K- thermal conductivity e-density $f(x) = \frac{1}{27} \int f(t) e^{i(x-t)s} dt ds$ 5 {F \$127 cosax}= 1 [\$ (3+9) + \$ (3-9)] jb, $\int_{a}^{a} |\{f(x)\}|^{2} dx = \int_{a}^{a} |f(y)|^{2} ds$

Part-B. 7. (a) $y(x,t) = (c, e^{px} + c_2 e^{-px})(c_3 e^{-px} + c_4 e^{-px})$ Y(X,t) = & cosprint lessinpri) (C3 less peut of $y(a,t) = (c_1 \times + c_2) (c_3 t + c_4), c_4 linpert),$ (\mathbf{b}) $\Psi(ait) = (A uspn + B sinpa) e^{-\chi^2}p^{2t}$ 8. (9) 100 15 $f(x) = \sqrt{2/\pi} \left(\frac{50n 5}{2}\right)$ Shiffing theorem (9) (g) F[fia]) = F (0) $F[f(x-q)] = e^{2sx}F(0)$ (b) Modernoon theorem. F[f100]= f(s) [Lan $F(F(x) usan) = \frac{1}{2} [F(1+q) + F(1-q)]$

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CONTINUOUS LEARNING ASSESSMENT – III

U20MABT03 - TRANSFORM AND BOUNDARY VALUE PROBLEMS

Date	: 27.12.2022
Academic Year / Semester	:2022-2023/ODD
Duration	:1 hour 15 mins
Instructions	: Part A- Answer all questions
	Part B - Answer either A or B for the questions 5 and 6

Part C- Answer either A or B for the question 7

Q.No	Questions	Weightage	СО	Bloom's Level
	PART A (6X2=12)			
1	Form the partial differential equation by eliminating the	2	CO2	R
2	arbitrary function in $Z = f(x^2 + y^2)$ Solve p+q=1	2	CO2	U
3	Solve $p \cdot q \cdot r$	2	CO 2	R
4	Prove that $Z[n] = \frac{z}{(z-1)^2}$	2	CO 5	U
5	Find $Z[\frac{1}{m}]$	2	CO 5	U
6	State Initial and Final value theorem	2	CO5	U
	PART B (3x6=18)			
TP.	(a) Solve $Z = px + qy + p^2 - q^2$ (OR) (b)State and prove convolution theorem.	6	CO2	A
8	 (a)Find the Z - transform of the following, i) Z[1]ii) Z[aⁿ] (OR) 	6	CO 5	A
9	(b) Solve $(mz - ny)p + (nx - lz)q = ly - mx$ Solve $(D^2 - 7DD' + 6{D'}^2)z = 0$. (OR) Solve $(D^3 - 7D{D'}^2 - 6{D'}^3)z = 0$	6	CO2	A
	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	4		
0	Solve $(D^2 - DD^{\dagger} + 2D^{\dagger^2})z = 2x + 3y + e^{3x+4y}$	10	CO 2	A
19	Find $Z^{-1}\left[\frac{Z}{Z}\right]$			
10	Solve $(D^3 + D^2D' + 4D{D'}^2 + 4D{'}^3)z = \cos(2x + y).$	10	CO2	A

CO	Weightage
CO1	
CO2	28
CO3	
CO4	
CO5	22
CO6	5 4 0
Total	50

Prepared by	Faculty Name	Signature
	Mrs.H.SASIKALA	
Verified by	Hod	Signature
	Dr.S.V.MANEMARAN	

V20 MABT03- Transforms and Boundary Value prokles Informal Assessment - 111 Answer Roef. \bigcirc py - 2x =0 7= ar + (1-9)9+C R loga - logb = dry. (3)(2-1)2 $Z(\frac{1}{n}) = -\log\left(\frac{Z}{Z_{-1}}\right)$ (5) (b)Initial value theorem $z \neq z [f(n)] = f(z)$ (then F(0) = lim (7(2) Final value theorem If Z (f(m) = f(n) Then im 7(m) = [[t, [2-], 7]]. ngo 7(m) = 23, (2-), 7].

part-B.

J. 19) MZ = Ax + by + 92-52 -A Z-791 - 12 + 12(4,60) (b) Convelusion thronem $\mathcal{F}_{1} = \frac{1}{2} = \frac{1$ (11) $Z[a] = \frac{2}{2-q}, |Z| 7|9)$ $\left(\frac{\chi^2}{2} + \frac{\chi^2}{2} + \frac{\chi^2}{2}\right), \left(\chi + my + n\alpha\right) = c$ (b) m = 1,6, $Z = f_1(y+m_1x) + g_2(y+m_1x)$ (J) (DY) (b) The mosts are -1, -2,3 $C \cdot F = f_1(y - y) + f_2(y - ay) + f_3(y + 3y)$ Part to. m=+20 $C(F = f_1(y-1) + f_2(y-2i) + f_3(y+2i)$ $\frac{1!f}{2} = -\frac{5!n(22(+19))}{24}$ $\frac{1!f}{2} = -\frac{1!}{2} = -\frac{1!$ 1) $x(n) = (-2)(-3)^n$ 2 m= -1, +21, -22 = tay [-26in (2x+y) + Sin(2x+y)] P.I

Dorof - C,

 $|0:(a) \quad c_{1}=20, \ c_{1}=\frac{60}{7}, \ r=\frac{htt}{7}, \ b_{n}=\frac{40}{ntt}\left[1+40\right]$ (00) 16)

11. (9) $f(s) = 2 \int_{\pi}^{2} \int_{\pi}^{s} \int_{s}^{s} \frac{1}{s^{3}} \int_{s}^{s} \int_{s}$ (b) $\int_{0}^{\infty} \frac{8in l - 5 \cos 5}{83} \cdot \frac{60}{5} \frac{5}{2} \frac{95}{16} = \frac{377}{16}$ 6 $\int_0^{dr} \left(\frac{\partial (\alpha \nabla x \beta \beta x)}{\partial x} \right) dx = \frac{\pi}{10}.$

TRANSFORMS AND BOUNDARY VALUE PROBLEMS ASSIGNMENT NAME: S. Javanya Rg. No: U21EC354 Section: F section

 \bigcirc

ECE

⇒ A metal box soom has its ends A and B kept 20°c
and 20°c respectively. Until steady state Onditions
prevail. the temperature at each end is then
Suddenly reduced to 0°c and kept so. Find the resulting
-lemperature distribution function
$$u(x_1+)$$
 taking $x=0$ at
A?
Solution: we know that
 $A?$
Nhen steady state (and exist the heat flow
 eq^{0} be comes
 $\frac{3^{1}y}{3t} = 0 \rightarrow @$
 $3x^{1}$
Solving @, we get $u(x) = C_{1}x+c_{2} \rightarrow @$
-from The given problem we having the flg
boundary (and
i) $u(x) = 20$
. cits $u(x) = 20$
 $u(x) = c_{1}(c_{0}) + c_{2} = 20 \Rightarrow C_{2} = 20$
Sub in eq @
 $u(x) = c_{1}x + 20 \rightarrow @$
 $u(x) = c_{1}x + 20 \rightarrow @$

$(1(1) = C_1 + 20 = 80$
$C_1 l = 30 - 20 = 60$
$C_1 l = 60$
$C_{1} = \frac{60}{l} \text{sub in} \cdot e_{2} \oplus$ $U(x) = \frac{60}{l} \times + 20$
$L(CK) = \frac{60}{l} = +20$
The temp distribution reached at the steady state become
-s initial temparature distribution for the Unsteady
State. $\frac{\partial \psi}{\partial t} = a^{\perp} \frac{\partial^{2} \psi}{\partial x^{\perp}} \rightarrow 5$
The new boundary Cond are
i) $u(o,t) = 0$, $t > 0$
(i) $u(l,t) = 0$, $t \ge 0$
$iii) u(x,0) = \frac{60}{4} x + 20$ 02x21
The given solis
$u(x,t) = (A \cos p \kappa + B \sin p \kappa) e^{-\alpha p^2 t} \rightarrow \mathbb{D}$
Applying B.C (i) in eg()
i.e. x=0 we get
$u(o_{t}+) = Ae^{-x^{2}p^{2}+1} = 0$
Let A=0 sub in eq ()
$u(x_1t) = Bsinpx(e^{a^{t}p^{t}t}) \rightarrow \mathbb{O}$
Applying the B. c (ii) in R2 2
i.e x=1

$$i \cdot e \quad x = \lambda$$

$$u (2, 4) = B \quad sin p \quad P \quad (e^{-x^{L}} p^{L} + 1) = 0$$

$$Sinpl = 0 = sin n \quad p = 0 \quad$$

 \bigcirc

$$= \frac{2}{k} \frac{(20J)}{k^{2}} \left[-4(-1)^{n} + 1 \right]$$

$$= \frac{402^{k}}{k^{4} \text{ off}} \left[(-1) + (-1)^{n} + 1 \right]$$

$$\therefore b_{n} = \frac{40}{n\pi} \left[(+1) + (-1)^{n+1} \right]$$

$$b_{n} = B_{n} \quad \text{in } e_{2} \circledast$$

$$u(x_{1}+) = \frac{\varepsilon}{E} = \frac{40}{n\pi} \left[(+4 + (-1)^{n+1}) \right] \cdot \sin \frac{n\pi v}{k} \cdot e^{-x^{2}p^{2}t}$$

$$u(x_{1}+) = \frac{\varepsilon}{E} - \frac{40}{n\pi} \left[(+4 + (-1)^{n+1}) \right] \cdot \sin \frac{n\pi v}{k} \cdot e^{-x^{2}p^{2}t}$$

$$u(x_{1}+) = \frac{40}{n\pi} \left[\frac{\varepsilon}{n+1} - \frac{1}{n} \left[(+4 + (-1)^{n+1}) \right] \sin \frac{n\pi v}{k} \cdot e^{-x^{2}p^{2}t}$$

$$= \lambda \text{ Hightly stretched string with fixed end points x=0}$$
and x=1 is initially in a position given by $y = k(4x - x^{2})$ If it is released from rest from its position, find
the displacement y at any time and ony distance from
the end x=0
Solution:
The motion of the String is given

$$\frac{3^{2}y}{3^{2}x^{2}} \rightarrow \mathfrak{S}$$
Boundary (and then are

(i)
$$y(a,t)=a, t>a$$

(ii) $\frac{\partial y}{\partial t}(x,b)=a, a \ge 2x \le t$
(iv) $y(x,v) = k(ax-x^{2}), a \le x \le t$
The general sol of (2) is given by
 $y(x,t)=[C_{1}(cosp x + C_{2}(sin px)][C_{3}(cosp at + C_{4}(sin pat)] \rightarrow (2))]$
 $y(a,t)=[C_{1}(cosp x + C_{2}(sin a)][C_{3}(cosp at + C_{4}(sin pat)]]$
 $= C_{1}(C_{3}(cosp at + C_{4}(sin pat)]=a)$
 $let C_{1}(a) = C_{2}(sin px][C_{3}(cosp at + C_{4}(sin pat)] \rightarrow (2))$
Applying Boundary Condition (3) in $e_{2}(a)$
 $y(x,t)=C_{2}(sin px][C_{3}(cosp at + C_{4}(sin pat)]=a)$
 $Sinpl = a = sin nti
 $pt = nti$
 $pt = c_{2}(sin nti)$
 $q(x,t) = C_{2}(sin nti)$
 $q(x,t) = C_{2}(sin nti)$
 $q(x,t) = C_{3}(sin nti)$
 $pt = c_{4}(cos nti)$
 $q(x,t) = C_{5}(sin nti)$
 $pt = c_{5}(sin (to cos nti))$
 $qt = c_{5}(sin (to cos$$

$$= C_{2} C_{3} \sin \frac{n\pi y}{2} \cos \frac{n\pi}{2} at$$

$$= C_{n} \sin \frac{n\pi y}{2} (\alpha \sin \frac{n\pi at}{2})$$
In general
$$y(x_{1}t) = \sum_{n=1}^{\infty} C_{n} \sin \frac{n\pi x}{2} \cdot (\alpha \sin \frac{n\pi at}{2}) \rightarrow (\beta)$$
Apply boundary (andition (i)) in(β)
$$y(x_{1}b) = \sum_{n=1}^{\infty} C_{n} \sin \frac{n\pi x}{2} = k (\beta x - x^{2})$$
The above eqn half range size series
$$\sum_{n=1}^{\infty} b_{n} \sin \frac{n\pi x}{2} = \frac{1}{4} (x)$$
To calcutate C_{n} we use b_{n} -formula
$$b_{n} = C_{n} = \frac{2}{2} \int_{0}^{1} f(x) \sin \frac{n\pi x}{2} dx$$

$$= \frac{2k}{2} \int_{0}^{1} k (\beta x - x^{2}) \sin \frac{n\pi y}{2} dx$$

$$= \frac{2k}{2} \int_{0}^{1} (\alpha x - x^{2}) \sin \frac{n\pi y}{2} dx$$

$$= \frac{2k}{2} \int_{0}^{1} (\alpha x - x^{2}) \sin \frac{n\pi y}{2} dx$$

$$= \frac{2k}{2} \int_{0}^{1} (\alpha x - x^{2}) \sin \frac{n\pi y}{2} dx$$

$$= \frac{2k}{2} \int_{0}^{1} (\alpha x - x^{2}) \sin \frac{n\pi y}{2} dx$$

$$= \frac{2k}{2} \int_{0}^{1} (\alpha x - x^{2}) \sin \frac{n\pi y}{2} dx$$

$$= \frac{2k}{2} \int_{0}^{1} (\alpha x - x^{2}) \sin \frac{n\pi y}{2} dx$$

$$= \frac{2k}{2} \int_{0}^{1} (\alpha x - x^{2}) \sin \frac{n\pi y}{2} dx$$

$$= \frac{2k}{2} \int_{0}^{1} (\alpha x - x^{2}) \sin \frac{n\pi y}{2} dx$$

$$= \frac{2k}{2} \int_{0}^{1} (\alpha x - x^{2}) \sin \frac{n\pi y}{2} dx$$

$$= \frac{2k}{2} \int_{0}^{1} (\alpha x - x^{2}) \sin \frac{n\pi y}{2} dx$$

$$= \frac{2k}{2} \int_{0}^{1} (\alpha x - x^{2}) \frac{(\alpha x - x^{2})}{(\alpha x - x^{2})} \frac{(\alpha x - x^{2})}{(\alpha x - x^{2})} - 2 \frac{(\alpha x - x^{2})}{(\alpha x - x^{2})}$$

$$= \frac{44}{4} \left[\frac{1 - (-1)^{n}}{(\pi\pi)^{3}} \right]$$

$$= \frac{44}{4} \left[\frac{1 - (-1)^{n}}{(\pi\pi)^{3}} \right]$$

$$= \frac{44}{n^{3}\pi^{3}} \left[1 - (-1)^{n} \right]$$

$$= \frac{4}{n^{3}\pi^{3}} \left[1 - (-$$

We take

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{1} (1-x^{2}) (\cos sx \, dx)$$

$$= \int_{\overline{\pi}}^{\overline{\pi}} \int_{0}^{1} (1-x^{2}) (\cos sx \, dx)$$

$$= \int_{\overline{\pi}}^{2} \left[(1-x^{2}) \left(\frac{\sin sx}{s} \right) - (-\infty) \left(\frac{-(\omega + x)}{s^{2}} + (-\infty) \left(\frac{-sin sx}{s^{3}} \right) \right]_{0}^{1}$$

$$= \int_{\overline{\pi}}^{2} \left[(1-x^{2}) \left(\frac{sin sx}{s} \right) - 9x \left(\frac{(\omega + sx)}{s^{2}} + 2 \frac{sin sx}{s^{3}} \right) \right]_{0}^{1}$$

$$= \int_{\overline{\pi}}^{2} \left[(b-2) \frac{(\omega + s)}{s^{2}} + \frac{2sin s}{s^{3}} \right] - 0$$

$$= 2\int_{\overline{\pi}}^{2} \left[\frac{-s(\cos s + \sin s)}{s^{3}} \right]$$

$$\therefore F(s) = 2\int_{\overline{\pi}}^{2} \left[\frac{sin s - s(\cos s)}{s^{3}} - \frac{s(\cos s)}{s^{3}} \right]$$

$$\Rightarrow \text{ Hence deduce that } \int_{0}^{\infty} \frac{sin s - s(\cos s)}{s^{3}} \cos \frac{s}{2} \, ds = \frac{3\pi}{16} \cdot (u \sin s)$$

$$= \int_{0}^{\infty} \text{ Hence theorem is form is } \int_{1-x^{2}}^{\infty} \int_{2}^{\infty} \int_{\overline{\pi}}^{\infty} \int_{0}^{\infty} f(s) e^{-isx} \, dx$$

$$1-x^{2} = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} 2\int_{\overline{\pi}}^{\infty} \int_{0}^{\infty} \left(\frac{sin s - s(\cos s)}{s^{3}} \right) (\cos sx - i \sin sx) \, ds$$

$$= \frac{4}{\pi} \left[\int_{0}^{\infty} \left(\frac{\sin s - 5(\cos s)}{s^{3}} \right) (\cos s \times ds - i \int_{0}^{\infty} \left(\frac{\sin s - s(\cos s)}{s^{3}} \right) \sin s ds$$

Equating Real part

$$1 - \kappa^{2} = \frac{4}{\pi} \int_{0}^{\infty} \left(\frac{\sin s - s(\cos s)}{s^{3}} \right) (\cos s \times ds)$$

put $\chi = 1/L$ t= s $ds = dt$

$$1 - (V_{2})^{2} = \frac{4}{\pi} \int_{0}^{\infty} \left(\frac{\sin s - s(\cos s)}{s^{3}} \right) (\cos s)/L ds$$

$$1 - V_{4} = \frac{4}{\pi} \int_{0}^{\infty} \left(\frac{\sin s - s(\cos s)}{s^{3}} \right) (\cos s)/L ds$$

$$1 - V_{4} = \frac{4}{\pi} \int_{0}^{\infty} \left(\frac{\sin s - s(\cos s)}{s^{3}} \right) (\cos s)/L ds$$

$$1 - V_{4} = \frac{4}{\pi} \int_{0}^{\infty} \left(\frac{\sin s - s(\cos s)}{s^{3}} \right) (\cos s)/L ds$$

$$\frac{3\pi}{4} \times 4 = \int_{0}^{\infty} \left(\frac{\sin s - s(\cos s)}{s^{3}} \right) (\cos s)/L ds$$

$$\int_{0}^{\infty} \left(\frac{\sin s - s(\cos s)}{s^{3}} \right) (\cos s)/L ds = \frac{3\pi}{16} \qquad \text{Hence proved}.$$

$$\Rightarrow \text{ parseral's } \mathcal{P} \text{ dentity}.$$

$$\int_{0}^{\infty} 1 f(w)^{2} dx = \int_{0}^{\infty} 1 2 \int_{\pi}^{2} \left(\frac{\sin s - s(\cos s)}{s^{3}} \right)^{2} ds$$

$$\int_{0}^{1} (1 - 2\kappa^{2} + \kappa^{4}) dx = \frac{16}{\pi} \int_{0}^{\infty} \left(\frac{\sin s - s(\cos s)}{s^{3}} \right)^{2} ds$$

$$2 \left[\frac{3 - 2}{3} + \frac{1}{5} \right] = \frac{16}{\pi} \int_{0}^{\infty} \left(\frac{\sin s - s(\cos s)}{s^{3}} \right)^{2} ds$$

$$2 \left[\frac{3 - 2}{3} + \frac{1}{5} \right] = \frac{16}{\pi} \int_{0}^{\infty} \left(\frac{\sin s - s(\cos s)}{s^{3}} \right)^{2} ds$$

$$2\left[\frac{1}{3}+\frac{1}{5}\right] = \frac{16}{\pi}\int_{0}^{\infty}\left(\frac{\sin x - x(\cos x)}{x^{3}}\right)^{2} dx$$
$$2\left[\frac{5+3}{15}\right] = \frac{16}{\pi}\int_{0}^{\infty}\left(\frac{\sin x - x(\cos x)}{x^{3}}\right)^{2} dx$$
$$\frac{16}{15} = \frac{16}{\pi}\int_{0}^{\infty}\left(\frac{\sin x - x(\cos x)}{x^{3}}\right)^{2} dx$$
$$= \frac{16}{15}\int_{0}^{\infty}\left(\frac{\sin x - x(\cos x)}{x^{3}}\right)^{2} dx = \frac{1}{15}$$

TRANSFORM AND BOUNDARY VALUE PROBLEMS

ASSIGNMENT

Name: Kajal Kumari Rg.No: U2IEC339 Section: F section

VAIVE PROBLEMS BUINDARY CLA-2 KAJALKUMARI UZIEC339 ECE IInd year Part-C 109---WKT, the head equation is 80°C 20°C <u>84 3 a 24</u> when steady state and exist, the heat flow equation becomes $\frac{\partial^2 y}{\partial x^2} = 0 - 2$ A DAMES I SALES A Strange - W Solving (), we get 4(x) = (1x + (2 - 3) from the given potoblem we have the following boundary condo 5. a 1 6 g i) 4(0) = 20 \ddot{n}) u(l) = 80 1=30cm Apply the (is in 3), we get ive x=0 46) = (10) + (2 = 20 (2= 20] Sub in eq 3 $u(x) = (\mu + 20 - \psi)$ Applying the B. Clii) in (9) (ie) x=l u(l) = (il + 20 = 80)(1l = 80 - 20) $CI = \frac{60}{0}$ sub in eq.(9)

4(x) = 60 + 20The femperature distribution reached at the steady state becomes "initial temperature distribution for the unsteady stoke $\frac{\partial y}{\partial t} = 9\frac{\partial^2 y}{\partial x^2}$ The new boundary condin are 17 4(o,t)=0, t>0 i_{1} $4(t_{1}0) = 0, t > 0$ iii) 4(0x,0) = 60x +20 , ocx cl u(ait) = (A cospa + Bsimpa) e 2°p24 Appluin II m The heretral soln is Applying the Boundary cond in Dlied x=0, we get $4(p_1t) = (A)e^{-d^2p^2t} = 0$ let A = 0 sub in eq D y(a,t) = Bsinpt (ed 2 per) - 2 Applying the B. c (1/ in: 1) i.e x= e $\Psi(l,t) = Bsinpl(e^{-l^2p^2t}) = 0$ simpl = simult pl= nT p= nit in eq@ $y(x, \varepsilon) = Bsinntix \left(\frac{e^{2\pi 2\pi 2}}{2} \right) - B$ Applying the B-c (iii) in (3) i.e t=0 4(x, 0) = BSignitic = 60x + 20 $u(a,t) = Bnsinnts, e^{12}p^{2}f(a)$ bn = Bn = 2 [f(x) sinnt dx = g 60x 20/sinnthe dr

= 2 Slox+ 2al J. sin n#x de Sunda = UN, + U'N2 + U''N3 $=\frac{2}{22}\left[\frac{60x+20l}{\frac{1}{1}}\left(-\frac{cosnnx}{\frac{1}{1}}\right)-\frac{60}{\frac{1}{1}}\right]^{-1}$ $-\frac{\alpha}{92}\left(-202)\left(\frac{1}{10}\right)^{2}+0\right)-\left(202\right)\frac{1}{10}$ = 2 22 - 80l- (-1) + 20l male + (mit) $= \frac{2}{2} \frac{2}{2} \left(\frac{n\pi}{2} \right) \left(-\frac{4(-1)^{n}}{2} + 1 \right)$ 3 4012 22HH [-1(4)(-1)+1] $bn = \frac{40}{nH} \left[\frac{1}{7} + 4(-1) \frac{n+1}{1} \right]$ Sub brin eg $\Psi(x, z) = \sum_{n=1}^{\infty} \frac{40}{n\pi} \left[1 + \Psi(.1)^{n+1} \right] \cdot \sin n\pi x \cdot e^{-z^2 p^2 t}$ $4(2r, 2) = 40 \sum_{H} \frac{1}{N=1} \left[1 + 4(r-1)^{H+1} \right] \cdot sinn \pi \cdot e^{2r^{2}t}$ The boundary Cond are i) y(o,t)=0, t>0 y(0, 2)=0, 2>0 11) 24 (x, 0) = 04)c

2c(n) = cos(n/H) * Ft = 172 F= 271 = RIN ut is growatelond. non periodic signal. - It is iv) y(x,v) = yosin³ntx, ocice The sol far y satisfying the boundary Condit are y (ue) = E Cosin nilx. cosnil at - D Applying (iv) in D $y(x_i x) = \mathcal{E}(nsinntx \cdot cost)$ = E (n simmix = yo singht x we know that Sin312 = + / (Sin12 - 3in 312) - @ sub @ in above equallyon CISINAX the Singhx + C3 singhx = 4 (35inthe - Singhx equaling co- efficients on both sides G= 300; G= - 40, C= (y=0 Sub these value in eq () y(x, 2)=340 sinnic costat - 40 sin311x cos310t

11.9 $f[f(x)] = \int \overline{g_{H}} \int f(x) e^{i\omega t} dx$ $=\frac{1}{\sqrt{2H}}\int\int\int f(x)e^{i5x}dx + \int f(x)e^{ix}dx + \int f(x)^{i5x}dx - 9$ $= \int \frac{1}{\sqrt{2}H} \left[0 + \int (u^2 - x^2) e^{iyx} dx \right] - \frac{0}{-9} \frac{1}{-9} \frac{$ $\int \frac{1}{|\mathcal{R}|^2} \int (a^2 - x^2) e^{iSX} dx$ = 1 9 (19²-x²)e^{isx} dx $= \int \left((0^2 - x^2) (\cos sx + i \sin sx \, dx \right) \right)$ $= \int \left[\left(q^2 - x^2 \right) \left(\cos 5x \, dx + \left(q^2 + a^2 \right) \left(i \sin 5x \, da \right) \right] \right]$ $= \int_{-\alpha}^{\alpha} \int_{-\alpha}^$ (: (a²-x²) sinz -> odd function =0 ((2-x2) cossi -> even function = 1 9 (9²-x²) cossoidx [2H] 9 (9²-x²) cossoidx $\int (a^2 - x^2) \cos x \, dx = 2 \int (a^2 - x^2) \cos x \, d_2$ Job = Cosse 1. By Bernoullis V= sinsx US Q²-x² $V_1 = - (OSSX)$ b' = -2x'

U" 5-8 $V_{.2} = - \sin sx$ $= \frac{2}{M} \frac{(a^2 - x^2)(\frac{\sin sx}{s}) - (-2x)(\frac{-\cos sx}{s^2}) - 2(\frac{-\sin sx}{s^3})}{s}$ $= \frac{2}{H} \left[\frac{a^2 - x^2}{s} \right] \left(\frac{sins}{s} \right) - \frac{2x}{s^2} \left(\frac{cods}{s^2} \right) + \frac{2sinsx}{s^2} \right]$ 5 2 2 [sings-95(0395] H S3 $f_{00} f(s) = 2 \begin{bmatrix} 2\\ 17 \end{bmatrix} \begin{bmatrix} sinal - 9.5 \cos 2 \\ 53 \end{bmatrix}$ $p_{4}f q_{5}$, $f(r) = 2 \left[\frac{2}{17} \int \frac{\sin r}{r^2} - s(r) \frac{2}{3}\right]$ Using invoise fousier planform for Aveget $f(x) = \frac{1}{\sqrt{2H}} \int f(s) e^{isx} dx$ = 2 [2 [1] sins-scosx] e dx $= \frac{18}{11} \int \frac{1}{53} \int \frac{1}{5$ fla) = 2 (sins - scoses cossada sins-scon costa

 $= 2 \int x + x^{5} - 2 \cdot \frac{x^{3}}{3} \int_{0}^{3}$ $= 2\left(1+\frac{1}{5}-\frac{2}{3}\right)-(0+0-0)\right]$ 5S(15+3-10)2(5) $\frac{5 + 6 + 6}{16 + 1} \frac{\sin s - \sin s - \sin s}{s^3} ds = \frac{+6}{15}$ $= \int \left(\frac{\sin t - t (\cos t)}{t^3} \right)^2 dt = \frac{\pi}{15}$

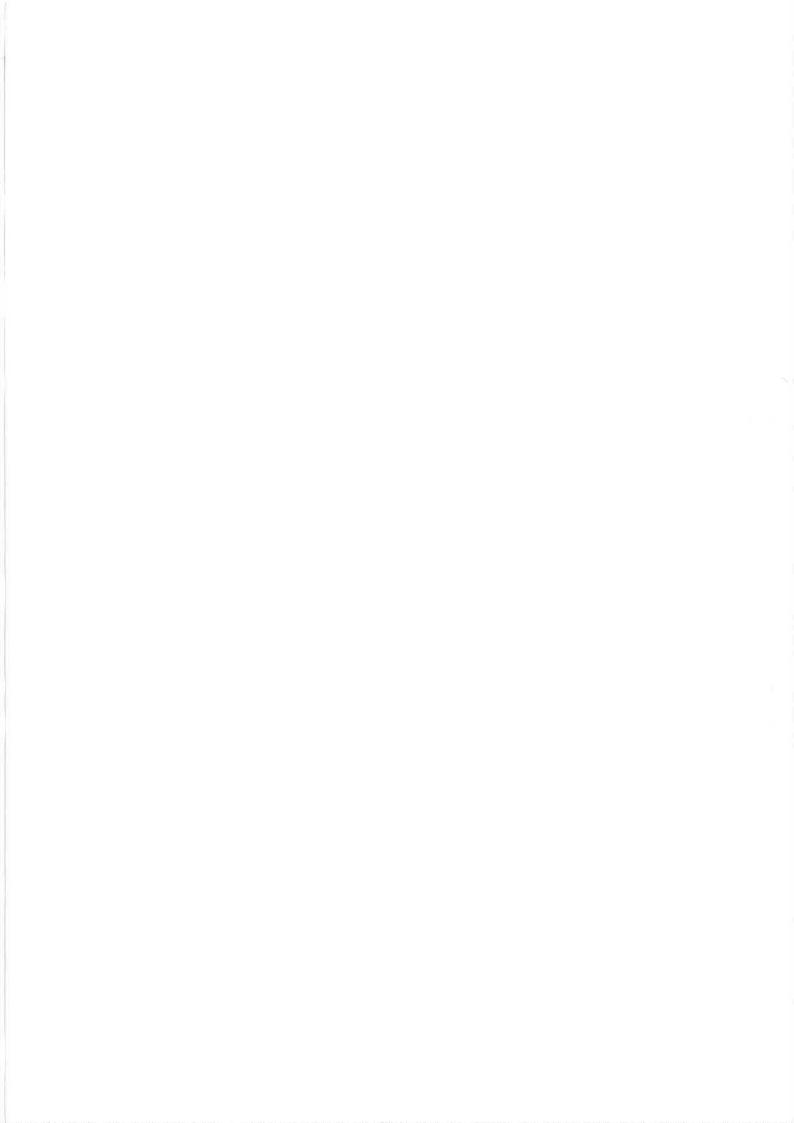
Sins-scoss cossocds= TT Sins-Score Cossades $3 = 2 \int sins - scossions$ sins -scose consuds -> odd =0 f(x)= f(x) Pulling 91=0 in 2 f(a) = 1 - 0 = 1 $= \frac{4}{11} \int \frac{\sin z - t \cos z}{z^3} q d - f (\omega) = 1$ $= \int_{E_3}^{\infty} \frac{1}{5} \sin 2 - \frac{1}{2} \cos 2 dx = \frac{1}{9}$ 11.5 Using pagesevals dentify $\int f(x)^2 dx = \int [f(x)]^2 dx$ $\frac{8}{17} \int_{r_3}^{r_3} \int_{r_3}^{r_3} dJ = 2 \int (1-x)^2 dx$ $Q = \frac{16}{H} \int \frac{\sin s - s\cos s}{s^2} dx = 2 \int (1 + x^2 - sx^2) dx$ $= 2 \left[x + \frac{ye^5}{5} - \frac{2x^3}{3} \right]^{1}$

CIVIL

ř.

 \bigcirc

J



CONTINUOUS LEARNING ASSESSMENT - I

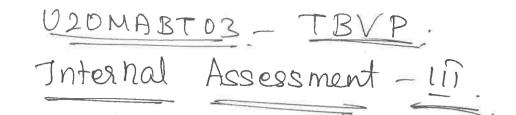
U20MABT03-- TRANSFORMS AND BOUNDARY VALUE PROBLEMS

Date	: 19.10.2022
Academic Year / Semester	: 2022-2023 / ODD
Duration	: 1.5 Hours (90 minutes)
Instructions	: Descriptive Type Questions

Q. No	Questions	Weighta ge	СО	Bloom's Level
	PART A (6x2=12 Marks)			
1	Define Fourier Series.	2	CO1	U
2	Write down the Bernoulli's formula	2	CO1	U
3	Find a_0 for the function $f(x) = x^2$ in (0,2 <i>l</i>).	2	CO1	
4	Write down the formula for the Fourier series in $(0,2l)$.	2	CO1	U
5	Find b_n , if $f(x) = x^2$ in $(-l < x < l)$.	2	CO1	U
6	Find the Root Mean Square value of $f(x) = x$ in $(0,2\pi)$.	2	CO1	U
	PART B (3x6=18 Marks)			
7	(a) Find the Fourier series for the function $f(x) = x^2 + x$ in (0,2 <i>l</i>). (OR)	6	CO1	U
	(b) Find the Fourier series for $f(x) = x(2\pi - x)$ in $(0, 2\pi)$.			
8	(a) Obtain half range cosine series for $f(x) = x(l-x)$ in $(0, l)$.	6	CO1	U
	(OR)			
	(b) Find the half-range cosine and half- range sine series for the function		()	
	f(x) = x in (0, l).			
9	(a) Find the Fourier series for the function $f(x) = \begin{cases} k, -\pi < x < 0 \\ x, 0 < x < \pi \end{cases}$	6	CO1	U
	$1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \cdots$			
	Hence find sum of the series $\sqrt{257}$			
	(OR)			
	(b) Find the Fourier series for $f(x) = x $ in $(-\pi, \pi)$			
	PART C (2x10=20 Marks)			
10	(a) Obtain the Fourier series for the function $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$	10	CO1	U
	(a) Obtain the rotation series for the function $f(x) = \begin{cases} x, & 0 < x < \pi \end{cases}$			
	π^{2}			
	and hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$			
	(OR)			
	(b) Find the first two harmonic of the Fourier series of $f(x)$ given by the			
	following table			
	x0 $\frac{\pi}{3}$ $\frac{2\pi}{3}$ π $\frac{4\pi}{3}$ $\frac{5\pi}{3}$ 2π			
	f(x) 1.0 1.4 1.9 1.7 1.5 1.2 1			
11	(a) Find the Fourier series for $f(x) = (\pi - x)^2$ in $(0,2\pi)$. Hence show that	10	CO1	U
	$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$			
	(OR) (b) Find the half range cosine series for $f(x) = x$ in $(0, \pi)$. Deduce that			
	(b) Find the half range cosine series for $f(x) = x$ in(0, π). Deduce that			
	$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots = \frac{\pi^4}{96}$			
	1. 3. 5. 96			

Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008



1) py - qx = 0. 2). Z = [pdn + [qdy] z=K[ex+ey]+c. 3) $Z(n) = \frac{z}{(z-1)^2}$ 4) $Z(Y_n) = \log(\frac{Z}{Z_n})$ $5)_{a} = \frac{k}{1-k} \left(\frac{x^{2}}{2}\right) - k\left(\frac{y^{2}}{2}\right) + q$ b) $C = f_1(y+x) + x f_2(y+x)$ $P \cdot I = -\frac{1}{11} \cos(x - 3y).$ $Z = f_1(y+x) + x f_2(y+x) - \frac{1}{16} \cos(x-3y)$ 6) a) $Z(1) = \frac{z}{z}$, $Z(a^{n}) = \frac{z}{z-a}$ b) $x^{2} + \frac{y^{2}}{2} + \frac{z^{2}}{2} = C_{1}, lx + my + hz = C_{2}$ 7) a) C. $F = f_1(y+2x) + f_2(y-x) + 5x^3 + 3x^2y - 1 e^{3x+4y}$ b) A = -1, B = 1, $\chi(n) = (-2)^{n} (-3)^{n}$.

Q.No 1 Write dow 2 Find a_0 a 3 State Dir 4 Write dow	: on the Fourier set and a_n , if $f(x)$ ichlet condition on the Parseval's	$\frac{60}{\text{Quation}}$ PAR eries form $x) = x, iii$	nula.	X2 = 8)A	nswer a	ll questions		CO	Bloom's Level
1 Write dow 2 Find a_0 a 3 State Dir 4 Write dow	nd a_n , if $f(x)$ ichlet condition	Que PAR eries form x = x, ia	estion T – A (4 nula.		nswer a	ll questions		СО	Bloom's Level
1 Write dow 2 Find a_0 a 3 State Dir 4 Write dow	nd a_n , if $f(x)$ ichlet condition	PAR eries form x = x, i d	T – A (4 1ula.		nswer a	ll questions		СО	
2 Find a_0 a 3 State Dir 4 Write dow	nd a_n , if $f(x)$ ichlet condition	eries form $x) = x, ii$	nula.		nswer a	ll questions		,I	
2 Find a_0 a 3 State Dir 4 Write dow	nd a_n , if $f(x)$ ichlet condition	(x) = x, i		$x < \pi$.					
3 State Dir 4 Write dow	ichlet condition		$n-\pi <$	$x < \pi$.			2	CO1	2
4 Write dow	n the Parseval's	ns.					2	CO1	2
							2	C01	2
5 (a) Find	PA	s identity	formula.				2	CO1	2
5 (a) Find		ART – B	8 (2X6 =	12) Ans	swer eit	her-or que	estion		
	(a) Find a_0 and a_n the fourier series for the function					6	C01	2	
f(x) = x	$f(x) = x^2$, in (0, 2l).							2	
		((Or)						
(b) Find	a_0 and a_n the	fourier	series fo	r the fun	ction		6	CO1	2
f(x) = x	$x(2\pi-x), in$ ($(0, 2\pi).$							
	(a) Find the Half range cosine series and Half range sine series for the function $f(x) = x$, in $(0, l)$.		6	CO1	2				
) (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Or)			_			
		(01)						
	(b) Find the Half range cosine series and Half range sine series for the function $f(x) = x$, in $(0, \pi)$.		6	CO1	2				
	PA	RT – C	(1X10	=10) An	swer ei	ther or qu	estion		
7 (a) Find t	ne Fourier series	s for the f	function i	n f(x) = x	(+x2 in	$(\pi - \pi)$	10	CO1	1
	ce that $\sum_{n=1}^{\infty} \frac{3}{n}$					(,)			2
	(Or)						10	C01	2
(b)Find th	(b)Find the fourier series expansion of period 2π for the function y=			10	CO1				
X	0 π/3	2π/3	π	4π/3	5π/3	2π			
у	1.0 1.4	1.9	1.7	1.5	1.2	1.0			2
f(x) which	is defined in (0	(2π) hy n	l neans of	the table i	of the v	lues			
	w. Find the seri								

CO	Weightage
CO1	30
CO2	

)

IQAC/ACAD/008

ULDMABTO3 - Transform 2 Boundary Value
Problems
Internal Assessment - I
A)
i)
$$f(x) = a_0 + \sum_{n=0}^{\infty} (a_n cos nx + b_n sin nx)$$

2). $a_0 = D$, $a_n = 0$.
3). $f(x)$ is periodic, continuous,
4) $\frac{1}{2\pi \pi} \int_{0}^{2\pi \pi} [f(x)]^2 dx = a_0^2 + \frac{1}{2\pi \pi} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$
B) $s(a_0) = \frac{gl^2}{3}$, $a_n = -\frac{4}{n^2 \pi^2}$.
b) $a_0 = \frac{gl^2}{3}$, $a_n = -\frac{4}{n^2 \pi^2}$.
b) $a_0 = \frac{gl^2}{3}$, $a_n = -\frac{4}{n^2 \pi^2}$.
c) $a_0 = 1$, $a_n = \frac{gl}{\pi n^2} [(-1)^n - 1]$
b) $a_0 = \pi$, $a_n = \frac{gl}{\pi n^2} [(-1)^n - 1]$
c) 7) $a_1 = 2\pi \frac{2\pi^2}{3}$, $a_n = -\frac{4}{n^2} (-1)^{n+1}$, $b_n = \frac{2}{n} (-1)^{n+1}$
b) $f(n) = 1.45 + (-0.36 \cos x + 0.173 \sin x) + (-0.1 \cos 2x - 0.057 \sin 2x) + (0.033 \cos 3x)$

× 90

	INTERNAL ASSESSMENT -I1 U20MABT03 – TRANSFORMS AND BOUNDARY VA : 21.11.2022 Year / Semester : 2022-2023/ODD	LUE PROBI	LEMS	
Q.No	: 90 min Question	Weightage	СО	Bloom's Level
	PART – A (4X2 = 8) Answer all questions			
1	Classify the differential equation	2	CO3	
	$3\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} + 6\frac{\partial^2 u}{\partial y^2} - 2\frac{\partial u}{\partial y} - u = 0.$			2
2	State the Fourier integral theorem.	2	CO4	2
3	If $F\{f(x)\} = F(s)$, then $F\{f(x)\cos ax\} =$	2	CO4	2
4	What are the various solutions of one dimensional wave equation?	2	CO3	2
	PART – B (2X6 = 12) Answer either-or que	estion		
5	(a) A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially at rest in its equilibrium position. If it is set vibrating giving each point a velocity $k(lx - x)$, then show that $y(x,t) = \frac{8kl^3}{a\pi^4} \sum_{n=1,3,5}^{\infty} \frac{1}{4} \sin \frac{n\pi x}{l} \sin \frac{n\pi at}{l}$. (OR)	6	CO3	2
	(b) Find the Fourier transform of $f(x)$ if $f(x) = \begin{cases} 1, & x < 1 \\ 0, & x > 1. \end{cases}$		CO4	2
6	(a) State and prove shifting theorem. (OR)	6	CO4	2
· · · · · · · · · · · · · · · · · · ·	(b) State and prove Modulation theorem.		CO4	2
	PART – C (1X110 =10) Answer either or qu	estion		
7	(a) A metal bar 30cm has its end A and B 20°C and 80°C respectively until steady state conditions prevail. The temperature at each end is then suddenly reduced to 0°C and kept so. Find the resulting temperature distribution function $u(x,t)$ taking x=0 at A.		CO3	2
	(b) Show that the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & x < 1\\ 0 & x > 1 > 0 \end{cases} \text{ is } 2\sqrt{\frac{2}{\pi}} \left(\frac{\sin s - s \cos s}{s^3}\right).$ Hence deduce that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos \frac{s}{2} ds = \frac{3\pi}{16}.$	10	CO4	2

and the second second

 \cap

()

1)
$$B^{2}-4AC = -56$$
, Ellipse.
2) $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{\frac{1}{2}(x-t)s}$.
3) $F \{f(x)\cos ax Y = \frac{1}{2} [f(s+a) + f(s-a)]^{\frac{1}{2}}$
4) $y(x,t) = (c_{1}e^{px} + c_{2}e^{-px})(c_{3}e^{pat} + ce^{-pat})$
 $y(x,t) = (c_{1}\cos px + c_{2}\sin px)(c_{3}\cos pat + c_{4}\sin pat)$
 $y(x,t) = (c_{1}x + c_{2})(c_{3}t + c_{4})$.
5) $b f(x) = \sqrt{\frac{2}{\pi}} \cdot (\frac{\sin s}{s})$.
6) a) $f(x) = \sqrt{\frac{2}{\pi}} \cdot (\frac{\sin s}{s})$.
6) A) $f(x) = F(s) df(s) - F(s) df(s)$
 $F[f(x)] = F(s) df(s) - F(s)$
 $b) Modulation tf(s) - F(s) df(s) - F(s)$.
 $f[f(x)] = F(s) df(s) - F(s) - F(s) - F(s)$.

7) a)
$$C_2 = 20$$
, $C_1 = \frac{60}{k}$ $P = n\pi , bn = \frac{40}{n\pi} (1+4(-1))$
b) $F(s) = 2\sqrt{2} \int sins - scoss 7$

DEPARTMENT OF CIVIL ENGINEERING

CONTINUOUS LEARNING ASSESSMENT – III

U20MABT03 - TRANSFORM AND BOUNDARY VALUE PROBLEMS

Date	: 26.12.2022
Academic Year / Semester	:2022-2023/ODD
Duration	:1 hour 15 mins
Instructions	: Part A- Answer all questions
	Part B - Answer either A or B for the questions 5and 6

Part C- Answer either A or B for the question 7

Q.No	Questions	Weightage	СО	Bloom's Level
	PART A (5X2=10)			
1	Form the partial differential equation by eliminating the arbitrary function in $Z = f(x^2 + y^2)$.	2	CO2	R
2	Solve $pe^y = qe^x$.	2	CO 2	R
3	Prove that $Z[n] = \frac{z}{(z-1)^2}$.	2	CO 5	U
4	Find $Z[\frac{1}{n}]$.	2	CO 5	U
	PART B (2x6=12)			
5	(a) Solve $Z = px + qy + p^2 - q^2$ (OR) (b) Solve the equation $(D^2 - 2DD' + {D'}^2)z = \cos(x - 3y)$	6	CO2	U
6	 (a)Find the Z - transform of the following, i) Z [1] ii) Z [aⁿ] (OR) (b) Solve (mz - ny)p + (nx - lz)q = ly - mx 	6	CO 5	U
	PART C (1x10=10)			
7	a)Solve $(D^2 - DD^{\dagger} + 2D^{\dagger^2})z = 2x + 3y + e^{3x+4y}$	10	CO 2	U
	b)Find $Z^{-1}[\frac{Z}{Z^2+5Z+6}]$			

ASSIGIN MENT

UNIT-ILI: Applications of Partial differential equation. 6 string is related to one-dimensional wave equation 2. Rod is related to one-dimensional heat equation. 3. Plate is related to two-dimensional heat. One d'imensional wave equations Definition? V $\frac{\delta^2 y}{\zeta + 2} = \alpha^2 \frac{\delta^2 y}{\zeta + 2}$ a² = T/m = <u>Tension</u> mass per unit of the string 2) Write the boundary and initial conditions for one dimensional wave equation ? i> y (0,t) =0 (i) y (l,t) = D $\frac{\partial (1)}{\partial (1)} \left(\frac{\partial y}{\partial x} \right) (x, 0) = 0$ =f(z)iv) y(x,0) General solution is y(z,t) = (c, cospz + c2 sinpz) (c3 cospat + cusinpat) 3) A string is stretched and fastimed to two points x=0 & x=1 a post. the motion is started by displayed the string anto the form y = K(ln-x2) from which it is released. A time t=0. Find the displacement of any point on the string at a distance of 'x from one end at time t One dimensional Wave equation. A $\frac{\delta^2 y}{\zeta_{42}} = a^2 \frac{\delta^2 y}{\delta_{82}}$

	a l
The boundary and initial conditions	
$i \neq y(o,t) = 0$	
ii) y(1,t) = 0	
$iii) \frac{\delta y}{\delta t} (x, 0) = 0$	
iv) $y(x,0) = -f(x)$	8
General solution is	
$y(x, y) = (c_1 \cos px + c_2 \sin pz)(c_3 \cos pat + c_4 \sin pat)$ $\rightarrow 0$	
Apply 1st condition in Eq. D.	
Put $z = 0$ in Eq. (1)	
y(0,t) = 0 is the second se	4
$y(o,t) = (c, cos p(o) + c_a sin p(o))(c_a cospat + c_u sinpat).$	
$0 = C_1(c_3 \cos pat + c_4 \sin pat)$	
G=0 81 C2 cospat + cy sinpat =0.	
C1=0 substitute in eq (1)	
$y(x,t) = c_a s^{npx} (c_a cospat + c_y s^{npat}) \longrightarrow (2)$	
Apply (ii) condition in Eq. 2	
put $z=l$, in eq. (2).	
y(1,t) = c, sinpl (c, cospat + cy sin pat)	
0 = co sinpl (cospat + cospat)	
$C_2 \neq 0$, (8) Sinpl=0 81 C3 cospat + Cy Sinpat $\neq 0$	
$C_2 \neq 0$, (0) Sinpl = 0 of $C_3 cospace + cy compare \neq 0sinpl = sin n \pi$	
sinpl = 510 n II $pl = 70 T$	
$P = \pi \pi l p$	

$$p = \frac{n\pi}{4} \quad \text{in substitute in eq.(3).}$$

$$q(z, t) = c_{2} \quad \frac{\sin n\pi x}{4} \quad (c_{3} \cos n\pi at + c_{4} \sin n\pi at - \frac{1}{4}) \longrightarrow (3)$$

$$-\text{Apply (iii) condition in eq.(3).}$$

$$\frac{\delta y}{\delta t} = c_{3} \sin n\pi x \left[-c_{3} \sin n\pi at - \frac{1}{4} x n\pi - \frac{1}{4} + c_{4} \cos n\pi at - \frac{1}{4} x n\pi - \frac{1}{4} \right]$$

$$\left[\frac{\delta y}{\delta t} = c_{3} \sin n\pi x \left[-c_{3} \sin n\pi at - \frac{1}{4} x n\pi - \frac{1}{4} + c_{4} \cos n\pi - \frac{1}{4} x n\pi - \frac{1}{4} \right]$$

$$\left[\frac{\delta y}{\delta t} + c_{3} \sin n\pi x \left[-c_{3} \sin n\pi - \frac{1}{4} x n\pi - \frac{1}{4} + c_{4} \cos n\pi - \frac{1}{4} x n\pi - \frac{1}{4} \right]$$

$$\left[\frac{\delta y}{\delta t} + c_{5} \sin n\pi - \frac{1}{4} x - \frac{\pi}{4} + c_{7} \cos n\pi - \frac{1}{4} x n\pi - \frac{1}{4} \right]$$

$$\left[\frac{\delta y}{\delta t} + c_{7} \sin n\pi x - c_{7} \sin n\pi - \frac{1}{4} x - \frac{1}{4} + c_{7} \cos n\pi - \frac{1}{4} x - \frac{1}{4} \right]$$

$$\left[\frac{\delta y}{\delta t} + c_{7} \sin n\pi - \frac{1}{4} x - \frac{1}{4} + c_{7} \cos n\pi - \frac{1}{4} x - \frac{1}{4} \right]$$

$$\left[\frac{\delta y}{\delta t} + c_{7} \sin n\pi - \frac{1}{4} x - \frac{1}{4} + c_{7} \cos n\pi - \frac{1}{4} x - \frac{1}{4} \right]$$

$$\left[\frac{\delta y}{\delta t} + \frac{1}{2} \cos n\pi - \frac{1}{4} x - \frac{1}{4} + \frac{1}{4} \cos n\pi - \frac{1}{4} \cos n\pi - \frac{1}{4} + \frac{1}{4} \cos n\pi - \frac{1}{4} - \frac{1}{4} \cos n\pi - \frac{1}{4} + \frac{1}{4} \cos n\pi - \frac{1}{4} + \frac{1}{4} \cos n\pi - \frac{1}{4} - - \frac{1}{$$

$$b_{n} = \frac{2}{L} \int_{0}^{L} f(x) s^{n} \underline{m} \underline{m} \underline{x} dx$$

$$= \frac{2}{L} \int_{0}^{L} k (lx - x^{2}) s^{n} \underline{m} \underline{m} \underline{x} dx.$$

$$= \frac{2}{L} \int_{0}^{L} k (lx - x^{2}) s^{n} \underline{m} \underline{m} \underline{x} dx.$$

$$= \frac{2}{L} \int_{0}^{L} (lx - x^{2}) s^{n} \underline{m} \underline{m} \underline{x} dx.$$

$$u = lx - x^{2} \qquad \int dv = s^{n} \underline{m} cos \underline{n} \underline{m} \underline{x}$$

$$u^{n} = -2 \qquad \qquad V = -\frac{l}{\underline{m}} cos \underline{n} \underline{m} \underline{x}$$

$$u^{n} = -2 \qquad \qquad V_{1} = -\frac{l^{2}}{\underline{m}^{2} \pi^{2}} s^{n} \underline{n} \underline{m} \underline{x}$$

$$\int udv = uv - u^{1}v_{1} + u^{n}v_{2} - u^{n}v_{3} + -\dots$$

$$\int udv = uv - u^{1}v_{1} + u^{n}v_{2} - u^{n}v_{3} + -\dots$$

$$= \frac{2k}{L} \left[-(lx - x^{2}) \left[\frac{l}{\underline{m}} cos \underline{n} \underline{m} \underline{x} \right] + \left[l - 2x \right] \left[\frac{l^{2}}{\underline{m}^{2}} s^{n} \underline{n} \underline{m} \underline{x} \right] \right]$$

$$= \frac{2k}{L} \left[-\frac{L(2) + x^{2}(l)}{\underline{m}} - 2 \frac{l^{3}}{\underline{m}^{3} \pi^{3}} \right] + 2 \left[\frac{l^{3}}{\underline{m}^{5} \pi^{5}} \right]$$

$$= \frac{2k}{L} \left[-\frac{L(2) + x^{2}(l)}{\underline{m}^{5} \pi^{3}} - \frac{l^{3}}{\underline{m}^{3} \pi^{3}} \right]$$

$$= \frac{-uk}{R} \frac{l^{3}}{n^{3} \pi^{3}} \left[(-1)^{n} - 1 \right]$$

$$= \frac{-uk}{n^{3} \pi^{3}} \left[(-1)^{n} - 1 \right]$$

$$= \frac{1 - kl^{2}}{n^{3} \pi^{3}} \left[(-1)^{n} - 1 \right]$$

$$= \frac{1 - kl^{2}}{n^{3} \pi^{3}} \left[(-1)^{n} - 1 \right]$$

$$= \frac{1 - kl^{2}}{n^{5} \pi^{3}} \left[(-1)^{n} - 1 \right]$$

$$= \frac{1 - kl^{2}}{n^{5} \pi^{3}} \left[(-1)^{n} - 1 \right]$$

.4

$$\begin{bmatrix}
b_n = \frac{\delta k \cdot 4^2}{n^3 \pi^3} \\
b_n = C_n = \begin{cases} \frac{\delta k \cdot 4^2}{n^3 \pi^3} & \text{if } \pi = \text{odd} \\
0 & \text{if } \pi = \text{even.} \end{cases}$$

$$y(x,t) = \sum_{n=odd} \frac{\delta k \cdot 4^2}{n^3 \pi^3} & \text{sin} \frac{\pi \pi x}{4} & \cos \frac{\pi \pi a t}{4} \\
\text{Problems on vibrating string with non-zero infitial velocity.}$$

$$()) \text{ write -the Boundary and initial conditions?}$$

$$\begin{cases}
y(a,t) = 0 \\
\text{if } y(x,o) = f(x)$$
General solution is
$$y(x,t) = (c_1 \cos x + c_2 \sin p x)(c_2 \cos p a t + c_4 \sin p a t).$$

$$()) \text{ A -tightly Stretched string fixed points x = 0 g x = 1, \text{is initially in a position given by $y(x,o) = y_0 \sin s(\frac{\pi x}{d}), \text{if } it is ouleased from vest. This position .-And the displacement y at any distance x from one end at any time t.$

$$()) \text{ One dimensional wave equation } \frac{\delta^2 y}{\delta t^2} = \alpha^2 \frac{\delta^2 y}{\delta x^2}.$$
From -the given problem, we get -the following boundary and initial consistions.$$

1)
$$y(o,t) = 0$$

1) $y(d,t) = 0$
1) $y(d,t) = 0$
1) $y(x,0) = 0$
1) $\frac{Sy}{St}(x,0) = f(x)$
The General Solution 1s
 $y(x,t) = (c_1 \cos px + c_2 \sin px) (c_3 \cos pat + c_4 \sin pat) \longrightarrow 0$.
-Apply (i) boundary condition, whe get $y(o,t) = 0$.
put $x=0$, in $eq_1 0$
 $y(o,t) = (c_1 \cos p(o) + c_2 \sin p(o)) (c_3 \cos pat + c_4 \sin pat)$.
 $0 = c_1 (c_3 \cos pat + c_4 \sin pat)$.
 $(c_1=0)$ or $(c_3 \cos pat + c_4 \sin pat) \neq 0$ ($\forall t$)
 $c_1=0$, substitut the $eq_1 0$
 $y(x,t) = c_2 \sin px (c_3 \cos pat + c_4 \sin pat) \longrightarrow (2)$
-Apply (ii) condition in $eq_1 (2)$, we get $y(d,t)=0$
put $x=1$ in $eq_1 (2)$
 $y(d,t) = c_3 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $b = c_3 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $b = c_3 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $b = c_3 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $b = c_3 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $b = c_3 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $b = c_3 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $b = c_3 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $b = c_3 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_4 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_6 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_6 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_6 \sin pat)$.
 $(d, t) = c_5 \sin pd (c_5 \cos pat + c_6 \sin pat)$.
 $(d, t) = c_5 \sin pat)$.

()

Į.

Discrimensional heat equation
Perfine one dimensional heat equation

$$\int Qefine one dimensional heat equation
\int Qu = \alpha^2 \frac{\delta^2 y^2}{\delta x^2}$$

$$\alpha^2 = \frac{k}{gc}$$

$$J = densi2ty.$$

$$k = -theomal conductivity.
$$C = specific heat capacity.$$
2)
State -fourier law ob heat condition.
The rate at which heat -follow across a area is at a
distance 'x' from one error the base is given by

$$Q = -kA \left[\frac{\delta y}{\delta x}\right] x$$

$$\left[\frac{\delta y}{\delta x}\right] a, \text{ the timperature gradient at x, and}$$

$$A = distance.$$
2)
Write down -the various possible solution of one dimensional
heat equation.

$$1) u(x,t) = [Ae^{px} + Be^{px}] e^{x^2 \cdot pt^2}$$

$$3) u(x,t) = [A cospx + Bsimpx] e^{-x^2 \cdot p^2 t^2}$$

$$3) u(x,t) = A x + B.$$
(a) In steady state condition divide abrive -the solution by one

$$\frac{\delta u}{\delta t} = x^2 \frac{\delta^2 u}{\delta x^2}.$$$$

5) The partially differentiable equation of insteady state condition, the temperature 'u' depends on the 'x' and not the time 't'. -Hence $\frac{Sy}{dt} = 0$ $\alpha^2 \frac{\int^2 u}{\int r^2} = 0.$ intigrating With respective 'x' for twice we get general solution le u=ax+b, where a, b are orbitary 6) The end A and B of a rod of length locon have their temperature kept at 20°c and -70°c find the steady state temperature distribution on the red. -A 1000 -H0°C $\mathbf{u}(\mathbf{z}) = \left(\frac{b-a}{e}\right) \mathbf{z} + \mathbf{a}$ $= \left(\frac{-70-30}{10}\right) \times + 20$ u(x) = 5x + 20procedure of one dimensional heat equation $\frac{\delta u}{\delta t} = \alpha^2 \frac{\delta^2 u}{\delta \pi^2}$ ii) steady state u(z) = (b-a) + aiii) Boundary and initial condition. u(0,+) = 0u(t,t) = 0u(x, 0) = f(z)

Ю

F) A rad of length 200m has lit ends A and B kept at
timperature 20% and 80% respectively until stady static
conditions to preval i. If the temp. at each end of rod is
then suddenly suduced at o'' and kept so that the temp.
distribution
$$u(x,t) + dx^{ln}g = 0$$
.

 $20^{ln} = 20^{ln} = 80^{ln}c$
 $A = 20^{ln} = 80^{ln}c$
when the stady state condition.

 $\frac{Su}{St} = 0$ thence,
 $d^{ln} = 0$ thence,
 $d^{ln} \frac{Su}{Sx^{2}} = 0$.

When the stady state condition is notice heat:
 $u(x) = \left[\frac{b-a}{e}\right]x + a$
 $= \left[\frac{80-30}{30}\right]x + 20$
 $u(x) = 3x + 20 \longrightarrow 8$.

When the stady and initial conditions
is $u(0,t) = 0$
 $11 > u(x,t) = f(x) = 3x + 20$.

Suitable solution.
 $u(x,t) = [A \cos px + 8 \sin px]e^{-x^{2}p^{l}t} \longrightarrow 0$.

Apply (i) boundary condition
$$u(o,t) = 0$$

put $x=0$, in $eq(0)$
 $u(0,t) = [A \cos p(0) + B \sin p(0)]e^{-\alpha^2 p 2 t}$
 $0 = Ae^{-\alpha^2 p 2 t}$
 $-A=0$ $R e^{-\alpha^2 p 2 t} \neq 0$
Substitut. $A=0$ in $eq(0)$
 $u=(x,t) = B \sin p x e^{-\alpha^2 p 2 t}$
 $u=(x,t) = B \sin p x e^{-\alpha^2 p 2 t}$
 $u(20,t) = B \sin p x e^{-\alpha^2 p 2 t}$
 $0 = B \sin 20 p e^{-\alpha^2 p 2 t}$
 $0 = B \sin 20 p e^{-\alpha^2 p 2 t}$
 $0 = B \sin 20 p e^{-\alpha^2 p 2 t}$
 $0 = B \sin 20 p e^{-\alpha^2 p 2 t}$
 $0 = B \sin 20 p e^{-\alpha^2 p 2 t}$
 $0 = B \sin 20 p e^{-\alpha^2 p 2 t}$
 $u(20,t) = B \sin n p x e^{-\alpha^2 p 2 t}$
 $u(20,t) = B \sin n p x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin p x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin p x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin p x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin p x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin p x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin p x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin p x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin p x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin p x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin^2 n x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin^2 n x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin^2 n x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin^2 n x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin^2 n x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin^2 n x e^{-\alpha^2 p 2 t}$
 $u(x,t) = B \sin^2 n x e^{-\alpha^2 p 2 t}$
 $u(x,t) = \frac{S}{2} B_n \sin^2 n x e^{-\alpha^2 p 2 t}$
 $u(x,0) = \frac{S}{2} B_n \sin^2 n x e^{-\alpha^2 p 2 t}$

Two dimension - tiext equation

$$\frac{\delta^{2}u}{\delta z^{2}} + \frac{\delta^{2}u}{\delta u^{2}} = 0$$
1) worth oil three possible solutions for two dimensional heat
equations
A) deplace equation in two dimensional
 $\forall^{2}u = 0$
i) $u(x,y) = (c_{1}e^{TL}c_{9}e^{-PX})(c_{3}cospy + c_{4}sinPy)$
ii) $u(x,y) = (c_{7}ex + c_{5}sinpx)(c_{4}e^{Py} + c_{9}e^{-Py})$
iii) $u(x,y) = (c_{7}x + c_{10})(c_{11}y + c_{12})$
3) A square plate is bounded by the lines $x=0, y=0, x=20, y=0, x=20, y=0, z=20, y=20, z=20, y=20, z=20, y=20, z=20, y=20, z=20, y=20, z=20, z=20,$

ty

The suitable solution is

$$a(x,y) = (A \cos pz + B \sin pz) (e^{py} + be^{-py}) \longrightarrow 0$$

$$-Apply(i) Boundary conditions u(0,y)=0$$
Put $x=0$, substituti eq (D

$$u(0,y) = [A \cos p(0) + B \sin p(0)] [(e^{py} + be^{-py})]$$

$$= A[(e^{py} + be^{-py}]$$

$$-A[e^{py} + be^{-py}] = (it defined + ty)$$

$$\therefore A=0$$
Substituti $A=0$ in (D, we get

$$u(x,y) = B \sin pz (ce^{py} + be^{-py}) \longrightarrow 3$$

$$-Apply(i) Boundary conditions(2), we get
$$u(20,y) = B \sin 2op (ce^{py} + be^{-py}) = 0$$

$$-tere, (e^{py} + be^{-py}) \neq 0, B \neq 0$$

$$i' \sin 2op = 0$$

$$sin 2op = sim \pi\pi$$

$$I = \frac{p = 2\pi}{20}$$
Substituti $-this eq (D, we get$

$$u(x,y) = B \sin n \pi \frac{\pi \pi}{20} (ce^{2\pi ny} + be^{-2\pi ny}) \longrightarrow 3$$

$$-Apply(in Boundary conditions in eq (B)$$

$$u(x,y) = B \sin n \pi \frac{\pi ny}{20} (c + D) = 0$$

$$-tere, sim \pi\pi \frac{\pi ny}{20} \neq 0 (c + D) = 0$$

$$-Apply(in Boundary conditions in eq (B)$$

$$u(x,y) = B \sin n \pi\pi \frac{\pi \pi}{20} (c + D) = 0$$

$$-Apply(in Boundary conditions in eq (B)$$

$$u(x,0) = B \sin n \pi\pi \frac{\pi \pi}{20} (c + D) = 0$$

$$-Here sim \pi\pi \frac{\pi \pi}{20} \neq 0 (z + D) = 0$$

$$-Here sim \pi\pi \frac{\pi \pi}{20} \neq 0 (z + D) = 0$$

$$-Here sim \pi\pi \pi x = 0$$$$

Substitute
$$D = -c$$
 in eq (3), we get:
 $u(x,y) = Bsin \frac{n\pi x}{2c} \left[ce^{\frac{n\pi y}{2c^2}} - ce^{\frac{-n\pi y}{2c^2}} \right]$
 $= Bc sin \frac{n\pi x}{2c} \left[e^{\frac{n\pi y}{2c^2}} - e^{\frac{-n\pi y}{2c^2}} \right]$
 $f = \partial Bc sin \frac{n\pi x}{2c} sin \frac{n\pi n\pi y}{2c}$
 $f = \partial Bc sin \frac{n\pi x}{2c} sin \frac{n\pi n\pi y}{2c}$
 $f = \partial Bc sin \frac{n\pi x}{2c} sin \frac{n\pi n\pi y}{2c}$
 $f = \partial Bc sin \frac{n\pi x}{2c} sin \frac{n\pi n\pi y}{2c}$
 $f = \partial Bc sin \frac{n\pi x}{2c} sin \frac{n\pi n\pi y}{2c}$
 $f = \partial Bc sin \frac{n\pi x}{2c} sin \frac{n\pi n\pi y}{2c}$
 $f = \partial Bc sin \frac{n\pi x}{2c} sin \frac{n\pi n\pi y}{2c}$
 $f = \partial Bc sin \frac{n\pi n\pi x}{2c} sin \frac{n\pi n\pi y}{2c}$
 $f = \partial Bc sin \frac{n\pi n\pi x}{2c} sin \frac{n\pi n\pi x}{2c} sin \frac{n\pi n\pi x}{2c}$
 $f = \int find c_n expand x(1-x) in a half range four for since
Series in the interval $D < x < J$
 $f = (e-x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{2} \longrightarrow (2)$
 $f = \int find c_n expand x(1-x) in a half range four for since
Series in the interval $D < x < J$
 $f = (e-x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{2} \longrightarrow (2)$
 $f = \int find c_n expand x(1-x) in a half range four for since
 $f = \int f_{n=1}^{\infty} c_n \sin \frac{n\pi x}{2} = \int f_{n=1}^{\infty} b_n \sin \frac{n\pi x}{2}$
 $f = \int f_{n=1}^{\infty} c_n \sin \frac{n\pi x}{2} dx$
 $f = \int f_{n=1}^{\infty} c_n \sin \frac{n\pi x}{2} dx$
 $f = \int f_{n=1}^{\infty} c_n \sin \frac{n\pi x}{2} dx$
 $f = \int f_{n=1}^{\infty} c_n \sin \frac{n\pi x}{2} dx$
 $f = \int f_{n=1}^{\infty} (x(1-x)) \sin \frac{n\pi x}{2} dx$
 $f = \int f_{n=1}^{\infty} (x(1-x)) \sin \frac{n\pi x}{2} dx$
 $f = \int f_{n=1}^{\infty} (x(1-x)) \sin \frac{n\pi x}{2} dx$
 $f = \int f_{n=1}^{\infty} (x(1-x)) \sin \frac{n\pi x}{2} dx$
 $f = \int f_{n=1}^{\infty} (x(1-x)) \sin \frac{n\pi x}{2} dx$
 $f = \int f_{n=1}^{\infty} (x(1-x)) \sin \frac{n\pi x}{2} dx$
 $f = \int f_{n=1}^{\infty} (x(1-x)) \sin \frac{n\pi x}{2} dx$
 $f = \int f_{n=1}^{\infty} (x(1-x)) \sin \frac{n\pi x}{2} dx$
 $f = \int f_{n=1}^{\infty} f_{n=1}^{\infty$$$$

$$= \frac{\partial}{d} \left[\left[-\frac{\partial L^{3}}{n^{3} \pi^{3}} \cos n\pi + \frac{2L^{3}}{n^{3} \pi^{3}} \right] \right]$$

$$= \frac{\partial L^{2}}{n^{3} \pi^{3}} \left[(1 - \ell_{1})^{n} \right]$$

$$b_{n} = \begin{cases} 0 \quad \text{when } n \text{ is even} \\ \frac{8L^{2}}{n^{3} \pi^{3}} \text{ when } n \text{ is } 0 \text{ dd} \end{cases}$$

$$-foom \bigoplus \text{, we get} \cdot$$

$$C_{n} = \frac{8L^{2}}{n^{3} \pi^{3} \sin \ln n\pi}$$
Substitute in (a) we get
$$u(x, y) = \sum_{n=0dd}^{\infty} \frac{8l^{2}}{n^{3} \pi^{3} \sin \ln n\pi} = \frac{\sin n\pi y}{2} \sin \frac{\sin n\pi y}{2}$$

$$Replace \ L \ by \ 20 \ \text{, we get} = \frac{3200}{20} = \frac{\sin n\pi y}{20} = \frac{3200}{20} = \frac{1}{20} = \frac{3}{20} = \frac$$

5.)

<u>SI.NO</u>	Roll. No	Marks (50)	Is Absent
1	U21CE001	32	NO
2	U21CE002	36	NO
3	U21CE003	32	NO
4	U21CE004	35	NO
5	U21CE005	33	NO
6	U21CE006	33	NO
7	U21CE008	39	NO
8	U21CE009	39	NO
9	U21CE010	35	NO
10	U21CE011	34	NO
11	U21CE013	37	NO
12	U21CE014	34	NO
13	U21CE016	35	NO
14	U21CE018	34	NO
15	U21CE020	34	NO
16	U21CE021	32	NO
17	U21CE022	33	NO
18	U21CE023	32	NO
19	U21CE024	32	NO
20	U21CE025	35	NO
21	U21CE701	37	NO
22	U21CE702	32	NO
23	U21CE703	39	NO
24	U21CE704	32	NO
25	U21CE705	32	NO
26	U21CE706	33	NO
27	U21CE707	38	NO
28	U21CE708	32	NO

BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH B.TECH, II YEAR - 2022 - 2023 (SEM - III) INTERNAL MARKS - CONSOLIDATED MARK STATEMENT U20MABT03 - TRANSFORMS & BOUNDARY VALUE PROBLEMS - CIVIL

ð.

Name of Students	CLA - I	CLA - II	CLA - III
BANDARU BRAHMENDRA	28	30	26
GARAGA LAKSHMI SHANKAR	25	30	39
GIRIDHARAN P	31	26	27
LENISH ADHIKARIMAYUM	36	29	30
MOHAMMAD AZEEM	30	28	30
NALLURI PREM KUMAR	29	28	30
PARTHA MOIRANGTHEM	35	35	38
POLNATI JAGADEESH	36	35	37
SUHAIL RAHMAN M	31	32	30
UCHAVIVID OINAM	26	33	29
ALAKUNTA VAMSHI	30	36	35
B HARISH RAGAVENDRAN	30	28	31
DHANARAJ SAPAM	36	29	30
DEONALD YENGKOKPAM	26	31	32
MEDEMPONG PONGEN B	30	27	32
NUNGSHIWATI.K JAMIR	28	25	28
TEISONEISE SACHU	27	29	29
RAJ BABU RAY	30	25	28
NAVEEN KUMBAM	30	26	27
MAMIDISETTI SHANMUKA BRAHMA	31	30	33
V.BALAJI	36	35	32
BANOTH NIRANJANLAL	26	26	30
JERMY N LYNDDOH	36	35	37
MOHAMMED SHOIAB	30	26	28
NZANTHUNG SHITIRI	34	25	25
OKUTO G JIMO	35	27	26
R.RAHANMOHAMED	35	40	30
TAMIL SELVAN P A	26	25	30

CLA - I	CLA - II	CLA - III	CLA - IV
6	9	8	10
5	9	12	10
6	8	8	10
7	9	9	10
6	8	9	10
6	8	9	10
7	11	11	10
7	11	11	10
6	10	9	10
5	10	9	10
6	11	11	10
6	8	9	10
7	9	9	10
5	9	10	10
6	8	10	10
6	8	8	10
5	9	9	10
6	8	8	10
6	8	8	10
6	9	10	10
7	11	10	10
5	8	9	10
7	11	11	10
6	8	8	10
7	8	8	10
7	8	8	10
7	12	9	10
5	8	9	10

		 3

INFORMATION TECHNOLOGY

INFORMATION TECHNOLOGY

CONTINUOUS LEARNING ASSESSMENT - I

U20MABT03- TRANSFORMS AND BOUNDARY VALUE PROBLEMS

Date	: 24.01.2022
Academic Year / Semester	: 2021-2022 / ODD
Duration	: 1.5 Hours (90 minutes)
Instructions	: Descriptive Type Questions

Q. No	Questions	Weighta ge	CO	Bloom's
	PART A (6x2=12 Marks)	0.		
1	Define Fourier Series.	2	COI	U
2	Define Dirichlet's condition.	2	CO1	U
3	Define Periodic Function.	2	CO1	
4	Find a_0 for the function $f(x) = \pi - x$ in $0 \le x \le \pi$	2	CO1	U
5	Write down the formula for the Fourier series in $(0,2l)$	2	CO1	U
6	Write down the Bernoulli's formula.	2	CO1	U
7	PART B (3x6=18 Marks)			
/	 (a) Find the Fourier series for f(x) = 2x - x² in 0 < x < 2 (OR) (b) Find the Fourier sine series for f(x) = x in 0 < x < l. Show that 	6	- CO1	U
	$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$			
8	(a) Obtain half range cosine series for $f(x) = x^2$ in $(0, \pi)$ (OR)	6	CO1	U
	(b) Find the Fourier series for the function $f(x) = \begin{cases} kx, & 0 < x < l \\ 0, & l < x < 2l \end{cases}$			
9	(a) Find the Fourier series of $f(x) = x$ in $(0, l)$	6	CO1	U
	(OR)			
	(b) Find the Fourier series for $f(x) = x^3$ in $(-\pi, \pi)$			
10	PART C (2x10=20 Marks)			
10	(a) Obtain the Fourier series for the function $f(x) = \begin{cases} -x, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$	10	CO1	U
	and hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$			
	(b) Find the first two harmonic of the Fourier series of $f(x)$ given by the			
	following table			
- 72	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	f(x) 1.0 1.4 1.9 1.7 1.5 1.2 1			
1	(a) Find the Fourier series for $f(x) = x + x^2$ in $-\pi < x < \pi$. Hence show	10	COI	U
	that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$			Ũ
	(OR) (b) Find the half range cosine series for $f(x) = x$ in $(0, \pi)$. Deduce that $\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{2} = \frac{\pi^4}{2}$			
	$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots = \frac{\pi^4}{96}$			

Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Computer Science and Engineering

CO	Weightage
CO1	50
CO2	
CO3	
CO4	
CO5	
Total	50

Prepared by	Staff Name Dr. S. Anusuya, AP/MATHEMATICS	Signature
Verified by	HoD	Signature

ANSWERS

- Fourier services Let f(a) be a periodic -function define on (-71,7) 1. fourier sories of for is defined by $f(x) = \frac{q_0}{2} + \sum_{n=1}^{\infty} q_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$ Mhue ao = I J f (x) dr $a_n = \frac{1}{\pi} \int f(x) \cos nx dx$, $b_n = \frac{1}{\pi} \int f(x) \sin nx dx$. 2. Dirichlet's Condition :-(b) If f(x) is defined and single valued except possibly at a finite number of points in (0125) (on (-MIR). 3. Define posidic function :-Let f(x) be a real valued function and if there exist a least positive constrome I such that f(21+T) = f(2). Then f(n) is said to be possiblic function with possid T. 4. Find an for the function f(x)= T-x in OSXET Any TA/2 5. $f(x) = \frac{q_0}{2} + \frac{q_0}{n=1} q_n \cos n\pi x + \frac{q_0}{2} b_n \sin n\pi x$ 6. $\int u dx = u x - u^{1} y_{1} + u^{1} y_{2} - u^{1} y_{3} + \cdots$ part -B 7. a) l=1, $a_0 = 4/3$, $a_n = \frac{-4}{2\pi^2}$, $b_n = 0$ $f(\chi) = \frac{2}{3} - \frac{4}{-2} = \frac{2}{n-1} - \frac{1}{n^2} \cos(\pi \chi)$ b) f(x) = x, $a_0 = 0$, $a_n = 0$, $b_n = \frac{-2}{n\pi} \lambda (-1)^n$ $f(x) = -21 = (-1)^2 + (-1)^2$
 - By powerval's ordentity, $\frac{1}{2}\int_{0}^{2}f(x)^{2} dx = \frac{q_{0}^{2}}{4} + \frac{1}{2}\sum_{n=1}^{2}\left(a_{n}^{2} + b_{n}^{2}\right)$

$$\begin{split} \hat{h}_{0} = 0, \quad \hat{a}_{n} = 0, \quad h_{n} = -\frac{2}{PR} + (-1)^{n} \\ \frac{1}{R}^{2} = \sum_{n=1}^{\infty} \frac{1}{n^{2}}, \\ \hat{e}_{n} = \frac{2\pi^{2}}{R}, \quad \hat{a}_{n} = \frac{4(-1)^{n}}{n^{2}} \\ \hat{e}_{n} = \frac{2\pi^{2}}{R}, \quad \hat{a}_{n} = \frac{4(-1)^{n}}{n^{2}} \\ \hat{e}_{n} = \frac{\pi^{2}}{R}, \quad \hat{a}_{n} = \frac{4(-1)^{n}}{n^{2}} \\ \hat{e}_{n} = \frac{\pi^{2}}{R}, \quad \hat{a}_{n} = \frac{4(-1)^{n}}{n^{2}} \\ \hat{e}_{n} = \frac{\pi^{2}}{R}, \quad \hat{a}_{n} = \frac{\pi^{2}}{R} + \frac{(-1)^{n}}{n^{2}} \\ \hat{e}_{n} = \frac{\pi^{2}}{R}, \quad \hat{e}_{n} = \frac{\pi^{2}}{R^{2}} \\ \hat{e}_{n} = \frac{\pi^{2}}{R}, \quad \hat{e}_{n} = \frac{\pi^{2}}{R} \\ \hat{e}_{n} = \frac{2}{R} \\ \hat{e}_{n} = \frac{2}{R} \\ \hat{e}_{n} = \frac{\pi^{2}}{R} \\ \hat{e}_{n} = \frac{\pi^$$

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Computer Science and Engineering

CONTINUOUS LEARNING ASSESSMENT - II

U20MABT03- TRANSFORMS AND BOUNDARY VALUE PROBLEMS

Date	:22.02.2022
Academic Year / Semester	: 2021-2022/ODD
Duration	:1.5 Hours (90 minutes)
Instructions	Descriptive Type Quest

Questions

6	Questions			
	Questions	Weighta ge	CO	Bloom's Level
	PART A (6x2=12 Marks)	50		Level
	1 Form the Partial differential equation by eliminating the arbitrary constants	2	CO2	U
_	from $z = (x^2 + a)(y^2 + b)$		002	
	2 Solve $p+q=z$	2	CO2	U
1	³ Solve $(D^3 - 3DD'^2 + 2D'^3)z = 0$	2	CO2	U
	Classify the Partial differential equation $\frac{\partial^2 z}{\partial x^2} - 4 \frac{\partial^2 z}{\partial x \partial y} + 4 \frac{\partial^2 z}{\partial y^2} = 0$	2	CO3	U
-	5 Write the possible solutions of one dimensional wave equation	2	CO3	D
	Write down the one dimensional wave equation and explain the constant a^2 .	2	CO3	R R
	PART B (3x6=18 Marks)		005	<u>к</u>
1	(a) Solve $z = px + qy + p^2 - q^2$	6	CO2	A
	(OR)		002	7 1
	(b) Write the general integral of $pyz + qzx = xy$			
8	(a) Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$	6	CO2	А
	(b) Solve $(mz - ny)p + (nx - lz)q = (ly - mx)$			
9	(a) It tightly stretched string with fixed end points $x = 0$ and $x = 1$ is initially	6	CO3	A
	in a position given by $y(x,0) = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. If it is released from rest from this			
	position. Find the displacement $y(x,t)$ at any distance x from one end at any time t.			
	(OR)			
k -	(b) A rod of length l with insulated sides is initially at a uniform temperature			
-	u_0 . Its ends are kept at 0°C and kept so. Find the temperature distribution.			
10	PART C (2x10=20 Marks)			
	(a) (i) Solve $(D^4 - D'^4)z = 0$	10	CO2	A
	(ii) Solve $(D^2 - DD' - 2D'^2)z = 2x + 3y + e^{3x+4y}$			
	(OR)			
	(b) (i) Solve $(D^2 + 2DD' + D'^2)z = e^{x-y}$			
	(ii) Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} = \cos 2x \cos y$			
11	(a) A string is stretched and fastened to two points $x = 0$ and $x = l$ apart.	10	CO3	A
	Motion is started by displacing the string into the form $y = k(lx - x^2)$ from			
	which it is released at time $t = 0$. Find the displacement of any point on the string at a distance of x from one end at time t			
	(OR) (b)The ends A and B of a rod 30cm long have their temperature kept at $20^{\circ}C$ and $80^{\circ}C$ until steady state condition prevails. The temperature at the end B is then suddenly reduced to $60^{\circ}C$ and that of A is raised to $40^{\circ}C$ and maintained so Find that			
Dha	maintained so. Find the temperature distribution.			

Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Computer Science and Engineering

Prepared by	Staff Name Dr. S. Anusuya, AP/MATHEMATICS	Signature
Verified by	HoD	Signature

Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

ANSWER KEY

$$\frac{1}{2} P_{4} = \frac{1}{2} P_{2}$$

$$\frac{1}{2} P_{4} = \frac{1}{2} P_{2}$$

$$\frac{1}{2} (1+\alpha) \log z^{2} = \pi + \alpha y + b \quad \text{w} \quad \text{complete Solution}$$

$$\frac{2}{5} = \frac{1}{5} (1+\alpha) + 2 \int_{2} (1+\alpha) + \frac{1}{5} (1+\alpha) + \frac{1}{5} (1+\alpha)$$

$$\frac{1}{5} = \frac{1}{5} (1+\alpha) + 2 \int_{2} (1+\alpha) + \frac{1}{5} (1+\alpha)$$

$$\frac{1}{5} = \frac{1}{5} (1+\alpha) + 2 \int_{2} (1+\alpha) + \frac{1}{5} (1+\alpha)$$

$$\frac{1}{5} = \frac{1}{5} (1+\alpha) + 2 \int_{2} (1+\alpha) + \frac{1}{5} (1+\alpha)$$

$$\frac{1}{5} = \frac{1}{5} \frac{1}{5} (1+\alpha) + \frac{1}{5} (1+\alpha) + \frac{1}{5} (1+\alpha)$$

$$\frac{1}{5} = \frac{1}{5} \frac{1}$$

 $iii) Z = f_1(y+2x) + f_2(y-2) + 5x^3 + 3x^2y - 4e^{-3x^2}$

b) $\dot{u} f_1(y-x) + x f_2(y-x) + \frac{x^2}{2} e^{x-y}$

Cij $f_1(y) + f_2(y-x) - \frac{1}{2} \cos(2x+y) - \frac{1}{4} \cos(2x-y)$

 $(x,t) = \frac{8K^{2}}{\pi^{3}} = \frac{1}{n^{-1}} \frac{1}{3n} \frac{1}{n^{3}} \frac{1}{2} \frac{1}{n^{-1}} \frac{1}{n^{-1}}$ 11

b)
$$u(x_1t) = \left(\frac{2}{3}x + 40\right) + \frac{2}{h^2} - \frac{80}{h^2} = \frac{-80}{100}$$

SOD

an an the state of the first first the state and the second

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY Department of Computer Science and Engineering

CONTINUOUS LEARNING ASSESSMENT - III

U20MABT03- TRANSFORMS AND BOUNDARY VALUE PROBLEMS

Date	: 07.03.2022
Academic Year / Semester	: 2021-2022/ODD
Duration	: 1.5 Hours (90 minutes)
Instructions	: Descriptive Type Questions

О. Questions Weight CO Bloom's No age Level PART A (6x2=12 Marks) 1 Prove that $F[f(x-a)] = e^{ias}F(s)$ 2 CO₄ U Define Fourier integral theorem 2 2 CO4 R 3 Define Parseval's identity for Fourier transform 2 CO4 R 4 Find Z(n)2 CO5 U 5 2 Find $Z\left(\cos\frac{n\pi}{2}\right)$ CO5 U State and prove initial value theorem 6 2 CO5 R PART B (3x6=18 Marks) (a) Find the Fourier transform of $f(x) = \begin{cases} 1, & \text{for } |x| < 1 \\ 0, & \text{otherwise} \end{cases}$ 7 6 CO4 A Hence prove that $\int_{-\infty}^{\infty} \left(\frac{\sin x}{x}\right)^2 dx = \frac{\pi}{2}$ (OR) (b) Show that the function $e^{\frac{-x^2}{2}}$ is self-reciprocal under Fourier transform. 8 (a) Find Fourier sine and cosine transform of xe^{-ax} 6 CO4, А (OR)CO5 (b) Find $Z(r'' \cos n\theta)$ and $Z(r'' \sin n\theta)$ also find $Z(\cos n\theta)$ and $Z(\sin n\theta)$ (a) Find $Z^{-1}\left(\frac{z^3 - 20z}{(z-3)^3(z-4)}\right)$ by Partial fraction method.(OR) 9 6 CO5 A (b) Find $Z^{-1}\left(\frac{z^2-2z}{(z-1)^2(z-3)}\right)$ by Residue method. PART C (2x10=20 Marks) 10 (a) Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, & \text{in } |x| \le 1 \\ 0, & \text{in } |x| > 1 \end{cases}$ Hence prove that 10 CO4 А (i) $\int_{-\infty}^{\infty} \left(\frac{\sin s - s\cos s}{s^3}\right) \cos \frac{s}{2} ds = \frac{3\pi}{16}$, (ii) $\int_{-\infty}^{\infty} \left(\frac{\sin s - s\cos s}{s^3}\right)^2 ds = \frac{\pi}{15}$ (OR) (b) Find $F_x(e^{-\alpha x}) \& F_c(e^{-\alpha x})$ and hence deduce that (i) $\int_{0}^{\infty} \frac{x^2 dx}{(x^2 + a^2)^2}$ (ii) $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)^2} a > 0$ 11 (a) (i) Using convolution theorem find $Z^{-1}\left(\frac{8z^2}{(2z-1)(4z+1)}\right)$ 10 CO5 A (ii) Using Partial fraction method $Z^{-1}\left(\frac{z(z+1)}{(z-1)^3}\right)$ (OR) (b)Solve $y_{n+2} + 4y_{n+1} + 3y_n = 2^n$ with $y_0 = 0, y_1 = 1$ using Z - transform

Bharath Institute Of Higher Education and Research (BIHER)

IQAC/ACAD/008

Prepared by	Staff Name Dr. S. Anusuya, AP/MATHEMATICS	Signature
Verified by	HOD	Signature

Bharath Institute Of Higher Education and Research (BIHER)

Answer key CLA-3
PART. A
Poissevals Integral Theorem:
f(x) =
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{ixx} dx$$

f(x) = $\frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) \cos \lambda(t-x) dx d\lambda$
Possevals Identity
 $\int_{-\infty}^{\infty} 1f(x) 1^{2} dx = \int_{-\infty}^{\infty} 1F(x) 1^{2} ds$
A) $z(n) = \frac{z}{(z-1)^{2}}$ ($\cos n\pi$) = $\frac{z^{2}}{z^{2}+1}$
b) Initial Value Theorem
 $z Ef(n) = F(z) - Hean \lim_{z \to \infty} F(z) = f(0) = \lim_{t \to 0} f(t)$
PART-B
T) a) $F(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{isx} f(x) dx$, $F(s) = \frac{sins}{s}$
 $\int_{-\infty}^{\infty} [F(s)]^{2} ds = \int_{-\infty}^{\infty} 1f(x) 1^{2} dx$
b) $f(x) = e^{-x^{2}/2}$, $F Ef(x) 1^{2} dx$
 $\int_{-\infty}^{\infty} e^{y^{2}} dy = [T_{2}]$
8) a) $F_{\alpha} [x_{1}(x)] = \frac{d}{ds} [F_{\alpha} (f(x))]$
 $F_{2} [xe^{-\alpha n}] = \sqrt{2\pi} [\frac{a^{2} \cos^{2}}{(a^{2}+a^{2})^{2}}]$
b) $z(\cos ns) = \frac{z}{(z - \cos s)}$
 $z^{2} - az\cos s + 1$

$$Z [r^{h} cosno] = Z (z - r coso)$$

$$Z [r^{h} cosno] = \frac{r z (z - r coso)}{z^{2} - 2r z coso + r^{2}}$$

$$Z [r^{h} sinno] = \frac{r z since}{z^{2} - 2r z coso + r^{2}}$$

$$(a) a) Z^{-1} \left(\frac{z^{3} - 20z}{(z - 3)^{3}(z - 4)} \right) = \frac{1}{2} (2^{h} + 2n^{2}n^{h} - 4^{h}).$$

$$b) Z^{-1} \left(\frac{z^{2} - 2z}{(z - 0)^{3}(z - 3)} \right) =$$

$$lo) a) f(x) = \begin{cases} 1 - x^{2} |x| \le 1 \\ 0 |x| \ge 1 \end{cases}, \int_{0}^{a} \frac{dx}{(x^{2} + a^{2})^{2}} = \frac{T}{4a} \qquad \text{fin} \int_{0}^{a} \frac{dx}{(x^{2} + a^{2})^{2}} = \frac{T}{4a^{3}}$$

$$l) a) (i) Z^{-1} \left(\frac{8z^{2}}{(2z - 1)(4z + 1)} \right) = \left(\frac{1}{2}\right)^{h} \left[1 + \left(\frac{1}{2}\right)^{h} + \left(\frac{-1}{2}\right)^{h} \right]$$

$$(ii) Z^{-1} \left(\frac{z (z + 1)}{(z - D^{3})} \right) = h(1)^{h-1} + n(n-1)(1)^{n-2}$$

$$b) Y_{h} = \frac{2^{h}}{15} + \frac{1}{3}(-1)^{h} + \frac{2}{5}(-3)^{h}, n \ge 0$$

Transforms and Boundary value Problems:
(U20MABGT03).
e1A-J.
Ward of the problems:
(U20MABGT03).
e1A-J.
Ward of the problems:
(U20MABGT03).
e1A-J.
Partially differentiating with respect to 'x'

$$\frac{d2}{dx} = 22(y^2+b)$$

P= $2x(y^2+b) \Rightarrow y^2+b = \frac{p}{2x} = 0.$
P Bastially differentiating with respect to 'x'
 $\frac{d2}{dy} = (x^2+a) \cdot 2y.$
P= $(x^2+a) \cdot 2y.$
Substituting (D, (D) in (C), we get
 $3 = \frac{p}{3x} + \frac{2}{2y}$
P(3 = 4xy)?
P(3 = 4xy)?
P(3 = 4xy)?
P= $\frac{d3}{dx} = 2$
(diven,
P+9 = 2:
this equation of bosin $f(2, p, q) = 0.$
let, $u_2 = x + \frac{dy}{du}$
 $\frac{d3}{du} = 4 \frac{d3}{du} = 2$
 $\frac{d3}{du} (1+a) = 2 = 0$ (1+a) $\frac{d3}{2} = du.$

Interpret ing, we get
(1+a)
$$\int \frac{dx}{dx_3} = \int du$$

(1+a) $\log x = u+b$
(1+a) $\log x = x + ay + b$.
(3) $(D^2 - 3bD^2 + 2D^3) x = 0$, surplating,
(D^2 - 3bD^2 + 2D^3) x = 0, surplating,
(1+a) $\log x = x + ay + b$.
(3) $(D^2 - 3bD^2 + 2D^3) x = 0$, surplating,
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1+a) $\log x = x + ay + b$.
(1

5) The possible solutions of one dimensional wave equation, axe y(x,t) = (c,e+c2epx)(c3epat + C4epat) The Y(x,t) = (c1cospx + c2sinpx)(c3cospat + (4sinpa g(2,t)= (C1x+(2)(C3t+(4)) ,6, one-dimensional wave eqn: one dimensional wave egn is d'y a d'dy nere, a= I where 'T' is Tension & 'm' is mass.

7, 10) Oveneral dorm of pysignering Gliven Py + 92x = xy. The given eqn is of the deim Pp+ \$q = R-0. P= 42, 9= 7x, R= 24. The subsidary eqn is $\frac{dx}{p} = \frac{dy}{0} \cdot \frac{dy}{10} = \frac{dy}{10}$ dx = dy = dz = dz = 3. consider the pair. dx 2 dy 2) xdx 2 ydy Sxdx = Sydy =) $\frac{\pi^2}{2} = \frac{y^2}{2} + c_r$ C1 = x2 - 42 consider the pais: $\frac{dy}{\exists x} = \frac{d^2}{xy} = \frac{d^2}{y} = \frac{d^2}{y}$ Sydy = 52d z. $\frac{y^2}{2} = \frac{3^2}{2} + C_2$ C22 4222 $Q(x^2y^2, y^2y^2) = 0.$

(8), a, given,

 $\chi(y^2 - 3^2) + \chi(3^2 - \chi^2) q_2 = \chi(\chi^2 - y^2)$

This is in doim of

Pp + 99 2 R.

Here, $p: \chi(y^2 + y^2)$, $Q= Y(y^2 - \chi^2)$, $R= \frac{1}{2} + \frac{1}{2}$

The Substitung equis are

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dx}{R}$$

 $\frac{dx}{x(y^2,z^2)} = \frac{dy}{y(z^2,z^2)} = \frac{d^2}{z(x^2-y^2)}$

2

Each matio =
$$\frac{x \, dx + y \, dy + 2 \, d2}{r^2 (y^2 + z^2) + y^2 (y^2 - x^2) + y^2 (x^2 - y^2)}$$

=) xdx + ydy + 2d2 20. Integrating on b.s: fxdx+ jydy+ jid = sob. $\frac{1}{2}\frac{\chi^2}{2} + \frac{y^2}{2} + \frac{z^2}{2} + \frac{z^2}{2} + \frac{y^2}{2} + \frac{z^2}{2} + \frac{y^2}{2} + \frac{y^2}{2}$

Each ratio = $\frac{dx[m + dy[y + dz]_2}{y^2 - z^2 + z^2 - y^2}$ ($\frac{1}{2}$ Hy $\frac{1}{2}$) $\frac{dx}{x} + \frac{dy}{y} + \frac{dy}{y} \ge 0. \qquad \frac{\frac{1}{x} \cdot dx}{\frac{1}{x} \cdot \frac{dy}{y} = \frac{1}{x} \cdot \frac{dy}{y}}$ integrating on b.s. $\log x + \log y + \log z = \log c_1 = \frac{1}{3} \cdot 2(x^2 + y)$

$$\begin{aligned} \lambda(y) &= (\Delta (u_{0,1}), \\ & (\lambda_{1}^{2} + V_{1}^{2})_{1} + V_{1}^{2} + x_{1}^{2} \lambda) = 0, \quad \text{of forms, items } \\ \lambda(x_{1}^{2} + V_{1}^{2})_{1} + V_{2}^{2} + x_{1}^{2} \lambda) = 0, \quad \text{of forms, items } \\ \lambda(x_{1}^{2} + V_{1}^{2})_{2} + V_{2}^{2} + x_{1}^{2} \lambda) = 0, \\ \lambda(x_{1}^{2} + V_{1}^{2})_{2} + V_{2}^{2} + x_{1}^{2} \lambda) = 0, \quad \text{of forms, items } \\ \lambda(y) &= \lambda^{2} + \lambda^$$

many condenants to me pe () y (0, r) . 0 · Date XxC M (A) Stort) . (accespion + asin plo)) (ca company + (C. coro + cosino) (compath Custopan D = Ci (Catospat + cusinpat) Messe [Guospat + Lusinpat] +0 : we get (coo) sub grow m (), we get y(x,t) = cosinpx(cocospat + cusiopat). 4(1,1)=0 - put xal in @ g(1,t) = casinpl (cacospat + cusinpat) =: Neve, [cacospat + cusinpat] #0 etting t200 or Stopl 20 Suppose we take (2=0 4 albrady 1 and C120. then we get a Drivial Solution : we consider c2 to 3 Sinpl = 0 P.S=no P2 m/1

p.
$$f = \frac{1}{2} \left(p \cdot p_{1} + p_{1} \right)$$

p. $f = \frac{1}{2} \left(p \cdot p_{1} + p_{1} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p_{1} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p_{1} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p_{1} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{1} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} + p \cdot p_{2} \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} \right) \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} \right) \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} \right) \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} \right) \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} \right) \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p_{2} - p \right)$
 $f = \frac{1}{2} \left(p \cdot p$

27-

(1)

,10, Guven, ,6, (1) Auxiliary eqn is m+2m+120. (m+1) = 0 = m= -1, +1. (equal suit: C.F = fi(4-x) + x f2(4-x). $P.f = \frac{1}{(p+p_1)^2} e^{\pi - y}$ = - x1 . ex-y $\left[using \frac{1}{(bp-on')^2} \times F(ax+by) = \frac{x^2}{b20!} F(ax+by) \right]$ Here az-1, b=1, n=2. . complete solution is 7= C.F + P3 7 FI(Y-X) + x Po. (y-x). 7. 01-4 (ii) $\frac{\partial^2 + \partial^2}{\partial x^2} + \frac{\partial^2 + \partial^2}{\partial x \partial y} = \cos 2 x \cos y$ the given eqn can be whitten as $(D^{2} + DD') = \frac{1}{2} [\cos(3x + y) + \cos(3x + y)]$ Auxiliary ogn is mit m=0 Replace m(m+1) > 0D-) n D-) 1 m=0,-1. C. F = f, (y+ox)+f= (y-x).

$$\begin{aligned} y(x,t) + y(x,t) +$$

$$e_{+} (2517) \lambda^{+} (c_{A} cost \lambda + (11517) \lambda^{+})$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

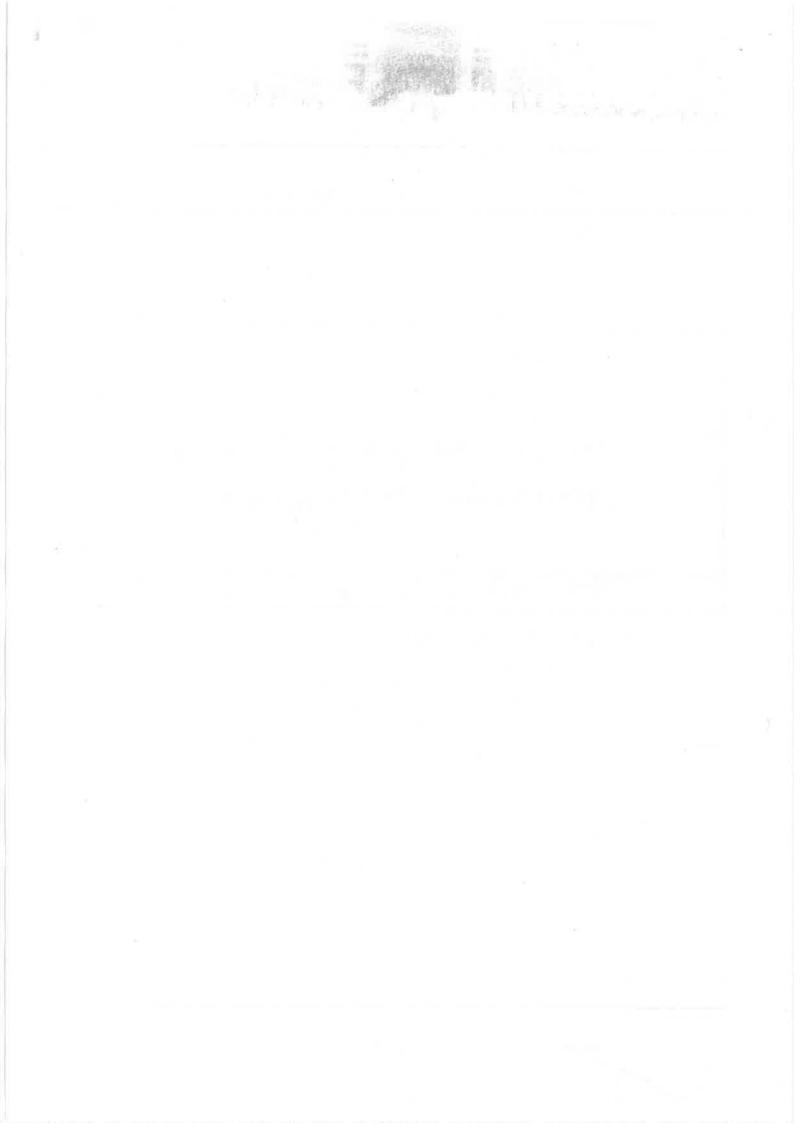
$$\frac{\lambda}{2} (c_{A} cost \lambda + (11517) \lambda^{+} + 0)$$

$$\frac{\lambda}{2} (c_{$$

1 televie

and the second second

۰.



$$\begin{split} \varphi(x, 0) &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x \cos \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ \text{To dind cn:} \\ \text{Expand k (0x - x^{2}) in a hall starge downly, setters in the interiod (0, e). \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha} (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) + (n \sin \frac{\pi n}{2} x) \\ &= \int_{\alpha}^{\alpha}$$

The

10

vices:

1.R

0

 $= \frac{2\pi}{e} \left[\frac{e^{n}}{e^{2} \eta^{2}} \right] \right] \right] \right]$ Cn = -(1 = C) (1 = (1 = (1 = 1)) Chi 2 BKP when 'n' a cien Rubstituting on so en $\frac{y(n, 1)}{p_{1,3,5}} = \frac{\frac{p_{3,K}}{p_{3,7,3}} \frac{p_{3,K}}{p_{3,7,3}} \frac{p_{3,K}}{p_{3,7,3}} \frac{p_{3,7,7}}{p_{3,7,7}} \frac{p_{3,7,7}}{p_{3,7,7}}} \frac{p_{3,7,7}}{p_{3,7,7}} \frac{p_{3,$ $\frac{2}{n^2} \frac{2}{n^2} \frac{1}{n^2} \frac{1}$ M pounting LODGER1052

P. Dhave Maths-3 1. Define downion Perice. The Jourier Series dou danction dess in the interval CZ SC 202 20 is given by dex) = ao + 2 an Coshy + E bn Sinna where au = I S J coe) doc ans 1. Star cosnada bn: 1 Peter Simadre 2. Dirichlet Conditions:. Suppose that * fixed is defined and Single valued Possible at a dinite no. of Points in (- J, J) * dear is Pariadic with Pariad 255

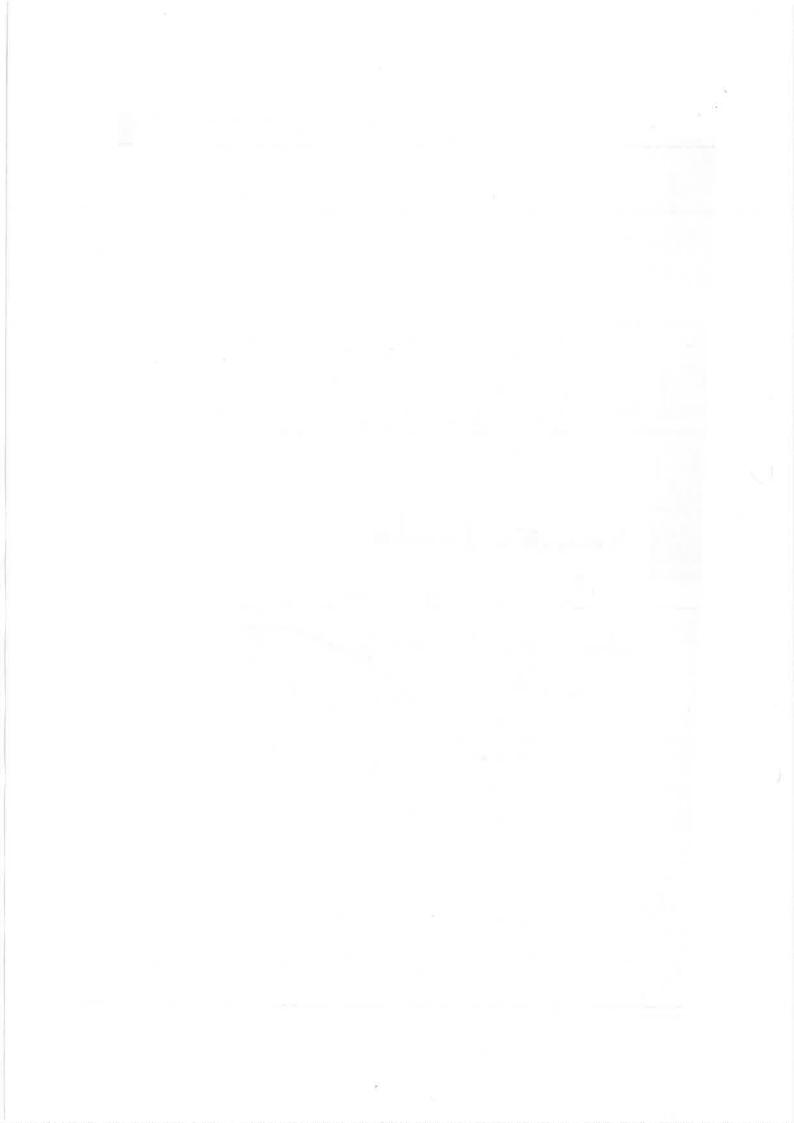
U2005238 Then he fourier Series Converges (a) Jesus if se is a point of Continund's (b) J (x+0) + J (x-0) if x is a Point of dis Continuity. 3. Periodic Junction :-A dunction dood is Said to have a period T if for all sc, f(xet) = J(x), where value of T >0 is Called he period of deal lg flace = Sin ac = Sin (act 200) = Sin (act Therefore du function has perieds 25, 45, 65, etc however, 200 is the leader value und 200 is the poriod of flow). May Cosx is a 1 L parial 200 curd

U2006230 $d(\infty) = A - \alpha \text{ in } 0 \leq \alpha \leq \chi$ 4. given: fox) = Trac O E XET ao= 1 Stexes de = if Ster-seda $\frac{1}{A} \left\{ \frac{1}{2} - \frac{1}{2} \right\}_{0}^{A}$ $=\frac{1}{\pi}\left(0+\frac{\lambda^2}{2}\right)$ $\frac{1}{A}\left(\frac{K_2}{2}\right)$ $\frac{2}{2}\frac{A^{2}}{2}$ = $\frac{3}{2}\sqrt{2}$ (a02 T/2) 5. donnala dou le domion Sories incom The doorier Services d(x) in(0,20) Jese) = ao + de an Cosintie + Shr

(i) f must be absolutely megrable over a penod (ii) I must be of bounded Mariation is any given bounded interval. P. ste number of

tanse has period realmo Scanned by TapScanner

U20CB2BR $ao = \frac{1}{2} \int_{-\infty}^{\infty} d\cos d\sigma e$ an= 1 Sol (x) cos nax doc - bn= 1 St Jean Sin naz da 6. () bernoullis formalie Souda = UU, - UU2 + U'U2 - ... where I and I are function of a U1=Juda ul= du Jx $u'' = \frac{d^2u}{dx^2}$ $v_2 = \int v_1 dx$ VIII = d2 V3= Suzda bi The Sine Sories of fred in Co, Isis fox) = Z bn Sim notoc To find for bn = 2 P d cred Sin MJDe doc



To divide a of -

$$a_{0} = \frac{2}{2\pi} \int_{0}^{4} (u_{2}) dx$$

$$= \frac{2}{2\pi} \int_{0}^{\pi} (u_{2}) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} (u_{2}) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \frac{2}{3} \int_{0}^{3\pi} \frac{1}{3}$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \frac{2}{3} \int_{0}^{3\pi} \frac{1}{3}$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{3} = 0$$
To divid and

$$a_{1} = \frac{2}{\pi} \int_{0}^{3\pi} \frac{1}{3} \int_{0}^{3\pi} (u_{2}) \log \ln x dx$$

$$a_{1} = \frac{2}{\pi} \int_{0}^{3\pi} \int_{0}^{3\pi} (u_{2}) \log \ln x dx$$

$$a_{1} = \frac{2}{\pi} \int_{0}^{3\pi} \frac{1}{3} \int_{0}^{3\pi} (u_{2}) \log \ln x dx$$

$$a_{2} = \frac{2}{\pi} \int_{0}^{3\pi} \frac{1}{3} \int_{0}^{3\pi} \frac$$

an = 4 (-13) (- 3) Cracs238 Som can(0, @, 3) we get The vectoried fouries forcies is $\frac{J(x) = 2x^{2}}{3x^{2}} + \frac{2}{3}\frac{4}{n^{2}} \left(-1\right)^{n} \left(\cos nx\right)$ $\frac{J(x) = x^{2}}{3} + 4x^{2} \left(-1\right)^{n} \left(\cos nx\right)$ $\frac{J(x) = x^{2}}{3} + 4x^{2} \left(-1\right)^{n} \left(\cos nx\right)$ $\frac{1}{3} + 4\frac{2}{5} + 4\frac{2}{5} + \frac{1}{5} + \frac{$ To dind as: $a_{0} = \frac{1}{2} \int \int dx dx$ = _ j se dre $\frac{2}{1} \left[\frac{3e^2}{2} \right] d$ $\frac{1}{d} - \frac{l^2}{2}$ a0= 42 -> 0

U2005233 0. 6. step 1. Re fourier bries given by $f(x) = \frac{a_0}{2} + \frac{a_0}{2}$ an f(x) = ->0step 2' To find ac ao = 2 / fox) doc = 2 for sizedac = 25 (-22)35 = 2/5 [3/ E CA CE Steps :: To find an an= 2/5 Jez scosnada = 2/5 Ja cosnada

y = 1 2 62 02005238 2 j[d(x)]]lx= 24, l2 2][d(x)]]lx= 24, l2 m2, r2 (-1) 2m12 2 Jacoba - Elile Vi2. $\frac{2}{2}\left[\frac{1}{3}\right]_{0}^{2} = \frac{1}{2}\left[\frac{1}{1}+\frac{1}{2^{2}}+\frac{1}{2}\right]_{0}^{2}$ $\frac{x^{2}}{3} \times \frac{D^{2}}{4x^{2}} = \frac{1}{1} + \frac{1}{2^{2}} + \frac{1}{3^{2}} +$ $\frac{3}{6} = \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{3^2}$ Re half vange lasine Sories Sanction for is give by den = ao i & an Cosni - O To dind ac: au 2 1 (x) doc

To find by Crocs238 En=1 / Jac Sinnst. x $= \frac{1}{1} \int \int \int \int \frac{1}{100} \left(\frac{1}{100} \int \frac{1}{100}$ = 1 (i (cosino)) = 1/2 . 22 Crjn [bn= 1 (-1)m/-> () Subtrate D. O. (4) in (1) + El C-15 Sin NOT De. =) $\int cov = \frac{l}{L_1} + \frac{l}{\sqrt{2}} \frac{dv}{2} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} +$ L 2 - C-ish sin Tat oc

Robert Line 1

$$\frac{1}{2} = \frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2}$$

U2005228
=
$$\frac{2}{32} \left(\frac{(0.555n}{n^2} - \frac{(0.5(0))}{n^2} \right)$$

= $\frac{2}{32n} \left[\frac{(0.57n}{n^2} - \frac{(0.5(0))}{n^2} \right]$
= $\frac{2}{n^35} \left[\frac{(0.57n}{n^2} - \frac{(0.5(0))}{n^2} \right]$
= $\frac{2}{n^35} \left[\frac{(0.57n}{n^2} - \frac{(0.5(0))}{n^2} \right]$
= $\frac{1}{n^35} \left[\frac{(0.57n}{n^2} - \frac{(0.5(0))}{n^2} \right]$
= $\frac{1}{n^35} \left[\frac{(0.57n}{n^2} - \frac{(0.5(0))}{n^2} \right]$
= $\frac{1}{n^2} \left[\frac{(0.57n}{n^2} - \frac{(0.57n)}{n^2} \right]$
= $\frac{(0.57n}{n^2} - \frac{(0.57n)}{n^2} - \frac{(0.57n$

 \bigcirc

Q

U2005238
To Sind on?

$$an = \frac{1}{2} \int (22) \log n \frac{1}{2} dx$$

$$an = \int \int x \log n \frac{1}{2} dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int dx$$

$$an = \int \int x \log n \frac{1}{2} \int x \log n \frac{1}{$$

Assignment -1
Name: M. Poolitha
Reg. 10: U2007052
Cection : C
Transform and Boundary Value Problems.
1)
Find the Fourier Series...of Period 200 of the
function
$$f(x) = \sqrt{2} \frac{\pi}{2} \frac{\pi}{2} e_{x \leq 2\pi}$$
 and have find the
Sum of the Secies '11' + '13' + '15' + ...:+ ∞
Griven
 $f(x) = \sqrt{2} \frac{\pi}{2} \frac{\pi}{2} e_{x \leq 2\pi}$
 $f(x) = \frac{\pi}{2} + \frac{e_{ancosn}\pi x + e_{anb}sinn\pi x}{\pi} = 0$
To find ao:
 $ao z = 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$
 $= 11\pi \int f(x) dx + 11\pi \int f(x) dx$

$$To find bn : -1! \pi \int_{T} f(x) \sin nx_{dx} + 1! \pi \int_{T} f(x) \sin nx_{dx}} dx + 1! \pi \int_{T} f(x) \sin nx_{dx}} dx$$

$$= 1! \pi \int_{T} 1.5 \sin x \, dx + 1! \pi \int_{T} \frac{1}{2} \cdot 5 \sin x \, dx$$

$$= 1! \pi \left[-\frac{\cos nx}{n} \right]_{0}^{\pi} + \frac{1}{2\pi} \left[-\frac{\cos nx}{n} \right]_{\pi}^{5\pi}$$

$$= 1! \left[-\frac{\cos nx}{n} \right]_{0}^{\pi} + \frac{1}{2\pi} \left[-\frac{1}{2\pi} + \frac{(-1)^{n}}{n} \right]_{\pi}^{5\pi}$$

$$= 1! \left[\pi \left(-\frac{(-1)^{n}}{n} \right]_{0}^{\pi} + \frac{1}{n\pi} + \frac{(-2)}{n\pi} + \frac{2(-1)^{n}}{n\pi} \right]_{\pi}^{5\pi}$$

$$= \frac{(-1)^{n}}{n\pi} + \frac{1}{n\pi} + \frac{(-2)}{n\pi} + \frac{2(-1)^{n}}{n\pi}$$

$$= \frac{(-1)^{n}}{n\pi} - \frac{1}{n\pi}$$

$$= \frac{(-1)^{n}}{n\pi} - \frac{1}{n\pi}$$

$$= \frac{(-1)^{n}}{n\pi} - \frac{1}{n\pi}$$
Sub, $q_{g} = 3$, $q_{n \ge 0}$, $b_{n \ge 0} = \frac{(-1)^{n}}{n\pi}$ in (1)

$$f(x)_{2} = \frac{3}{2} + \sum_{n\ge 1}^{\infty} 0 + \sum_{n\ge 1}^{\infty} \frac{(-1)^{n}}{n\pi} - \sin nx_{n}$$

$$f(x)_{2} = \frac{3}{2} + \sum_{n\ge 1}^{\infty} 0 + \sum_{n\ge 1}^{\infty} \frac{(-1)^{n}}{n\pi} - \sin nx_{n} \Rightarrow \frac{3}{2} = \frac{1}{2} \sin nx_{n}^{2}$$

$$f(x)_{2} = \frac{3}{2} + \sum_{n\ge 1}^{\infty} \frac{(-1)^{n}}{n\pi} - \sin nx_{n} \Rightarrow \frac{3}{2} + \sum_{n\ge 0}^{\infty} \frac{1}{n} \cos x + \frac{1}{2} = \frac{1}{2} \sin x - \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \sin x - \frac{1}{2} = \frac$$

Prind the fourier series for function

$$f(x) = \begin{cases} kx & 0 \le x \le y \\ 0 & x \le x \le 2y \end{cases}$$
Griven,

$$f(x) = \begin{cases} kx & 0 \le x \le y \\ 0 & y \le x \le 2y \end{cases}$$
The fourier series is

$$f(x) = \frac{\alpha_0}{2} + \sum_{m=1}^{\infty} \alpha_{m-1} \cos \frac{m\pi x}{2} + \sum_{m=1}^{\infty} b_{m-1} \sin \frac{m\pi x}{2} = 0$$
To find ao:

$$\alpha_0 = 4 \sum_{m=1}^{\infty} f(x) dx + 4 \sum_{m=1}^{m} f(x) dx$$

$$= 4 \sum_{m=1}^{\infty} f(x) dx + 4 \sum_{m=1}^{m} f(x) dx$$

$$= \frac{k}{2} \left(\frac{x^2}{2} - 0 \right) = \sum_{m=1}^{\infty} \frac{k^2}{2x}$$
To find an:

$$\alpha_1 = \frac{1}{2} \int_{m=1}^{\infty} f(x) \cos \frac{m\pi x}{2} dx + \frac{1}{2} \int_{m=1}^{\infty} f(x) dx$$

$$= 4 \int_{m=1}^{\infty} f(x) \cos \frac{m\pi x}{2} dx + \frac{1}{2} \int_{m=1}^{\infty} f(x) \cos \frac{m\pi x}{2} dx$$

$$= 4 \int_{m=1}^{\infty} \frac{1}{2} dx + \frac{1}{2} \int_{m=1}^{\infty} 0 \cos \frac{m\pi x}{2} dx$$

$$= 4 \int_{m=1}^{\infty} \frac{1}{2} dx + \frac{1}{2} \int_{m=1}^{\infty} 0 \cos \frac{m\pi x}{2} dx$$

$$= 4 \int_{m=1}^{\infty} \frac{1}{2} dx + \frac{1}{2} \int_{m=1}^{\infty} 0 \cos \frac{m\pi x}{2} dx$$

 \mathcal{O}

$$\begin{aligned} u_{2}x & dV = \cos \frac{\pi \pi x}{2} dx \\ u_{2}^{1} & u_{2}^{1} & V_{2} - \frac{\sin \frac{\pi \pi x}{2}}{\pi \pi x I_{2}}, \quad x_{3} = V_{1,2} - \frac{\cos (\pi \pi x I_{2})}{(\pi \pi x I_{2})^{2}} \\ \int u_{2}^{1} & \int v_{2} - \frac{\sin (\pi \pi x I_{2})}{\pi \pi x I_{2}} = 1 \cdot \left(-\frac{\cos (\pi \pi x)}{(\pi \pi x I_{2})^{2}} \right) \int_{0}^{2} \\ z = \frac{k}{2} \left(\frac{\alpha (sin(\pi \pi x I_{2}))}{(\pi \pi x I_{2})^{2}} - 1 \cdot \left(-\frac{\cos (\pi \pi a I_{2})}{(\pi \pi x I_{2})^{2}} \right) \right)_{0}^{2} \\ z = \frac{k}{2} \left(\frac{\cos (\pi \pi x I_{2})}{(\pi \pi x I_{2})^{2}} - \frac{\cos (\pi \pi a I_{2})}{(\pi \pi \pi x I_{2})^{2}} \right) \\ z = \frac{k}{2} \left(\frac{2^{2} (c - 1)^{2} - (c - 1)^{2}}{(\pi \pi \pi \pi x I_{2})^{2}} - \frac{\cos (\alpha \pi \pi a I_{2})}{(\pi \pi \pi \pi x I_{2})^{2}} \right) \\ z = \frac{k}{2} \left(\frac{2^{2} (c - 1)^{2} - (c - 1)^{2}}{(\pi \pi \pi \pi x I_{2})^{2}} - \frac{\cos (\alpha \pi \pi a I_{2})}{(\pi \pi \pi \pi x I_{2})^{2}} \right) \\ z = \frac{k}{2} \left(\frac{2^{2} (c - 1)^{2} - 1}{\pi^{2} \pi^{2}} - \frac{\cos (\alpha \pi \pi a I_{2})}{(\pi \pi \pi \pi^{2} - 1)^{2}} - \frac{1}{2} \int_{0}^{2} \frac{1}{2} \int_{0}^$$

$$bn = \frac{k}{2} \left[\chi \left(-\frac{\cos\left(n\pi x/z\right)}{n\pi y/z} \right) - 1 \left(-\frac{\sin\left(n\pi x/z\right)}{(n\pi y/z)^2} \right) \right]_{0}^{2}$$

$$= \frac{k}{2} \left[\chi - \frac{\cos\left(n\pi x/z\right)}{n\pi y/z} \right]_{0}^{2}$$

$$= \frac{k}{2} \left[\chi - \frac{\cos\left(n\pi x/z\right)}{n\pi y/z} - 0 \right]$$

$$= \frac{k}{2} \left[\chi^{2} - \frac{(-1)^{n}}{n\pi} \right]$$

$$bn = -\frac{(k + (-1)^{n})}{n\pi^{n}}$$

$$do = \frac{k + 2}{2}$$

$$an = \left\{ -\frac{2k}{2} \left[n\pi x + 1 + n\pi x + 2 + \frac{k}{2} + \frac{k}{2} + \frac{k}{2} \right] \right\}$$

$$bn = -\frac{k + 2}{2} \left[n\pi x + 1 + n\pi x + 2 + \frac{k}{2} + \frac{k}{2$$

A)

3) A duration is defined as follows
$$f(x)_{2} = x \int_{0}^{\infty} \pi 2x z_{0}$$

Deduce that $\int_{1}^{\infty} \frac{1}{(2x-y)^{2}} = \frac{\pi^{2}}{8}$.
Griven, $f(x) = \int_{-\infty}^{-\infty} \frac{-\pi 2 \times 20}{0 \le x \le \pi}$
 $f(x) = f(x) = \int_{-\infty}^{\infty} \frac{-\pi 2 \times 20}{0 \ge x \ge \pi}$
 $f(x) = f(x) + \pi 1$ is an even -function.
 $f(x) = \frac{2}{9} + \int_{-\infty}^{\infty} 4n \cos nx$
 $\Omega_{0} = 2 \frac{\pi}{9} \int_{0}^{\pi} f(x) dx$
 $= 2 I_{TT} \int_{0}^{\pi} x dx = 2 \frac{2}{7T} \int_{0}^{\pi} \frac{\pi^{2}}{2} \int_{0}^{\pi}$
 $Q_{0} > TT$
 $\Omega_{1} = \frac{2}{7T} \int_{0}^{\pi} f(x) \cos nx dx$
 $U_{1} \ge 1$ $V_{1} \ge \frac{\sin nx}{n}$
 $U_{1}^{0} = 0$ $V_{1} \ge \frac{\cos nx}{n}$
 $\Omega_{1} \ge \frac{2}{7T} \left[x \left(\frac{\sin nx}{n} \right) - 1 \left(-\frac{\cos nx}{n^{2}} \right) + 0 \right]_{0}^{\pi}$
 $2 = 2 I_{TT} \left[x \left(\frac{\sin nx}{n} \right) + \frac{\cos nx}{n^{2}} \right]_{0}^{\pi}$

- S

$$\begin{array}{l} (1) & (1) = \left(\begin{array}{c} 0 & (1 + n) & (1 +$$

 \bigcirc

A) Find the fourier series with Period 2 to represent

$$f(x)_{z} = 2x - x^{2}$$
 in the stange (0,1).
(sition $f(x)_{z} = 2x - x^{3}$ (0,2) \Rightarrow (0,2)
Here $\frac{41}{2} = \frac{2}{3}$
 $f(x)_{z} = \frac{\alpha_{0}}{2} + \frac{g}{2} + \frac{g}{\alpha_{z}} + \frac{g}{\alpha_{z}}$

$$an = \left[\left(2x - x^{2} \right) \frac{\sin n\pi x}{n\pi} - \left(2 - 2x \right) + \left(\frac{\cos \sin \pi x}{(n\pi)^{2}} \right) + \left(-1 \right) \left(\frac{\sin n\pi x}{(n\pi)^{2}} \right)^{2} \right]$$

$$an = \left[0 - 2, \frac{(-1)^{2n}}{(n\pi)^{2}} + 0 - \frac{2!}{(n\pi)^{1}} \right]$$

$$an = \left[0 - 2, \frac{(-1)^{2n}}{(n\pi)^{2}} + 0 - \frac{2!}{(n\pi)^{1}} \right]$$

$$an = \frac{1}{(n\pi)^{2}},$$

$$To = \frac{find}{bn};$$

$$bn = \frac{1}{4} \int_{0}^{2} \frac{f(x)}{(2x - x^{2})} \sin n\pi x$$

$$u = \frac{1}{1} \int_{0}^{2} \left(2x - x^{2} \right) \sin n\pi x$$

$$u' = 2x - x^{2} \qquad dv = \sin n\pi x$$

$$u' = 2 - 2x \qquad V_{2} - \frac{\cos n\pi x}{n\pi} = \right) V_{1} = -\frac{\sin n\pi x}{(n\pi)^{2}},$$

$$u'' = -2$$

$$bn = \left[(9x - x^{2}) \left(-\frac{\cos n\pi x}{n\pi} \right) - (2 - 2x) \left(-\frac{\sin n\pi x}{(n\pi)^{2}} \right) \right] + (-2), \frac{\cos n\pi x}{(n\pi)^{2}},$$

$$bn = \left[(9x - x^{2}) \left(-\frac{\cos n\pi x}{(n\pi)^{2}} - \frac{(2 - 2x)}{(n\pi)^{2}} \left(-\frac{\sin n\pi x}{(n\pi)^{2}} \right) \right] + (-2), \frac{\cos n\pi x}{(n\pi)^{2}},$$

$$bn = \left[(9x - x^{2}) \left(-\frac{-2}{(n\pi)^{2}} - \frac{(2 - 2x)}{(n\pi)^{2}} \left(-\frac{\sin n\pi x}{(n\pi)^{2}} \right) \right] + (-2), \frac{\cos n\pi x}{(n\pi)^{2}},$$

$$bn = \left[(9x - x^{2}) \left(-\frac{-2}{(n\pi)^{2}} - \frac{(2 - 2x)}{(n\pi)^{2}} \left(-\frac{\sin n\pi x}{(n\pi)^{2}} \right) \right] + (-2), \frac{\cos n\pi x}{(n\pi)^{2}},$$

$$bn = \left[(2 + 0, -\frac{-2}{(n\pi)^{2}} - \frac{(2 - 2x)}{(n\pi)^{2}} \left(-\frac{5in n\pi x}{(n\pi)^{2}} \right) \right]$$

$$from (0)$$

$$f(x) = \frac{2}{2} + \frac{x}{2} - \frac{-4}{\pi^{2}}, \frac{x}{n^{2}} - \frac{1}{n^{2}}, \frac{\cos n\pi x}{2} + \frac{x}{n^{2}} (0), \frac{\sin n\pi x}{2},$$

5) Find the Fourier sections empansion of
$$f(\pi) = \pi + \pi^{2}$$

fin $-1 \le \pi \le 1$.
Griven,
 $f(\pi)_{z} = \pi(+\pi^{2})$ in (z_{1}, π^{2})
The fourier sectors is
 $f(\pi)_{z} = \frac{\alpha_{0}}{2} + \sum_{n=1}^{\infty} \alpha_{n} \cos\left(\frac{n\pi\pi}{4}\right) + bn \sin\left(\frac{n\pi\pi}{4}\right)$
Here, $l_{z_{1}}$
 $f(\pi)_{z} = \frac{\alpha_{0}}{2} + \sum_{n=1}^{\infty} \alpha_{n} \cos(\frac{n\pi\pi}{4}) + bn \sin(\pi\pi\pi) - 0$
To find do:
 $\alpha_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\pi) \cdot d\pi$
 $z = (\frac{1}{2} + \frac{1}{3} - \frac{1}{2} + \frac{1}{3})$
 $\alpha_{0} = \frac{1}{2} + \frac{1}{3} - \frac{1}{2} + \frac{1}{3}$
 $\alpha_{0} = \frac{1}{2} + \frac{1}{3} - \frac{1}{2} + \frac{1}{3}$
To find dn:
 $\alpha_{n} = \frac{1}{4} \int_{-\pi}^{4} f(\pi) \cdot \cos\left(\frac{n\pi\pi}{4}\right) d\pi$
 $\alpha_{n} = \frac{1}{4} \int_{-\pi}^{4} f(\pi + \pi^{2}) \cos\left(\frac{n\pi\pi}{4}\right) d\pi$
 $\alpha_{n} = \frac{1}{4} \int_{-\pi}^{4} (\pi + \pi^{2}) \cos\left(\frac{n\pi\pi}{4}\right) d\pi$
 $\alpha_{1} = \frac{1}{4} \sum_{-\pi}^{4} \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$

-

$$\int u dV = uV - u'V_{1} + u''V_{2} - \cdots$$

$$an = \left[(n+x^{2}) \cdot \frac{\sin n\pi T}{n\pi} - (1+2x) \cdot \left(-\frac{\cos n\pi T x}{n^{2}\pi^{2}} \right) + 2 \cdot \left(-\frac{\sin n\pi T x}{n^{2}\pi^{2}} \right) \right]_{1}^{1}$$

$$Gn = \left[(1+2x) \cdot \frac{\cos n\pi T x}{n^{2}\pi^{2}} \right]_{1}^{1}$$

$$2 \cdot \left((1+2) \cdot \frac{\cos n\pi T}{n^{2}\pi^{2}} \right) - \left((1-2) \cdot \frac{\cos n\pi T}{n^{2}\pi^{2}} \right)$$

$$2 \cdot \frac{3(-1)^{n}}{n^{2}\pi^{2}} + \frac{(-1)^{n}}{n^{2}\pi^{2}}$$

$$\int \frac{dn = u(-1)^{n}}{n^{2}\pi^{2}}$$

$$To \quad \text{find } \quad bn :$$

$$bn = \frac{1}{n^{2}} \int f(x) \cdot \sin \left(\frac{n\pi T x}{n^{2}} \right) \cdot dx$$

$$bn = \int_{-2}^{2} (x+x^{2}) \cdot \sin \left(n\pi T x \right) dx$$

$$u'_{2} + x^{2} \cdot \frac{dv = \sin n\pi x}{n\pi} = 2 \cdot V_{1} = -\frac{\sin \pi T}{n^{2}\pi^{2}} \cdot 2 \cdot V_{2} = \frac{\cos \pi x}{n^{2}\pi^{2}}$$

$$b_{n} = \left[(x+x^{2}) \cdot \left(-\frac{\cos n\pi x}{n\pi} \right) + (1+2x) \cdot \left[-\frac{\sin \pi x}{n\pi^{2}} \right] + 2 \cdot \left[\frac{\cos n\pi x}{n^{2}\pi^{2}} \right]_{1}^{1}$$

$$z \cdot \left[(x+x^{2}) \left(-\frac{\cos n\pi x}{n\pi} \right) + 2 \cdot \left(\frac{\cos n\pi x}{n^{2}\pi^{2}} \right) \right]_{1}^{1}$$

$$z \cdot \left[(x+x^{2}) \left(-\frac{\cos n\pi x}{n\pi} \right) + 2 \cdot \left(\frac{\cos n\pi x}{n^{2}\pi^{2}} \right) \right]_{1}^{1}$$

$$b_{n}^{2} - \frac{(2-i)^{n}}{n\pi} + 2 \cdot \left(\frac{\cos n\pi x}{n^{2}\pi^{2}} \right) - \left(-(-1+i) \cdot \cos \frac{n\pi x}{n\pi} \right)$$

substitute a0=213, anz 4(-1)?, bn z-2(-1)" in () $f(x) = \frac{ao}{2} + \frac{2}{n_{z_1}} \left[an \cos n\pi x + bn \sin n\pi x \right]$ $2\frac{213}{2} + \sum_{n=1}^{\infty} \left[\frac{4(-1)^n}{n^2 \pi^2} \cos n\pi x - \frac{2(-1)^n}{n\pi} \sin n\pi x \right]$ $f(x)_{z} = \frac{1}{3} + \frac{s}{n_{z}} \left[\frac{u(-1)}{n_{T}} \cos n \pi x - \frac{2(-1)^{m}}{n \pi} \sin n \pi x \right].$ fear a the ad that or $= b - \begin{pmatrix} * & * & * \\ - & - \end{pmatrix} = (w) - b - \begin{pmatrix} * & * & * \\ - & - \end{pmatrix} = d - b$ akianna linn (faqai) z md n Malathia parta an Mirina an an Arra an Arra. Tarta ((masked)) - ("masked") - ("masked") - ("masked") ("masked") · 이슈 같은 아이에서 아이에 아이는 아이에 가지 않는 것을 하는 것을 수가 있다. 이렇게 있는 것을 수가 있는 것을 하는 것을 수가 있는 것을 수가 있는 것을 하는 것을 수가 있는 것을 수가 있다. 이렇게 말 수가 있는 것을 것을 수가 있는 것을 수가 않아. 것을 것 같이 같이 같이 않는 것을 수가 않는 것을 것 같이 않아. 것을 것 같이 같이 않는 것 같이 같이 않는 것 같이 않는 것 같이 않아. 것 같이 것 같이 같이 같이 것 같이 것 같이 것 같이 것 같이 같이 않아. 것 같이 것 같이 것 같이 않아. 것 같이 같이 같이 않아. 것 같이 않아. 것 같이 않아. 것 같이 않아. 것 같이 않 않 않아. 것 같이 않 것 같이 않아. 것 같이 않아. 것 것 같이 않이 않아. 것 같이 않이 않아. 것 같이 않이 않아. 것 같이 않이 it sut

ENSTITUTE OF HIGHER EDUCATION AND RESEARCH (Descented as Descend to be University under section 2 of UGEAet (90b) (Verstaaticsone Nr. 675000-013, Martin of Haraya Research Drawaling and a Har 2007) BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY SCHOOL OF AERONAUTICAL ENGINEERING

CONSOLIDATED INTERNAL MARK STATEMENT

Program: Aerospace Engineering

Sub.Code/Name: U20MABT03-TBVP

	Register No	Student Name	CLA-1	CLA-2	CLA-3	CLA-4	INTERNAL
S.No			(10 Marks)	(15 Marks)	(15 Marks)	(10 Marks)	(50 Marks)
1	U21AS001	AMEEN NOORDEEN A	8	8	8	10	34
2	U21AS001	BOLLINA RAM PRANAV TEJ	7	11	11	10	39
3	U21AS002	CHETAN SINGH	10	15	15	10	50
3	U21AS003	CHINTALAPUDI KUMAR SATYA CHANDRAMOULI	9	13	13	10	45
5	U21AS004	CHIRRAVURI BHANUTEJA	9	15	15	10	49
6	U21AS005	CYNTHIA RAI	10	15	15	10	50
7	U21AS007	DANIEL INFANT RAJ A	10	15	15	10	50
8	U21AS008	DHANUSH S	10	15	15	10	50
9	U21AS010	ETLAM DHEERAJ REDDY	9	13	12	10	44
10	U21AS010	GOKULRAJ SRAVANTHI	9	11	11	10	41
10	U21AS012	HARESHSIVA M	9	12	12	10	43
11	U21AS012	JASHEEMA BEGAM S	9	14	13	10	46
12	U21AS013	KAILASH D	10	15	15	10	50
15	U21AS014	KISHORE C S	9	13	13	10	45
15	U21AS015	MADHAN RAJ W	9	11	12	10	42
15	U21AS010	MANOKARAN N	9	12	13	10	44
17	U21AS018	MERLYN REJI	9	13	13	10	45
18	U21AS018	MOHAMED FAZIL M	9	13	13	10	45
19	U21AS020	PHANI SRI NAGA DURGA ARAVA	10	15	15	10	50
20	U21AS020	POTHEESWARAN E	9	11	12	10	42
20	U21AS021	PUNDI THATHARAO	9	11	12	10	42
22	U21AS022	PUPPALA LAKSHMAN KARTHIK	7	9	10	10	36
23	U21AS023	SAKTHI KUMAR A	9	14	14	10	47
24	U21AS024	SANDHIYA S	9	13	13	10	45
25	U21AS025	SANTHOSH R	6	9	9	10	34
26	U21AS020	SATHEESH S	9	13	13	10	45
27	U21AS027	SENTHILNATHAN A G S	10	15	15	10	50
28	U21AS020	SUBIN SAMUEL A	8	11	11	10	40
29	U21AS030	SUJIRTHA P	9	13	13	10	. 45
30	U21AS030	THOROTU SAHITH	8	10	10	10	38
31	U21AS031	VENKATA GURUDATTA SARMA P	10	15	15	10	50
32	U21AS032	SANSKAR SINGH	9	15	14	10	48
33	U21AS033	SHAIK MOHAMMAD SADIK	7	9	8	10	34
34	U21AS035	PRIYADHARSHINI M	8	10	10	10	38
35	U21AS036	SARIPALLI ROHITH	8	9	9	10	36
36	U21AS037	ARUN MOZHI VARMA S J	5	8	7	10	30
37	U21AS038	HIMANSHU SAI PRAKASH YADAV	10	15	15	10	50
38		V.SANDEEP KUMAR	5	10	10	10	35
39	U21AS040	BITTU KUMAR	9	12	11	10	42
40	U21AS041	G SIRISHA	0	0	0	0	0 42
41	U21AS042	PRINCE KUMAR	9	12	11	10	42
42	U20AS030	SOWMIYA K	10	1 13	13	10	

SUBJECT IN-CHARGE

HOD-AEROSPACE

ASSIMNMENT-I
DEPARTMENT OF IT
TRAMSFORMS AND BOUNDARY
VALUE PROBLEMS

х с

 $g(\omega) = -\delta$

the second se

K ging , milk¹

.

Find
$$z^{-2}$$
 $\left(\frac{z}{(z+z)}\right)\left(\frac{z}{(z+z)}\right)$
 $F(z) = \frac{z^2}{((z+z))(z^2+u)}$
 $F(z) = \frac{z}{((z+z))(z^2+u)} = \frac{z}{zu} + \frac{Dz}{(z^2+u)}$
 $F(z) = \frac{z}{((z+z))(z^2+u)} = \frac{z}{zu} + \frac{Dz}{(z^2+u)}$
 $F(z) = \frac{z}{((z+z))(z^2+u)}$
 $F(z) = \frac{z}{((z+z))(z^2+u)}$
 $F(z) = \frac{z}{((z+z))(z^2+u)}$
 $F(z) = \frac{z}{((z+z))(z^2+u)}$
 $F(z) = \frac{z}{(z+z)}$
 $F(z) = \frac{z}{(z+z)} + \frac{z}{(z+z)}$
 $F(z) = \frac{z}{(z+z)} + \frac{z}{(z+z)}$
 $F(z) = \frac{z}{(z+z)} + \frac{z}{(z+z)} + \frac{z}{(z+z)}$
 $F(z) = \frac{z}{(z+z)} + \frac{z}{(z+z)} + \frac{z}{(z+z)} + \frac{z}{(z+z)}$
 $F(z) = \frac{z}{(z+z)} + \frac{z}{(z+z)} + \frac{z}{(z+z)} + \frac{z}{(z+z)} + \frac{z}{(z+z)}$
 $F(z) = \frac{z}{(z+z)} + \frac{z}{(z+z)} +$

2) Find
$$z^{-1}\left[\frac{w^2}{(w-a)^2}\right]$$
 with y isomobiliton method

$$z^{-1}\left[\frac{w^2}{(w-a)^2}\right] = z^{-1}\left[\frac{w}{w-a}, -\frac{w}{w-a}\right]$$

$$= a^{0} + a^{0}$$

$$= a^{0} + a^{0} + \cdots + a^{0}$$

$$= a^{0} + a^{0} + a^{0} + \cdots + a^{0}$$

$$= a^{0} + a^{0$$

4)

$$\frac{2}{2} = 0 \quad |z| = |(z_1) + ||z| = 2 + |z_1| + ||z_1| + ||$$

$$\frac{36}{(2773)(247)} = \frac{4(2-2) + p(2-1)}{(2/3)(2/4)}$$

$$36 = 0 (2-3) + p(2-3)$$

$$36 = 6 + p(2-1)$$

$$9 = -36$$

$$Put = 2 = 3$$

$$36 = 0 (3-2) + p(2-3)$$

$$36 = 0 + 11$$

$$Put = 36$$

$$\frac{36}{2-3} + \frac{36}{2-2}$$

$$= 36 \frac{2}{2-3} - \frac{36}{2-3}$$

$$= 36 \frac{2}{2-3} - \frac{36}{2-3}$$

$$= 36 \frac{2}{2-3} - \frac{36}{2-3}$$

$$= 36 \frac{2}{30} - \frac{20}{2-3}$$
Using inverse hours from $\frac{23}{2-3} - \frac{20-2}{2-3}$

` 7´

 $F(z) = \frac{z^{3}}{(z-2)^{3}(z-4)} (z-2)^{3}(z-4)$

5)

$$\frac{F(2)}{2} = \frac{\pm^2 - i_0}{(2 - 2)^2 (2 - 4)} = \frac{f_1}{2 - 4} + \frac{g_1}{(2 - 2)} + \frac{f_1}{(2 - 2)} g_1^2$$

$$P(2 - 2)^3 + g_1(2 - 2)^2 (2 - 4) + C(2 - 4) = 2^4 - 20$$

$$P(4 - 2)^3 + g_2(2) + C(0) + C(0) = 4^2 - 20$$

$$P(4 - 2)^3 + g_2(2) + C(2 - 4) = 2^2 - 20$$

$$R(1)^3 = 16 - 20$$

$$R(1)^3 = 16 - 20$$

$$R(1)^3 + g_2(2) + C(2 - 4) = 2^2 - 20$$

$$C(-2) = 4 - 20$$

$$C(-2)^3 + g_2(2 - 2)^2 (0 - 4) + C(0 - 4) = 0 - 20$$

$$-g_1 + 10 + G(0 + 2)^2 (0 - 4) + C(0 - 4) = 0 - 20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + 10 + C(1 - 4) = -20$$

$$R(1) + C(1 - 4) = -20$$

$$R$$

 $\left(\right)$

$$\frac{F(z)}{z} = \frac{y_{1}}{z - 4} + \frac{1}{(z - z)} + \frac{g}{(z - z)^{3}}$$

$$F(z) = \frac{1}{z(z - 4)} + \frac{1}{(z - z)} + \frac{1}{(z - 2)} + \frac{1}{(z - 2)^{3}}$$

$$= \frac{1}{z(z - 4)} + \frac{1}{z - 2} + \frac{1}{(z - 2)^{3}}$$

$$F(z) = \frac{1}{z(z - 4)} + \frac{1}{z - 2} + \frac{1}{(z - 2)^{3}}$$

$$F(z) = \frac{1}{z(z - 4)} + \frac{1}{z - 2} + \frac{1}{(z - 2)^{3}}$$

$$F(z) = \frac{1}{z - 2} + \frac{1}{(z - 2)^{3}} + \frac{1}{z - 2} + \frac{1}{(z - 2)^{3}} + \frac{1}{z - 2} + \frac{1}{(z - 2)^{3}}$$

$$F(z) = \frac{1}{z - 2} + \frac{1}{z$$

ŝ,

÷

IT ! ASSIGNMENT 12-12-2022 Name: P.Umesh (575 Reg No: U21ETO13 Subject: UZOMABTOJ TBUP O Express the function $f(x) = \sum_{i=1}^{n} f(x_i) = \sum_{i=1}^{n} f(x_i$ Sourcer Integral. Hence evaluate 5 sindcoudx dd and find the value of sink of t \bigcirc S? $F(s) = \frac{1}{\sqrt{2\pi}} \int f(x) e^{iyx} dx$ f(x) = 1-lexel = 1 JETT JI (COSSR HISTASK) dx = J Scossnax + 1 J sinsnan Scossa is an even function Joinsa 4 an odd function = 2 J COSSX dr $= \frac{2}{\sqrt{2\pi}} \left[\frac{Sinsn}{S} \right]$ $F(s) = \frac{2}{5} \left(\frac{sins}{5} \right)$

Inverse fourier tears form f(x) = 1 S FLS) erisx dog = $\sqrt{2\pi}$ $\int \frac{2}{\sqrt{2\pi}}$ $\int \frac{\sin s}{\sqrt{5}}$ $(\cos sx - ising) ds$ = 2 SINS COSSX ds - 21 Juni SINSX ds S SIN' COSSA 23 an even finition j sins x is an odd function = $\frac{9}{11} \int \frac{sins}{s} \frac{cosse}{osse} ds$ put S=1 ds=d1 f(x) = 2 Sind cos Ax dA put x = 1 f(x + 1) $l = \frac{2}{V} \int \frac{sin\lambda}{\lambda} (ss\lambda(1)) d\lambda$ I = 5 stat JA Hence proved 1/ \bigcirc Find the fourter transform of ear, aso thence Show that entire is a self reciprocal under the touker transform

(?) $f(x) = e^{-q^2x^2}$ Soli F(s) = 1 f(n) erst dr · Outersperce p>0 = 1 sear elsa da $= \frac{1}{\sqrt{2\pi}} \int e^{-q^2 \chi^2} \left(\cos s \chi + (\sin n \kappa) \right) d\kappa$ = 1 Je-q2x2 cossx dx + 12 Jeansx dx Je-(ax) cossil is an even function \cap Se-tan) sinsx is an odd function = $\frac{2}{\sqrt{2\pi}} \int e^{-(q \cdot \chi)^2} \cos(\chi) d\chi$ $(-F(s)) = \frac{2}{\sqrt{2\pi}} \left[\frac{a}{a^2 + b^2} \right] \left(\frac{-5}{a^2 + b^2} \right] \left(\frac{-5}{a^2 + b^2} \right) \left(\frac{-5}{a^2 + b^2} \right)$ ext/2 is a self recreptoral ((() Fourier transform F(s) = 1 J f(x) elsx dr $= \frac{1}{\sqrt{2\pi}} \int e^{-\chi^2/2} e^{isM} dM$ = $\frac{1}{\sqrt{2\pi}} \int e^{-\frac{2}{7}} e^{-\frac{1}{7}} e^{-\frac{1}{7}}$ $=\frac{1}{\sqrt{2\pi}}e^{-s^{2}/2}\int e^{-x^{2}/2} + 1sn + s^{2}/2$

$$= \frac{1}{\sqrt{2\pi}} e^{-5/L} \int_{-\infty}^{\infty} e^{-(\chi-15)^{2}} d\chi \qquad \left[\frac{1}{2} - \frac{\chi^{2}+25\chi+5^{2}}{2} - \frac{(\chi-15)^{2}}{2} \right]$$

$$Lt \quad t = \frac{1}{\sqrt{2}} e^{-5/L} \int_{-\infty}^{\infty} e^{-(\chi-15)^{2}} dx = \frac{4\chi}{\sqrt{2}} dt \quad \sqrt{2} = d\chi$$

$$\frac{\chi \to -\infty}{\chi \to -\infty} \quad t \to -\infty$$

$$= \frac{1}{\sqrt{2}} e^{-5/L} \int_{-\infty}^{\infty} e^{-t^{2}} f_{2} dt = \left[\frac{1}{\sqrt{2}} e^{-t^{2}} f_{1} \right] dx$$

$$= \frac{1}{\sqrt{2}} e^{-5/L} \cdot \chi \int_{-\infty}^{\infty} e^{-t^{2}} f_{2} dt = \left[\frac{1}{\sqrt{2}} e^{-5/L} \cdot \chi \int_{-\infty}^{\infty} e^{-t^{2}} f_{1} \right] dx$$

$$= \frac{1}{\sqrt{2}} e^{-5/L} \cdot \chi \int_{-\infty}^{\infty} e^{-t^{2}} f_{2} dt = e^{-t^{2}} f_{2} dt$$

$$= \frac{1}{\sqrt{2}} e^{-5/L} \cdot \chi \int_{-\infty}^{\infty} e^{-t^{2}} f_{2} dt = e^{-t^{2}} f_{2} dx$$

$$= \frac{1}{\sqrt{2}} e^{-5/L} \cdot \chi \int_{-\infty}^{\infty} e^{-t^{2}} f_{2} dx$$

$$f(s) = \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} f(s) e^{-t^{2}} dx$$

$$= \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} e^{-t^{2}} dx = \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} e^{-t^{2}} f(s) = \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} e^{-t^{2}} dx$$

$$= \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} e^{-t^{2}} dx + \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} e^{-t^{2}} f(s) dx$$

$$= \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} (a-x) (ssx + tsihst) dx$$

$$= \frac{2}{\sqrt{2\pi}} \left[(q - n) \frac{5\ln(5x)}{5} + (-1) \frac{\cos(5x)}{5^{2}} \right]_{0}^{q}$$

$$= \frac{2}{\sqrt{2\pi}} \left[-\frac{\cos(5q)}{5^{2}} + \frac{1}{5^{2}} \right]$$

$$= \frac{2}{\sqrt{2\pi}} \left[\frac{1 - \cos(5q)}{5^{2}} + \frac{1}{5^{2}} \right]$$

$$= \frac{2}{\sqrt{2\pi}} \left[\frac{1 - \cos(6q)}{5^{2}} + \frac{1}{5^{2}} \right]$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{2}{\sqrt{2\pi}} \left[\frac{1 - \cos(6q)}{5^{2}} + \frac{1}{5^{2}} \right] (\cos(5x) - 1)(\sin(5x)) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{2}{\sqrt{2\pi}} \left[\frac{1 - \cos(6q)}{5^{2}} + \frac{1}{5^{2}} \right] (\cos(5x) - 1)(\sin(5x)) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{1 - \cos(6q)}{5^{2}} \cos(5x) ds - \frac{7}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \sin(5x) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \cos(5x) ds - \frac{7}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \sin(5x) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \cos(5x) ds - \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(6q)}{5^{2}} \right) \sin(5x) ds$$

$$= \frac{2}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \cos(5x) ds - \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(6q)}{5^{2}} \right) \sin(5x) ds$$

$$= \frac{2}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \cos(5x) ds - \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(6q)}{5^{2}} \right) \sin(5x) ds$$

$$= \frac{2}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \cos(5x) ds - \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(6q)}{5^{2}} \right) \sin(5x) ds$$

$$= \frac{2}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \cos(5x) ds = \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(6q)}{5^{2}} \right) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \cos(5x) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \cos(5x) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \cos(5x) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \cos(5x) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \cos(5x) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \left(\frac{1}{\sqrt{2\pi}} \right) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \left(\frac{1}{\sqrt{2\pi}} \right) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \left(\frac{1}{\sqrt{2\pi}} \right) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \left(\frac{1}{\sqrt{2\pi}} \right) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \left(\frac{1}{\sqrt{2\pi}} \right) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \left(\frac{1}{\sqrt{2\pi}} \right) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \left(\frac{1}{\sqrt{2\pi}} \right) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) \left(\frac{1}{\sqrt{2\pi}} \right) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left(\frac{1 - \cos(5q)}{5^{2}} \right) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \left($$

$$a = \frac{2}{4} \frac{q}{\pi} \frac{1}{2} \int_{0}^{\infty} \frac{(sin + 1)^{2}}{dt} dt$$

$$\frac{TT x}{2g} = \int_{0}^{\infty} \frac{(sin + 1)^{2}}{dt} dt$$

$$\frac{TT x}{2} = \int_{0}^{\infty} \frac{(sin + 1)^{2}}{dt} dt$$

$$\frac{TT}{2} = \int_{0}^{\infty} \frac{(sin + 1)^{2}}{dt} dt$$
Hence fourier transform of f(x) = $\int_{0}^{0} \frac{1}{(x + 1)^{2}} dt$
Hence show that $\int_{0}^{0} \frac{dns - seoss}{s^{2}} \cos \frac{s}{2} ds = \frac{s}{s} \frac{s}{16}$. Also show that $\int_{0}^{\infty} \frac{(x (os x - sin x))^{2}}{x (os x - sin x)^{2}} dx = \frac{T}{15}$
Solv (1) Fourier transform
$$f(s) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(x) e^{0x} dx$$

$$= \frac{1}{\sqrt{2\pi}} \frac{s}{\sqrt{1}} (1 - x^{2}) (\cos s) t + \frac{1}{\sqrt{2\pi}} \int_{0}^{1} (1 - x^{2}) sin tx dx$$

$$\int_{0}^{1} (1 - x^{2}) \cos s x dx + \frac{1}{\sqrt{2\pi}} \int_{0}^{1} (1 - x^{2}) sin tx dx$$

$$\int_{0}^{1} (1 - x^{2}) \sin s x (1 - an - 0) dt - fourtion$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{1} (1 - x^{2}) \frac{sin s^{2}}{s} - 2x \frac{cos sx}{s^{2}} + 2 \frac{sin sx}{s^{2}} \int_{0}^{1} dt$$

$$= \frac{2}{\sqrt{2\pi}} \left[-\frac{2\cos s}{s^{2}} + \frac{2sin s}{s^{2}} \right]$$

$$F(s) = \frac{4}{\sqrt{2\pi}} \left[\frac{s(ns - s(oss))}{s^3} \right]$$

$$F(s) = \frac{4}{\sqrt{2\pi}} \left[\frac{s(ns - s(oss))}{s^3} \right]$$

$$F(s) = \frac{1}{\sqrt{2\pi}} \int f(s) e^{-isn} ds$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{4}{\sqrt{\pi\pi}} \left(\frac{s(ns - s(oss))}{s^3} \right) (cossn - ls(nsn)) ds$$

$$= \frac{2}{\sqrt{\pi}} \int \left(\frac{s(ns - s(oss))}{s^3} \right) (cossn ds - \frac{2i}{\pi} \int \frac{s(ns - s(oss))}{s^3} s(s(s(s(s(n - s(oss))))) (s(s(s(n - s(oss))))) (s(s(n - s(oss))))) (s(s(n - s(oss)))) (s(s(s(n - s(oss))))) (s(s(n - s(oss)))) (s(s(s(n - s(oss))))) (s(s(n - s(oss)))) (s(s(n - s(oss))))) (s(s(n - s(oss)))) (s(s(n - s(oss))))) (s(s(n - s(oss)))) (s(s(n - s(oss)))) (s(s(n - s(oss)))) (s(s(n - s(oss)))) (s(s(s(n - s(oss))))) (s(s(n - s(oss)))) (s(s(n - s(oss)))) (s(s(n - s(oss)))) (s(s(s(n - s(oss)))) (s(s(s(n - s(oss))))) (s(s(n - s(oss)))) (s(s(s(n - s(oss)))) (s(s(n - s(oss)))) (s(s(n$$

$$2\int_{0}^{1} (1-x^{2})^{2} dx = \frac{3}{2} \frac{16}{2\pi} \int_{0}^{\infty} \left(\frac{\sin 5 - 5\cos 5}{5}\right)^{2} dx$$

$$Put \quad S = \frac{14}{2}$$

$$2\int_{0}^{1} (1^{2} + x^{4} - 2x^{2}) dx = \frac{16}{\pi} \int_{0}^{\infty} \left(\frac{\sin 2 - 3\cos 2}{x^{3}}\right)^{2} dx$$

$$2\left[x + \frac{x}{5} - 2\frac{x^{3}}{5}\right]_{0}^{1} \times \frac{\pi}{16} = \int_{0}^{\infty} \left(\frac{\sin x - 3\cos x}{x^{3}}\right)^{2} dx$$

$$\frac{16}{15} \times \frac{\pi}{16} = \int_{0}^{\infty} \left(\frac{\sin x - 3\cos x}{x^{5}}\right)^{2} dx$$

$$\frac{\pi}{15} = \int_{0}^{\infty} \left(\frac{\sin x - 3\cos x}{x^{5}}\right)^{2} dx$$

$$\frac{\pi}{15} = \int_{0}^{\infty} \left(\frac{\sin x - 3\cos x}{x^{5}}\right)^{2} dx$$

$$\frac{\pi}{15} = \int_{0}^{\infty} -\frac{(3\cos x - \sin x)^{2}}{x^{5}} dx$$

$$\frac{\pi}{16} = \int_{0}^{\infty} \frac{16}{2\pi} \int_{0}^{\infty} f(x) \sin 3x dx$$

$$= \int_{0}^{2\pi} \int_{0}^{\infty} \frac{1}{\pi} \int_{0$$

<u>1.NO</u>	Roll. No	Marks (50)	Is Absent
1	U21IT001	31	NO
2	U21IT002	32	NO
3	U21IT003	31	NO
4	U21IT004	35	NO
5	U21IT005	33	NO
6	U21IT006	31	NO
7	U21IT007	42	NO
8	U21IT008	45	NO
9	U21IT009	30	NO
10	U21IT010	31	NO
10	U21IT011	45	NO
12	U21IT012	31	NO
13	U21IT013	0	YES
14	U21IT014	32	NO
15	U21IT015	34	NO
16	U21IT016	32	NO
17	U21IT017	33	NO
18	U21IT018	32	NO
19	U21IT019	32	NO
20	U21IT020	35	NO
21	U21IT021	0	YES
22	U21IT022	32	NO
23	U21IT023	35	NO
24	U21IT024	32	NO
25	U21IT025	32	NO
26	U21IT026	33	NO
27	U21IT027	47	NO
28	U21IT028	30	NO
29	U21IT029	35	NO
30	U21IT030	31	NO
31	U21IT031	35	NO
32	U21IT032	34	NO
33	U21IT033	32	NO
34	U21IT034	35	NO
35	U21IT035	34	NO
36	U21IT036	33	NO
37	U21IT037	34	NO
38	U21IT038	33	NO
39	U21IT039	33	NO

- 2

v

BHARATH INSTITUTE OF HIGHER EDUCATION AND RESE B.TECH, II YEAR - 2022 - 2023 (SEM - III) INTERNAL MARKS - CONSOLIDATED MARK STATEMEN U20MABT03 - TRANSFORMS & BOUNDARY VALUE PROBLEM

x

Name of Students	CLA - I	CLA - II
AJAI SURIYA V	28	25
AKASHKUMAR V	25	30
ANANDKUMAR M	27	26
ANNIE NISHITA I	36	29
ATHAVAN V	26	28
BALAJI N	28	26
BATTU SHIVA KRISHNA	41	35
BHUVANESHWARI D	40	- 44
CHARULATHA P	25	25
DENISH I	26	27
DILFAR NISHA A	44	40
DINESH S	25	28
GINJALA MANJITH REDDY	A	A
GOLLA ALLAIAH	26	31
GUDEBOINA HARSHAVARDHAN	30	27
ITHRISH M	28	25
JAI PRAKASH P	27	29
JESSICA RUPAVATHI M	30	25
JOSHVA A	30	26
JUTTU ARAVIND	31	30
KAKANI BHANU SHANKAR	A	A
KAKANI NIKESH CHOWDARY	26	26
KARTHIKEYAN V	35	29
KATHIRVEL S	30	26
KOLLA VIJAYKUMAR	34	25
KUDITHI SAINITHEESH REDDY	35	27
MADHUPRIYA C	49	40
MANDADAPU YASHWANTH	26	25
MANO RANJAN	33	26
MOHAMEDKADHARUSAIN M	30	25
NANDIGAMA SUPRAJA	33	26
NELAKURTHI VENKATA PHANINDRA	32	28
PANGULURI ANIL KUMAR	30	25
PRANAV KUMAR S	31	28
PRAVEEN KANTH G	31	25
PREMKUMAR S	32	26
PRIYADHARSHINI A	30	29
RAVIPATI DHARMA TEJA	36	26
RISHU KUMAR	35	- 28

ARCH

ΝT

 \bigcirc

()

MS - IT CLA - IV CLA - III CLA - II CLA - I CLA - III Α А

ж. В

AEROSPACE

P

()

 \bigcirc

J

Bharath

INSTITUTE OF HIGHER EDUCATION AND RESEARCH

(Declared as Deemed-to-be University under section 3 of UGC Act, 1956) (Vide Notification No. F.9-5/2000 - U.3, Ministry of Human Resource Development, Govt. of India, dated 4* July 2002) BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY SCHOOL OF AERONAUTICAL ENGINEERING

-

SCHOOL OF AERONAUTICAL ENGINEERING

CONTINUOUS LEARNING ASSESSMENT - II U20MABT03–TRANSFORMS & BOUNDARY VALUE PROBLEM

Date	:	23/11/2022
Academic Year / Semester	:	2022-2023/ODD
Duration		1:30 Hours
Maximum Marks	:	50

Q.No	Questions	Weightage	СО	Bloom's Level	
Part – A (6×2=12 Marks) Answer All Questions					
1	Write all possible solutions of 1-D wave equation.	2	CO 3	1	
2	State Fourier law of heat conduction.	2	CO 3	1	
3	Define 2-D heat flow equation.	2	CO 3	1	
4	State the Fourier Transform pair.	2	CO 4	1	
5	Define Convolution theorem and Parseval's identity for Fourier transform.	2	CO 4	1	
6	Write the Fourier cosine transform pair of formulae.	2	CO4	1	
	Part – B (3×6=18 Marks) Answer either (a) or (b)				
7(a)	In steady state conditions derive the solution of one dimensional heat flow equation.				
7(b)	Classify the partial differential equations $(i)y^2U_{xx} + x^2U_{yy} = 0.$ (ii) $4U_{xx} + 4U_{xy} + U_{yy} + 2U_x - U_y = 0.$	6	CO 3	2	
8(a)	If F(s) is the Fourier transform of $f(x)$, find the Fourier transform of F (ax)where a>0.	6	CO 4	2	
8(b)	State and Prove Modulation Theorem.				
9(a)	Show that $e^{\frac{-x^2}{2}}$ is a self reciprocal with respect to Fourier transform	6	CO 4	3	
9(b)	Find the Fourier sine and cosine transform of $e^{-\alpha x}$, a>0				
	Part – C (2×10=20 Marks) Answer either (a) or (b)				
10(a)	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially in a position given by $y(x, 0) = y_0 sin^3\left(\frac{\pi x}{l}\right)$. If it is released from rest from its position, find the displacement y at any time and any distance from the end $x = 0$.	10	CO 3	3	
10(b)	A square plate is bounded by the lines $x = 0, y = 0, x = 20, y = 20$. Its faces are insulated. The temperature along the upper horizontal edge is given by $u(x, 20) = x(20 - x)$, $0 < x < 20$ while other two edges are kept at 0C. Find the steady temperature distribution in the plate.				

	Find the Fourier transform of $f(x) = 1 - x $, $ x < 1$ 0, $ x > 1$ and hence find			
11(a)	the value of $\int_{0}^{\infty} \frac{\sin^2 t}{t^2} dt$	10	<u> </u>	2
	Find the Fourier transform of $f(x) = 1 - x^2$, $ x < 1$ 0, $ x > 1$ and hence	10	CO 4	3
11(b)	prove that $\int_{0}^{\infty} \left(\frac{\sin s - s \cos s}{s^{3}}\right)^{2} ds = \frac{\pi}{15}$			

CO	Weightage
CO3	22
CO4	28
Total	50

Prepared by	Staff Name Dr. Ch. Nagalakshmi	Signature
Verified by	HcD Dr. S.V Manemaran	Signature

Bharath

INSTITUTE OF HIGHER EDUCATION AND RESEARCH (Dectained as Deerned-to-be University under section 3 of UGC Act, 1956) (Vide Notification No. F.9-5/2000 - U.3, Ministry of Human Resource Development, Govt. of India, dated 4[°] July 2002) BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY SCHOOL OF AERONAUTICAL ENGINEERING

CONTINUOUS LEARNING ASSESSMENT - II U20MABT03-TRANSFORMS & BOUNDARY VALUE PROBLEM

Date	:	28/12/2022	
Academic Year / Semester	1	2022-2023/ODD	
Duration		1:30 Hours	
Maximum Marks	100	50	

Q.No	Questions	Weightage	СО	Bloom's Level
	Part – A (6×2=12 Marks) Answer All Questions			
1	Find the general solution of $\frac{\partial^2 z}{\partial x^2} = 0$.	2	CO 2	2
2	Form a partial differential equation by eliminating arbitrary constants from $Z = ax + by + a^2 + b^2$.	2	CO 2	2
3	Define one sided Z- transform and inverse Z-transform	2	CO 5	1
4	Write the Z transform of '1' and' $(-1)^n$ '	2	CO 5	2
5	State and prove change of scale property	2	CO 5	1
6	Write the Z transform of $\frac{1}{n}$ and $\frac{1}{n+1}$	2	CO5	1
	Part – B (3×6=18 Marks) Answer either (a) or (b)			
7(a)	Form the PDE by eliminating the arbitrary function \emptyset from $\emptyset(x^2 + y^2 + z^2, x + y + z) = 0$	- 6	CO 2	2
7(b)	Find the Complete integral of the PDE $Z = px + qy + p^2 + q^2$.			
8(a) 8(b)	Solve $px + qy = z$ Solve $(mz - ny)p + (nx - lz)q = ly - mx$	6	CO 2	2
9(a)	Find the Z transform of(i) $(n+1)(n+2)$ (ii) $(n+1)^2$	- 6	CO 2	3
9(b)	Find the Z transform of (i) n (ii) na ⁿ Part - C (2×10=20 Marks) Answer either (a) or (b)		1	
10(-)	Solve $(D^2 - DD' - 20D'^2)z = e^{5x+y} + \sin(4x-y).$			2
10(a) 10(b)	Solve $(D^2 - DD^2 - 20D^2)z = x^2y$ Slove $(D^2 + 2DD^2 + D^2)z = x^2y$	- 10	CO 5	3
11(a)	Find $Z^{-1}\left\{\frac{3z^2 - 18z + 26}{(z-2)(z-3)(z-4)}\right\}$ by partial fraction method	10	CO 5	3
11(b)	Find the Z-transform of $\cos n\theta$ and hence find $r'' \cos n\theta$			

Accredited

TRANSFORM AND PARTIAL DIFFERENTIAL EQUATION. NAME : MERLYN REJI REGNO: ULIASO18 DATE : 16/11/22 YEAR : IInd DEPT: AEROSPACE

н К. 1.1. - ¹¹ ал б. ¹ с

1) WRITE THE ONE DIMENSIONAL WAVE EQUATION AND WRITE ALL THE POSSIBLE SOLUTION OF WAVE EQUATION One dimensional wore equation is $\frac{d^2 u}{dt^2} = \frac{a^2 d^2 u}{dr^2}$ Flere $a^2 = \frac{T}{m} = \frac{Tension(T)}{Mass(m)}$ The various solution of one dimensional wave equation. $y(x,t) = (C_1e^{px} + Ce^{-px})(C_3e^{apt} + C_4e^{-apt})$ 2) y(z,t) = (CsCosp2+Cosinpx) (C+Cosapt + Cosinapt) 3) $y(x,t) = (c_{qx} + c_{10}) (c_{11} + c_{12})$ Correct dolution of the one olimensional wave equation out of all the possible dolutions we can choose the correct Volution as follows. Since we are dealing with problems on vibration of strings. The Golution schould be a periodic function. And the solution must involves trynometric terms like wines and Cosines. Therefore the Correct solution of the wave equation is $y(x,t) = (C, Cospx+C_2 Sinpx)(C_3 Cosapt + C_4 Sinapt)$ FOWHER'S LAW OF THERMAL (ONDUCTION (OR) (ONDUCTIVITY: The Jourier law of thermal conduction states that the rate of heat Transfer through a material is proportional to the negative gradient (-ve) in the temperature and the

area of the durface through which the heat flows.

ii)

iii) WRITE THE ONE- DIMENSIONAL HEAT FLOW EQUATION AND WRITE ALL THE POSSIBLE SOLUTION OF HEAT EQUATION One dimensional heat equation is given by, $\frac{dv}{dt} = \frac{c^2 d^2 v}{dx^2}$ Where c> = k/ec Here, k - Thermal Conductivity e - Density c - Specific heat Capacity where c'= k/ec Here, In steady state du = 0 . The two dimensional heat flow becomes $\frac{\partial^2 \upsilon}{\partial x^2} + \frac{\partial^2 y}{\partial^2 y} = 0$ which is known as deplace Equation The Various possible solutions & Kaplace Equation in as heat flow equation are, 1. U(2,y) = (Aepx + Be-+2) (clospy + DSinpy) 2. $U(X,Y) = (A COSPI+BSINPX.) ((e^{PY}+De^{-PY}))$ 3. U(X,Y) = (AX+B)(CY+b)If the non-zero boundary conditions are along the x-axi an a line parallel to X-axis: (1.e), U(x, 0) = U(x, L) = f(x).The Correct Solution is U(X,Y)= (A COSPX+ BSINPX) · ((e^{PY}+ De^{-Ay})

The various possible solutions of one dimensional Heat Equations are 1. U(x, E) = (AC + Bc-Px) e apt $\alpha : \cup (x,t) = (ACOSPL+BSinpx) \cdot e^{-\alpha^2 p^2 t}$ $3 \cdot u(x,t) = Ax+B$ Oince 'u' decreases as time it increases The only Quitable solution of the heat Equation is UCx.t) (ACOSPX+BSinpx) e-a2p2t. WRITE THE TWO-DIMENSIONAL FLEAR FLOW EQUATION AND WRITE ALL POSSIBLE ObLUTION OF TWO-DIMENSIONAL HEAT Lantion. If the temperature distribution at any point is independent of the Z-Coordinate then the heat flow is called two dimensional heat flow. $\frac{\partial u}{\partial t} = \frac{c^2}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ WRITE THE FOURIER TRANSFORM PAIR (FOURIER TRANSFORM AND INVERSION OF FOURIER TRANSFORM) S FOURIER TRANSFORM: Let flu) be defined in (-, ,) and pieces - wire Continuous and absolutely integrable in (-is, s) then the Jourier transform of flas is defined as, $F[f(x)] = F(s) = \frac{1}{\sqrt{2\pi}} \int f(s) \cdot e^{isn} ds^{i}$ It is denoted by F(f(a)) or F(s)

(i.e) $F(fx) = F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \cdot e^{isn} dx \rightarrow 0$ where 's' is the parameter sometimes 'P' (or)'w' one also used instead of 's' INVERSION FORMULA FOR FOURIER PRANSFORM: Inversion formula for fourier transform if the F[f(n)], f(s) then the inverse fourier transform of F(s) is defined as $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) \cdot e^{isn}$, it is denoted by F'[f(s)] or f(x)(i.e) $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) e^{-isn} ds \rightarrow \infty$ Here the Equ D + (2) together are called as Foosier Fronsform pairs'.

2. A STRING IS STRETCHED AND FASTENED TO TWO POINTS X=0 AND X=1 APART. MOTION IS STARTED BY DISPLACING THE STRING INTO THE FORM Y=x (1x-x-) FROM WHICH IT IS RELEASED AT TIME E=0. FIND THE DISPLACEMENT OF ANY POINT ON THE STRING AT A DISTANCE OF X FROM ONE END AT TIME E.

The one dimensional wave equation

 $\frac{d^2 u}{dt^2} = a^2 \frac{d^2 y}{dx^2}$ The Correct Johntion of one aliminisional wave equation is $Y(x,t) = ((cospx+(xsinpx))(cscosapt + cysinapt) \rightarrow 0$ The Boundary Conditions are 1) $y(0,t) = 0, t \ge 0$ 2) $Y(l,t) = 0, t \ge 0$

•)
$$(2 \sin \left(\frac{n\pi}{k}\right) \times \left(\frac{(u(n\pi\lambda))}{k}\right) = 0$$

Sinte $(2, \pm 0, f = 0$
 $(u(\frac{n\pi\omega}{k}) = 0$

3)
$$\frac{d}{dt} q(x,o) = 0$$
, $0 \neq x \neq 1$
4) $q(x,o) = f(x) = k(lx-x)$
Pppung boundary (ordition ① in equation ①
=> $q(x,t) = (C_1 (ospx + C_2 sin(os)) (C_2 (osapt + C_4 sinapt))$
=> $q(o,t) = (C_1() + C_2 sin(os)) (C_3 (osapt + C_4 sinapt))$
=> $q(o,t) = C_1 (C_3 (osapt + C_4 sinapt)) = 0$
 $\boxed{C_{1=0}}$
: $(C_3 (osapt + C_4 sinapt \neq 0)$
 $dub \boxed{C_{1=0}}$ in ①, we get
 $q(x,t) = C_2 sinpx (C_3 (osapt + C_4 sinapt)) \rightarrow ② (2C_{1=1})$
Ppplying, $ognd$ boundary, condition in ②
=> $q(1,t) = C_2 sinp1 (C_3 (osapt + C_4 sinapt)) = 0$
=> $q(1,t) = C_2 sinp1 (C_3 (osapt + C_4 sinapt)) = 0$
=> $q(1,t) = C_2 sinp1 (C_3 (osapt + C_4 sinapt)) = 0$
=> $q(1,t) = C_2 sinp1 (C_3 (osapt + C_4 sinapt)) = 0$
=> $(1 \le 2 \neq 0, \ Tif C_{2=0}, \ Hen we get gave solution)$
=> $sinp1 = 0$
=> $sinp1 = 0$
=> $sinp1 = sinnit => pl = n\pi$
 $\boxed{P = n\pi/2}$
 $dub p = n\pi/2 \ in ③, we get$
 $q(x,t) = C_2 sin (\frac{n\pi}{2})x (C_3 (osapt + C_4 sina(\frac{n\pi}{2})t)) \rightarrow ③$
Postially differentiating equi ③ with respect to t.
Postially differentiating equi ③ with respect to t.
Poplying, 3^{rd} Condition in $above$ equation
 $\frac{d}{dt}q(x,o) = 0$
 $\frac{d}{dt}(x,o) = 0$
 $\frac{d}{dt}(x,o) = 0$
 $\frac{d}{dt}(x,o) = 0$
 $\frac{d}{dt}(x,o) = 0$

$$= \frac{2 k}{L} \left[\frac{-2l^{3}}{n^{3} \pi^{3}} \left(-n^{n} + \frac{gl^{3}}{n^{3} \pi^{3}} \right] \right]$$

$$= \frac{2 k}{L} \left[\frac{2l^{3}}{n^{3} \pi^{3}} \right] \left[1 - \left(-n^{n} \right) \right]$$

$$= \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$\approx C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{4 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{2 k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{k l^{2}}{n^{3} \pi^{3}} \left(1 - \left(-n^{n} \right) \right)$$

$$C_{n} = \frac{k l^{2}}{n^{3} \pi^{3}} \left(\frac{n l^{2}}{n^{3}} \right)$$

$$C_{n} = \frac{k l^{2}}{n^{3} \pi^{3}} \left(\frac{l l^{2}}{n^{3} \pi^{3}} \right)$$

$$C_{n} = \frac{k l^{2}}{n^{3} \pi^{3}} \left(\frac{l l^{2}}{n^{3} \pi^{3}} \right)$$

$$C_{n} = \frac{k l^{2}}{n^{3} \pi^{3}} \left(\frac{l l^{2}}{n^{3} \pi^{3}} \right)$$

$$C_{n} = \frac{k l^{2}}{n^{3} \pi^{3}} \left(\frac{l l^{2}}{n^{3} \pi^{3}} \right)$$

$$C_{n} = \frac{l l^{2}}{n^{3} \pi^{3}} \left(\frac{l l^{2}}{n^{3} \pi^{3}} \right)$$

$$C_{n} = \frac{l l^{2}}{n^{3} \pi^{3}} \left(\frac{l l^{2}}{n^{3} \pi^{$$

$$\begin{aligned} \text{ii} \int_{\partial L} \frac{\partial}{\partial t} y(x,o) &= 0, \ 0 \leq x \leq l \\ \text{iv} \quad y(x,o) &= +(x) = k(lx-x^{4}) \\ \text{Applying boundary Condition ID in eqn (D)} \\ &= y(x,t) = (C_{1}(lospx + C_{2}sinpx))((3cosapt + C_{4}sinapt)) = 0 \\ &= y(x,t) = (C_{1}(lospx + C_{2}sinpx))((scosapt + C_{4}sinapt)) = 0 \\ &= y(lost) = (C_{1}(lospx + C_{4}sinapt)) = 0 \\ &= y(lost) = (C_{1}(lospx + C_{4}sinapt)) = 0 \\ &= y(lost) = (C_{1}(lospx + C_{4}sinapt)) = 0 \\ &= y(lost) = (C_{1}(lospx + C_{4}sinapt)) = 0 \\ &= y(lost) = (C_{2}sinpk)((C_{2}cosapt + C_{4}sinapt)) = 0 \\ &= y(losp + C_{4}sinapt) = 0 \\ &= y(losp + C_{4}sinap$$

*

1. 1.121 - 14

=>
$$(2 \sin(\frac{n\pi}{L}) \times (0 + (4 \pi) Ta) = 0$$

=> $(2 \sin(\frac{n\pi}{L}) \times (24(\frac{n\pi}{L})) = 0$
Jince $(2 \neq 0]$ then;
=> $(4(\frac{n\pi}{L}) = 0$
Jub $(4 = 0 \text{ in } 3)$,
 $y(x,t) = [(2 \sin(\frac{n\pi}{L}) \times)] [(3 \cos(\frac{n\pi}{L})t])$
 $= ((2 - (3) \sin(\frac{n\pi}{L}) \times \cos(\frac{n\pi}{L})t]$
 $= (n \sin(\frac{n\pi}{L}) \times \cos(\frac{n\pi}{L})t]$
The most general solution is
 $y(x,t) = \frac{\pi}{2} (n \sin(\frac{n\pi}{L}) \times \cos(\frac{n\pi}{L})t]$
Applying A^{HR} bounday Condition in (2) ,
 $=> y(x,0) = +(x) = y_0 \sin^3(\frac{\pi}{L}) \times (2 \sin(\frac{\pi\pi}{L}) \times (4 \sin(\frac{4\pi}{L}))) + \cdots$
 $\Rightarrow y_0 [\frac{1}{4}(3 \sin(\frac{\pi}{L}) \times - \sin(\frac{3\pi}{L}) \times (2 \sin(\frac{3\pi}{L}) \times 2)]$
By Companing Corresponding Coefficients of $\sin(\pi/2) \times 3$,
 $\sin(\pi/2) = n = (2 - 3 \sin(\frac{\pi}{L}) \times 2) = -3 \sin(\pi/2) \times 3$
By Companing Corresponding Coefficients of $\sin(\pi/2) \times 3$,
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\frac{3\pi}{L}) \times 3)$
By Companing Corresponding Coefficients of $\sin(\pi/2) \times 3$,
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) \times 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) \times 3)$
By Companing Corresponding Coefficients of $\sin(\pi/2) \times 3$,
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) \times 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) \times 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + (2 \sin(\pi/2) \times 3))$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + (2 \sin(\pi/2) + 3))$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi/2) = n + \cos(\pi/2) + (2 \sin(\pi/2) + 3)$
 $\sin(\pi$

)

$$= C_{1,2} \sin(T/L) \times \cos(TC/L) t + (3 \sin(T/L) \times \cdots \cos(T2L) t + (3 \sin(T/L) \times \cdots \cos(T2L)) t + (3 \sin(T/L) \times \cdots \cos(T2L)) t + (3 \sin(T) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L) + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L) + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L) + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L) + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L) + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L) + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L) + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L) + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L) + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times \cdots \cos(T2L)) t + (3 \sin(T2L) \times (3 \sin(T2L) \times (3 \sin(T2L) \times (3 \sin(T2L))) t + (3 \sin(T2L) \times (3 \sin(T2L))) t + (3 \sin(T2L) \times ($$

Unbatilitute A=0 in (1)
U(21,y) = B Sinpx
$$(le^{Py} + De^{-Py}) \rightarrow \infty$$

Applying 2nd Boundary Condition in (2),
 $U(l,y) = 0$
BSINPI · $(le^{Py} + De^{-Py}) = 0$ (: B =0, If B=0 He we get 300
Sinpl = 0 yoution)
Sinpl = Sinnin
 $pl = n\pi$
 $pl = n\pi$
 $pl = n\pi$
 $pl = n\pi$
 $(r_{P} = n\pi/z)$
 $U(x,y) = B Sin(r_{YZ}) \times (ce(r_{YZ})y + De-(r_{YZ})y) \rightarrow 3$
Applying 3rd boundary condition in con (2)
 $U(x,o) = 0$
 $B Sin(r_{YZ}) \times (Ce(r_{YZ})) + De^{-(r_{YZ})} = 0$
 $B Sin(r_{YZ}) \times (Ce(r_{YZ})) + De^{-(r_{YZ})}) = 0$
 $B Sin(r_{YZ}) \times (Ce) = 0$
 $C+D = 0 \Rightarrow [D=-C]$
Substitute $D = -c$ in e_{Y}
 $U(x,y) = B Sin(r_{YZ}) \times (ce(r_{YZ})y - ce^{-(r_{YZ})y})$
 $= +B Sin(r_{YZ}) \times [ce(r_{YZ})y - ce^{-(r_{YZ})y}]$
 $= 2Bc Sin(r_{YZ}) \times [c(r_{YZ})y - e^{-(r_{YZ})y}]$
 $= 2Bc Sin(r_{YZ}) \times Sinh(r_{YZ})y$
 $The most general equation is,$
 $U(x,y) = Z C (n Sin(r_{YZ}) \times Sinh(r_{YZ})y - SC)$
Applying 4He boundary Conditions in con (2)

$$\begin{aligned} & \text{U}(X, k) = \frac{1}{2}(x) = \chi(l-x) \\ \Rightarrow & \sum_{n=1}^{\infty} (\ln \sin \left(n\pi/k \right) \chi \cdot \sin h \left(n\pi/k \right) k = \chi(l-x) \\ \Rightarrow & \sum_{n=1}^{\infty} (\ln \sin \left(n\pi/k \right) \chi \cdot \sinh \left(n\pi \right) = \chi(l-x) \\ \text{det } & \text{Ch } \sin h n\pi - bn \\ \Rightarrow & \chi(l-x) = \sum_{n=1}^{\infty} bn \sin \left(n\pi/k \right) \chi \sin (o, k) \\ & \text{The } is \sin n fk_{0} \text{ form } Q \text{ half } \text{ range sine service.} \\ & \text{Now,} \\ & \text{bn} = \frac{1}{2} \int_{0}^{k} f(x) \sin \left(n\pi/k \right) \chi dx \\ = \frac{9}{2} \int_{0}^{k} \chi(l-x) \sin \left(n\pi/k \right) \chi dx - \int_{0}^{k} \chi^{2} \sin \left(n\pi/k \right) \chi dx \right] \\ & \frac{9}{2} \int_{0}^{k} \ln \sin \left(\frac{n\pi}{k} \right) \chi dx - \int_{0}^{k} \chi^{2} \sin \left(n\pi/k \right) \chi dx \right] \\ & = \frac{9}{2} \left[\int_{0}^{k} n \sin \left(\frac{n\pi}{k} \right) \chi dx - \int_{0}^{k} \chi^{2} \sin \left(n\pi/k \right) \chi dx \right] \\ & = \frac{9}{2} \left[\int_{0}^{k} n \sin \left(\frac{n\pi}{k} \right) \chi dx - \int_{0}^{k} \chi^{2} \sin \left(n\pi/k \right) \chi dx \right] \\ & = \frac{9}{2} \left[\int_{0}^{k} n \sin \left(\frac{n\pi}{k} \right) \chi dx - \int_{0}^{k} \chi^{2} \sin \left(n\pi/k \right) \chi dx \right] \\ & = \frac{9}{2} \left[\chi^{2} \left(\frac{-\cos \left(n\pi/k \right) \chi}{\left(n\pi/k \right) } \right) - 1 - \frac{\sin \left(n\pi/k \right) \kappa}{\left(n\pi/k \right) } \right]^{k} \\ & - \frac{9}{2} \left[\chi^{2} \left(\frac{-\cos \left(n\pi/k \right) \chi}{\left(n\pi/k \right) } \right) - 2\pi \left(\frac{-\sin \left(n\pi/k \right) \kappa}{\left(n\pi/k \right) } \right) \right]_{0}^{k} \\ & = \sqrt{2} \left[\left(\frac{-\lambda^{2}}{n\pi} \left(-1 \right)^{n} + 0 \right) - \left(\cos - 0 \right) \right] = \frac{9}{2} \left[\left(\frac{-\lambda^{3}}{n\pi} \left(-1 \right)^{n} + 0 \right) \frac{21^{2} (-1)^{n}}{n\pi\pi^{3}} \right] \\ & = \frac{9!^{2} (-1)^{n}}{n\pi} - \frac{2}{\pi} \left[\frac{-\lambda^{3}}{n\pi} \left(-1 \right)^{n} + \frac{9!^{3}}{n^{3}\pi^{3}} \left[(-1)^{n} - 1 \right] \right] \\ & = -\frac{9!^{2} (-1)^{n}}{n\pi} + \frac{9!^{2} (-1)^{n}}{n\pi} - \frac{1}{n\pi^{3}} \left[\frac{-1}{n\pi^{3}} \right] \end{aligned}$$

$$bn = -\frac{\mu l^{2}}{n^{3}\pi^{3}} \left[(-1)^{n} - 1 \right]$$

$$if \sum_{n \text{ is odd}} : bn = \frac{gl^{2}}{n^{3}\pi^{3}}$$

$$: U(x,y) = \sum_{n=1,3,5}^{2} \frac{1}{(n^{3}\pi^{2})} \sin\left(\frac{n\pi}{4}\right) x \sin\left(\frac{n\pi}{4}\right) y$$

$$This is from, bn = Cn \sinh n\pi$$

$$Cn = \frac{bn}{\sin n\pi}$$

$$: Tn most general ydolution
$$u(x,y) = \sum_{n=1}^{2} Cn \sin\left(\frac{n\pi}{2}\right) x \sin h\left(\frac{n\pi}{4}\right) y$$

$$Jubstitute the (n value
$$u(x,y) = \sum_{n=1}^{2} Cn \sin\left(\frac{n\pi}{2}\right) x \sin n\left(\frac{n\pi}{4}\right) x \sin\left(\frac{n\pi}{4}\right) y$$

$$U(x,y) = \sum_{n=1}^{2} Cn \sin\left(\frac{n\pi}{2}\right) x \sin (n\pi y_{e}) x \sin\left(\frac{n\pi}{20}\right) y$$

$$(x,y) = \sum_{n=0}^{2} \frac{1}{\sin n\pi} \frac{3100}{n^{3}\pi^{3}} \sin\left(\frac{n\pi}{20}\right) x \sin\left(\frac{n\pi}{20}\right) y \quad (d = 20)$$

$$: Tt is the vequired Solution
$$fkorem if jourier devices.$$

$$d three Prop Prove Channe of Ocale Property:$$

$$d three Not Prove Channe of Ocale Property:$$

$$f(x) = f(x) = f(x) = f(x) - e^{i3x} dx$$$$$$$$

Now
$$(x = a_1)$$

 $F[f(a_1)] = \frac{1}{\sqrt{3\pi}} \int_{a}^{b} f(a_2) \cdot e^{ixx} dx$
 $(ABE(i) : If a > 0$
By using Jubstitution melked.
 $det ax = t = \frac{1}{\sqrt{a} = x}$
 $adx = at = bdx = dt/a$
The limit
i) When $x = -\infty$ $\Rightarrow t = ax = -a$
ii) When $x = -\infty$ $\Rightarrow t = ax = -a$
iii) When $x = -\infty$ $\Rightarrow t = ax = -a$
NOW,
 $F[f(ax)] = \frac{1}{\sqrt{3\pi}} \int_{a}^{b} f(t) \cdot e^{ix(Ma)} dt/a$
 $= \frac{1}{a} \left[\frac{1}{\sqrt{3\pi}} \int_{a}^{b} f(t) \cdot e^{ix(Ma)} dt/a$
 $= \frac{1}{a} \cdot F[\frac{3}{a}]$
 $\therefore F[f(ax)] = \frac{1}{a} F(\frac{3}{a})$ When $a > 0$
 $(ABE(III) : a LO$
Now, $F[f(ax)] = \frac{1}{\sqrt{3\pi}} \int_{a}^{b} f(t) \cdot e^{ix(Ma)} dt/a$
 $= \frac{1}{a} \cdot \frac{-1}{\sqrt{3\pi}} \int_{a}^{b} f(t) \cdot e^{ix(Ma)} dt/a$
 $F[f(ax)] = -\frac{1}{\sqrt{3\pi}} \int_{a}^{b} f(t) \cdot e^{ix(Ma)} dt/a$
 $F[f(ax)] = -\frac{1}{\sqrt{3\pi}} \int_{a}^{b} f(t) \cdot e^{ix(Ma)} dt$
 $F[f(ax)] = -\frac{1}{\sqrt{3\pi}} \int_{a}^{b} f(t) \cdot e^{ix(Ma)} dt$
 $F[f(ax)] = -\frac{1}{\sqrt{3\pi}} \int_{a}^{b} f(t) \cdot e^{ix(Ma)} dt$

$$\begin{array}{l} \begin{array}{l} \int TATTER FAND P.REVER MODELATION THEOREM: 1 \\ \int TATTERENT: \\ \hline J F[f(x)] = F(s) ffen \\ F[f(x) (\omega a x]] = \frac{1}{2} \left[F(sta) + F(s a) \right] \\ \hline PRoof: \\ We knaw that \\ Fourier Transform, \\ F[f(x)] = F(s) = \frac{1}{\sqrt{2\pi}} \int f(x) \cdot e^{ix} dx \\ x by (\omega a x) \\ = \frac{1}{\sqrt{2\pi}} \int f(x) \cdot e^{ix} dx \\ f(x) \int (\omega a x) = \frac{1}{\sqrt{2\pi}} \int f(x) \cdot (\omega a x \cdot e^{ix} dx \\ - \cos x = e^{ix} + e^{-ix} \\ F[f(x) (\omega a x]] = \frac{1}{\sqrt{2\pi}} \int f(x) \cdot e^{ixx} e^{iax} dx \\ F[f(x) (\omega a x]] = \frac{1}{2} \left[\frac{1}{\sqrt{2\pi}} \int f(x) \cdot e^{ixx} e^{iax} dx + \frac{1}{\sqrt{2\pi}} \int f(x) \cdot e^{i\pi} e^{i\pi} dx \\ F[f(x) (\omega a x]] = \frac{1}{2} \left[\int F(sta) + F(s-a) \right] \\ \vdots F[f(x) (\omega a x]] = \frac{1}{2} \left[F(sta) + F(s-a) \right] \\ \vdots F[f(x) (\omega a x]] = \frac{1}{2} \left[F(sta) + F(s-a) \right] \\ \vdots F[ho The Fourier Teams Form OF The Function \\ f(x) = \int 1 , 1si La \\ Ano Deduce Teams \int_0^{s} \frac{\sin t}{s} dt = \pi f_{L}. \\ \hline Hen function \\ f(x) = \int 1 , 1xi k 2a \\ (wc know that, Fouries Transform) \\ \end{array}$$

x " - ^K

$$F\left[f(x)\right] = F(x) = \frac{1}{\sqrt{3\pi}} \int_{0}^{\infty} f(x) e^{ixx} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} (1) \cdot e^{ixx} dx$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{e^{-ixx}}{ix}\right)^{-\alpha}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{e^{ixx}}{ix}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{e^{ixx}}{ix}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{e^{-ixx}}{ix} dx$$

$$\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin as}{s} ds = 1$$
$$\int_{0}^{\pi} \frac{\sin as}{s} ds = \frac{\pi}{2}$$
Put (t = as)
As = t
Ads = dt
ds = dt/a
S = t/a
Now,
$$\int_{0}^{\pi} \frac{\sin as}{s} ds = \frac{\pi}{2}$$
$$\int_{0}^{\pi} \frac{\sin t}{s} ds = \frac{\pi}{2}$$

*

$$: \int_{0}^{\infty} \frac{Sint}{t} dt = T/2$$

30

í.e

Annen Vasiden

UZIASODI

 \bigcirc

 \bigcirc

 \odot

TPDE - Assignment.

1'i movite one-dimensional move equation and movite
all possible solutions of acture equation
is fourning town of themal condition
is movie towns - dimensional heat flow equation and worke all
possible solutions of two - dimensional heat equation
is movite one-dimensional heat equation and worke all possible
solutions of heat equation and worke all possible
solutions of heat equation and worke all possible
solutions of heat equation and worke all possible
solutions. I heat equation
1's movie formies thereform pairs a formation and invession
of formies thereform.
plution:-
1' The one-dimensional worke equation is

$$\frac{J^2 u}{Jt^2} = a^2 \frac{J^2 u}{dx^2}$$
Here, $a^2 = \frac{T}{M} \left[\frac{Tension}{Massel} \right]$
The various can be possible solutions of worke equations are:-
1' $J(x,t) = (c_1 e^{Tx} + c_2 e^{-Tx}) (c_3 e^{Opt} + c_4 e^{Opt})$
3' $J(x,t) = (c_5 (OSTx + c_5 SinTx)) ((roos pla + cosinpla))$
3, $J(x,t) = (c_7 x + c_{10}) (c_{11} t + c_{12})$
i's formies how of thermal conduction:-
The formiest law of thermal conduction shows that
the oracle of heat bransfer through a material is proposition?
to the nogentie gradient in the temperature and the area of
the sonface through which the heat flows

iv The one dimensional heat equation is given by

$$\frac{d u}{dt} = c^2 \frac{d_e u}{dx^2}, \text{ where } c^2 = \frac{w}{Pc}$$

$$k = Thermal conductivity$$

$$R = density$$

$$C = Specific heat$$
The all possible solutions of one - dimensional heat equation on:

$$j \quad u(x, t) = (Ae^{Dx} + Be^{-Px})e^{x^2P^2t}$$

$$2j \quad u(x, t) = (A \cos px + B \sin px)e^{-x^2P^2t}$$

$$3j \quad u(x, t) = Ax + B$$

$$K = the ponatule distribution at any point is independent of the z-coordinate, then the heat flow is called two - dimensional heat flow is equation at a gradient of the z-coordinate, then the heat flow is called two - dimensional heat flow is equation at a gradient of the z-coordinate is independent of the z-coordinate is equation at a gradient of the z-coordinate is equation of the flow is called two - dimensional heat flow is equation at a gradient of the z-coordinate is independent is independent is the flow equation is independent of the z-coordinate is equation is independent is independent is the flow equation is independent is independent is the is a flow is equation is independent is independen$$

Therefore, the 20 heat flow equations become,

$$0 = c^{2} \left(\frac{\partial 2u}{\partial x^{2}} + \frac{\partial 2u}{\partial y^{2}} \right)$$

$$\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial 2u}{\partial y^{2}} = 0, \text{ which is known as laplace equation
convolved flow equation under shock solve.
The out possible colution of 20 heat flow equation on
laplace equation are:
1, u (x, y) = (AePx + BeTPx) (cospy + Dsinpy)
2, u (x, y) = (Acospx + Bsinpx) (cePy + DePy)
3, u(x, y) = (Ax + B) (cy + D)
4, Founder transform
Let fix be defined in (-00,00) and piece - wise
continuous and absolutely integrable in (-00,00) I then
the found bransform of fixs is defined as,
 $\frac{1}{2\pi} \int_{0}^{1} f(x) e^{isx} dx \cdot 8t$ is defined by $f(Rx)$ on $F(S)$, the fix
 $F[F(x] = F(S) = \frac{1}{\sqrt{2\pi}} \int_{0}^{2} f(x) \cdot e^{isx} \cdot dx = 0$
Sinversion formula for fourier bransform is
 $If f[F(x] = F(S) = \frac{1}{\sqrt{2\pi}} \int_{0}^{2} f(S) \cdot e^{isx} ds$. It is denoted by
 $f(S)$ is defined as $\frac{1}{\sqrt{2\pi}} \int_{0}^{2} f(S) \cdot e^{isx} ds$. It is denoted by
 $F(Cx) = 0$ or $F^{-1}F(Cx)$$$

(1.e)
$$f(x) = \frac{1}{12\pi} \int_{0}^{\infty} F(s) \cdot e^{isx} \cdot dx = 0$$

(1.e) $f(x) = \frac{1}{12\pi} \int_{0}^{\infty} F(s) \cdot e^{isx} \cdot dx = 0$
(1.e) $add(s)$ together are called as fourth bonsform pair.
2) A string its stretched and fourthat by displacing
the string its the fram $y = k (lx - x^2)$ from which is
 kt released at time $t = 0$. Find the displacement of any
point on the string at a distance $d = x$ from one end
at time f .
(1.1) The one-dimensional wave equation is
 $\frac{d^{2}n}{dt^{2}} = \frac{a^{2}}{dx^{2}}$, there $a^{2} = \frac{T}{m} \left(\frac{constan}{mats}\right)$
The conserved solution of 1D wave equation is,
 $y(s_{1}t) = C(r, cospx + C_{2} sin px) (C_{3}(cosopt + C_{4} sinoph))$
 $The bondary conditions are:-
(1) $y(o_{1}t) = o, t \ge 0$
 $2, y(A,t) = o, t \ge 0$
 $3, \frac{d(y(t_{2}r_{0}))}{dt} = o, t \le 0$
 $3, \frac{d(y(t_{2}r_{0}))}{dt} = k(dx - x^{2})$
Applying bundary condition 0 in equation 0
 $y(o_{1}t) = (C_{1}(t) + C_{2}(o)) C(c_{3}(cosopt + C_{4} sinopt)) = 0$$

$$= (C_{1}) (C_{3} (usapt)) (C_{4} (sin apt) = 0$$

$$= (C_{1}) (C_{3} (usapt)) (C_{4} (sin apt) = 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) = 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) + 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) - 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) - 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) - 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) = 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) = 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) = 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) = 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) = 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) = 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) = 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) = 0$$

$$= (C_{3} (usapt) + C_{4} (sin apt) + (C_{3} (usapt) + C_{4} (sin apt))$$

$$= (C_{3} (usapt) + (C_{3} (usapt) + C_{4} (sin apt))$$

$$= (C_{3} (usapt) + (C_{3} (usapt) + C_{4} (sin (usapt)) + (C_{3} (usapt) + C_{4} (usa((usapt)) + (C_{3} (usapt)) + (C_{3} (usapt) + C_{4} (usa((usapt)) + (C_{3} (usapt)) + (C_{3} (usapt)) + (C_{3} (usapt) + C_{4} (usa((usapt)) + (C_{3} (usapt)) + (C_{3} (usapt) + (C_{4} (usa((usapt)) + (C_{3} (usapt)) + (C_{3} (usapt)) + (C_{3} (usapt)) + (C_{3} (usapt) + (C_{4} (usa((usapt)) + (C_{3} (usapt)) + (C_{3} (usapt)) + (C_{3} (usapt) + (C_{4} (usa((usapt)) + (C_{3} (usapt)) + (C_{3} (usapt)) + (C_{3} (usapt)) + (C_{3} (usapt) + (C_{4} (usa((usapt)) + (C_{3} (usapt)) + (C_{3} (usapt)) + (C_{3} (usapt) + (C_{4} (usa((usapt)) + (C_{3} (usapt)) + (C_{3} (usapt)) + (C_{3} (usapt)) + (C_{3} (usapt)) + (C_{3} (usapt) + (C_{4} (usa((usapt)) + (C_{3} (usapt)) + (C_{3} (usapt)) + (C_{3} (usapt)) + (C_{3} (usapt) + (C_{4} (usa((usapt)) + (Usa((usab$$

Applying 3rd condition in the above equation

$$\frac{\partial}{\partial t} = g(x_{1}o) = 0;$$

$$C_{2} Sin\left(\frac{nT}{k}\right) \times (o + C_{4} \cdot \frac{nT}{k}\right) = 0$$

$$C_{2} Sin\left(\frac{nT}{k}\right) \times (C_{4}\left(\frac{nT}{k}\right)) = 0$$
Since $C_{2} \neq 0$
then, $C_{4}\left(\frac{nT}{k}\right) = 0$

$$C_{4} = 0, \quad (:: \frac{nT}{k} \neq 0); \quad Sub \quad C_{4} = 0 \text{ in } e_{2}n(3)$$

$$g(x_{1}t) = (C_{2} \cdot Sin\left(\frac{nT}{k}\right) \times) \quad (c_{3} \cos\left(\frac{nT}{k}\right) t)$$

$$g(x_{1}t) = (c_{3} \cdot Sin\left(\frac{nT}{k}\right) \times \cdot \cos\left(\frac{nT}{k}\right) t$$

$$g(x_{1}t) = (c_{3} \cdot Sin\left(\frac{nT}{k}\right) \times \cdot \cos\left(\frac{nT}{k}\right) t$$

$$G(x_{1}t) = (c_{3} \cdot Sin\left(\frac{nT}{k}\right) \times \cdot \cos\left(\frac{nT}{k}\right) t$$

$$G(x_{1}t) = (c_{3} \cdot Sin\left(\frac{nT}{k}\right) \times \cdot \cos\left(\frac{nT}{k}\right) t$$

$$G(x_{1}t) = \frac{2}{n} (c_{3} \sin\left(\frac{nT}{k}\right) \times \cdot \cos\left(\frac{nT}{k}\right) t - \frac{1}{2}$$

$$G(x_{1}t) = \frac{2}{n} (c_{3} \sin\left(\frac{nT}{k}\right) \times \cdot \cos\left(\frac{nT}{k}\right) t - \frac{1}{2}$$

$$G(x_{1}t) = f(x_{2}) = k \quad (f_{2}t - x^{2})$$

$$g(x_{1}, 0) = f(x_{2}) = k \quad (f_{2}t - x^{2})$$

$$g(x_{1}, 0) = f(x_{2}) = k \quad (f_{2}t - x^{2})$$

$$g(x_{1}, 0) = f(x_{2}) = k \quad (f_{2}t - x^{2})$$

$$G(x_{1}, 0) = f(x_{2}) = k \quad (f_{2}t - x^{2})$$

$$G(x_{1}, 0) = f(x_{2}) = \frac{2}{3} \quad (c_{3} \sin\left(\frac{nT}{k}\right) \times t^{2} \text{ or } t^{2}$$

here
$$I = (n = \frac{2}{A} \int_{A}^{A} f \cos s + \sin \left(\frac{n\pi}{A}\right) x dx$$

$$(n = \frac{2}{A} \int_{A}^{A} k \left(\frac{4x - x^{2}}{x}\right) + \sin \left(\frac{n\pi}{A}\right) x dx \frac{3}{2}$$

$$= \frac{2k}{A} \left[\left(\frac{4x - x^{2}}{x}\right) \left(\frac{-\cos\left(\frac{n\pi}{A}\right)A}{\left(\frac{n\pi}{A}\right)}\right) - \left(\frac{1 - 2x}{x}\right) \left(\frac{-\sin\left(\frac{n\pi}{A}\right)A}{\left(\frac{n\pi}{A}\right)^{2}}\right) + \left(\frac{6 - 2x}{\left(\frac{n\pi}{A}\right)A}\right) - \left(\frac{1 - 2x}{x}\right) \left(\frac{-\sin\left(\frac{n\pi}{A}\right)A}{\left(\frac{n\pi}{A}\right)^{2}}\right) \right]^{A}$$

$$= \frac{2k}{A} \left[\left(\frac{6 + 6}{x}\right) - \frac{2k}{n^{2}\pi^{3}} \left(-1\right)^{2} + \frac{2k^{3}}{n^{2}\pi^{3}}\right]$$

$$= \frac{2k}{A} \left[\frac{-2k^{3}}{n^{3}\pi^{3}} \left(-1\right)^{2} + \frac{2k^{3}}{n^{2}\pi^{3}}\right]$$

$$= \frac{2k}{A} \left[\frac{-2k^{3}}{n^{3}\pi^{3}} \left(-1\right)^{2} + \frac{2k^{3}}{n^{2}\pi^{3}}\right]$$

$$= \frac{2k}{A} \left[\frac{-2k^{3}}{n^{5}\pi^{3}} \left(-1\right)^{2} + \frac{2k^{3}}{n^{2}\pi^{3}}\right]$$

$$= \frac{2k}{A} \left[\frac{-2k^{3}}{n^{5}\pi^{3}} \left(-1\right)^{2} + \frac{2k^{3}}{n^{2}\pi^{3}}\right]$$

$$= \frac{2k}{n^{5}\pi^{3}} \left[1 - C - 1\right]^{2}$$

$$= \frac{4k^{2}}{n^{5}\pi^{3}} \left[1 - C - 1\right]^{2}$$

$$= \frac{6}{n^{5}\pi^{3}} \left[1 - C - 1\right]^{2}$$

$$= \frac{2k}{n^{5}\pi^{3}} \left[1 - C - 1\right$$

$$\frac{3}{2} A + ighthy Steelched Study with fixed and points
DC = 0 f x = l is initially in a position given by
y(x,0) = y. Sin3 (T/e)x. If it is released from
rest from this position. find the displacement y along
distance x from one end of any timet.
The 1D wave equation is
$$\frac{d^{2}a}{de^{2}} = a^{2} \frac{d^{2}u}{do^{2}} / a = t/n \left(\frac{tensin}{mess}\right)$$
(The current colution of 1D wave equation is
y(x,t) = (C_{1} cos px + C_{2} Sin px) (C_{3} cos pt + C_{4} Sin pt)
The backdary conditions are
1) y(0,t) = 0, t to
z, y(1,t) = 0, t to
z, y(1,t) = f(x) = y_{0} Sin³(T/e)x
The position of in equation 0
y(0,t) = (C_{1} (t) + (2 (t))) (C_{3} (cos pt + (u sin apt)) = 0)
= (C_{1}) (C_{3} cos apt + C_{4} Sin apt) = 0$$

$$= (C_{1}) (C_{3} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{5} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{5} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{5} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{5} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{5} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{5} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{5} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{5} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{5} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{5} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{5} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{5} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{5} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{7} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{7} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{7} cos apt + C_{4} Sin apt) = 0$$

$$I(r=0) C: C_{7} cos apt + C_{6} Sin apt) = 0$$

$$I(r=0) C: C_{7} cos apt + C_{6} Sin apt) = 0$$

$$I(r=0) C: C_{7} cos apt + C_{6} Sin apt) = 0$$

$$I(r=0) C: C_{7} cos apt + C_{6} Sin apt) = 0$$

$$I(r=0) C: C_{7} cos apt + C_{6} Sin apt) = 0$$

$$I(r=0) C: C_{7} cos apt + C_{6} Sin apt) = 0$$

$$I(r=0) C: C_{7} cos apt + C_{6} Sin apt) = 0$$

$$I(r=0) C: C_{7} cos apt + C_{7} Sin apt) = 0$$

Applying 2nd boundary Condition in equation (2)

$$y(l,t) = (2 \sin pl (C_{3} \cos pt + t_{4} \sin qt)) = 0$$

$$=) (2 \sin pl = 0 \qquad (: (2 \neq 0 \quad if (2 = 0) \\ 1 \neq 0 \quad if (2 = 0) \\ 2 + b \qquad (2 \neq 0) \quad if (2 = 0) \\ 1 \neq 0 \qquad (2 \neq 0) \quad if (2 = 0) \\ 1 \neq 0 \qquad (2 \neq 0) \quad if (2 = 0) \\ 1 \neq 0 \qquad (2 \neq 0) \quad if (2 = 0) \\ 1 \neq 0 \qquad (2 \neq 0) \quad if (2 = 0) \\ 2 = 0 \qquad (2 \neq 0) \quad if (2 = 0) \\ 2 = 0 \qquad (2 \neq 0) \quad if (2 \neq 0) \quad if (2 \neq 0) \\ 1 \neq 0 \qquad (2 \neq 0) \quad if (2 \neq 0) \quad if (2 \neq 0) \\ 1 \neq 0 \qquad (2 \neq 0) \quad if (2 \neq 0) \quad if (2 \neq 0) \\ 1 \neq 0 \qquad (2 \neq 0) \quad if (2 \neq 0) \quad if (2 \neq 0) \\ 1 \neq 0 \qquad (2 \neq 0) \quad if (2 \neq$$

Her,
$$C_{4}\left(\frac{n\pi a}{k}\right) = 2$$

 $C_{4} = 0$, $\left[\frac{1}{2}, \frac{n\pi a}{k} \neq 0\right]$
 $g_{4}(S_{4} = 0$ in equ $\left(\frac{a}{3}\right)$
 $g_{4}(S_{4} = 0)$ $\left(\frac{n\pi a}{k}\right) \times \right) \left(\frac{1}{3}\cos\left(\frac{n\pi a}{k}\right)\right)$ $\left(\frac{1}{2}\omega_{12}\right)$
 $g_{5}(S_{4} = 0)$ $\left(\frac{n\pi a}{k}\right) \times \left(\frac{1}{3}\sin\left(\frac{n\pi a}{k}\right)\right)$
 $g_{5}(S_{4} = 0)$ $\left(\frac{n\pi a}{k}\right) \times \left(\frac{1}{3}\sin\left(\frac{n\pi a}{k}\right)\right)$
 $g_{5}(S_{4} = 0)$ $\left(\frac{n\pi a}{k}\right) \times \left(\frac{n\pi a}{k}\right)$
 $g_{5}(S_{4} = 0)$ $\left(\frac{n\pi a}{k}\right) \times \left(\frac{n\pi a}{k}\right) \times \left(\frac{n\pi a}{k}\right)$
 $g_{5}(S_{4} = 0)$ $\left(\frac{n\pi a}{k}\right) \times \left(\frac{n\pi a}{k}\right) \times \left(\frac{n\pi a}{k}\right) + \frac{1}{2}\left(\frac{n\pi a}{k}\right) +$

Substitute
$$C_1 = \frac{240}{4}$$
, $C_2 = 0$, $C_3 = -\frac{19}{4}$, $C_{4} = 0$, $C_{5} = 0$
in the most general Solution in eqn. (a)
 $g(x_{1} \in t) = \frac{g}{2}$, $T_{n} \sin\left(\frac{n\pi}{4}\right)x \cdot \cos\left(\frac{\pi\pi}{4}\right)t$
 $= C_{1} \sin\left(\frac{\pi}{4}\right)x \cdot \cos\left(\frac{\pi\pi}{4}\right)t + C_{5} \sin\left(\frac{3\pi}{4}\right)x \cdot \cos\left(\frac{3\pi}{4}\right)t$
 $\Gamma'' C_{2} = C_{4} = C_{5} + \dots = 0$
 $T'' g(x_{1} \in t) = \frac{3\pi}{4}$ $\sin\left(\frac{\pi}{4}\right)x \cdot \cos\left(\frac{\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $\sin\left(\frac{3\pi}{4}\right)x \cdot \cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi}{4}\right)t - \frac{4\pi}{4}$ $\cos\left(\frac{3\pi\pi}{4}\right)x \cdot \cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$
 $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac{3\pi\pi}{4}\right)t - \frac{4\pi}{4}$ $Cos\left(\frac$

Let
$$k=20$$

The boundary conditions are,
 i_1 u (o_1y) = o_1 o $k \propto 2k$
 z_1 u (k_1y) = o_1 o $k \propto 2k$
 z_1 u (k_1y) = o_1 o $k \propto 2k$
 u_1 u (u_1k) $z = f(x_1) = x (k-x)$
 $u(x_1, y) = f(x_1) = x (k-x)$
 $u(x_1, y) = (A \cos px + B \sin px) (ie^{PJ} + oe^{PJ})$
Applying 1th bic in equilibrit
 $O = (o_1y) = o$
 $z = (A \cos o + B \sin o) (ce^{PJ} + oe^{PJ}) = o$
 $z = (A \cos o + B \sin o) (ce^{PJ} + oe^{PJ}) = o$
 $z = (ce^{PJ} + be^{PJ}) = o [: If a - b = o + ien either
 $z = A = o (-: (e^{PJ} + be^{PJ}) = o)$
Sub $A = o + in equilibrit
 $u(x_1, y) = B \sin px (te^{PJ} + be^{-PJ}) = (2)$
Applying 2^{nk} Bic in equilibrit
 $u(k_1, y) = o$
 $z = B \sin pk (ce^{PJ} + pe^{-PJ}) = o$
 $z = S \sin pk = 0$
 $z = S \sin pk = 0$
 $z = S \sin pk = n\pi$
 $p = n\pi/k$$$

Sins
$$P = \frac{\pi T}{R}$$
 in e_{AB} (2)
 $u(x_{1}r_{3}) = 0$ Sin $(\pi T_{A}) \times (re^{(\pi T/R)Y} + De^{(\pi T/R)Y}) - (3)$
 $u(x_{1}r_{3}) = 0$ Sin $(\pi T_{A}) \times (re^{(\pi T/R)^{2}} + De^{(\pi T/R)^{2}})$
 $= 3 B \sin((\pi T_{A}) \times (re^{(\pi T/R)^{2}} + De^{(\pi T/R)^{2}})$
 $= 3 B \sin((\pi T_{A}) \times (re^{(\pi T/R)^{2}} + De^{(\pi T/R)^{2}})$
 $= 3 C + 0 = 0 = 3 \overline{P = -CT}$
Sub $0 = -c$ in $e_{2}m$ (3)
 $u(x_{1}r_{3}) = B \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - re^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - re^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - re^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}} - e^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T/R)^{2}})$
 $= 2 B c \sin((\pi T/R)) \times (re^{(\pi T$

This is in the form of half range site series
NOW, bn =
$$2/R \int f(2x) - Site \left(\frac{nT}{R}\right) x dx$$

 $= 2/R \int x (2-x) \cdot Site \left(\frac{nT}{R}\right) x \cdot dx$
 $= 2/R \int x (2-x) \cdot Site \left(\frac{nT}{R}\right) x \cdot dx$

134 13ernoulli's formula

$$\int uv dx = uv_{1} - u'v_{2} + u''v_{3} - u''v_{4} \cdots$$

$$u \neq x (l - 5c)$$

$$v'_{1} = \left(\frac{-\cos(n\pi/k)x}{(n\pi/k)^{2}}\right)$$

$$v'_{2} = \left(\frac{-\sin(n\pi/k)x}{(n\pi/k)^{2}}\right)$$

$$v'_{2} = \left(\frac{-\sin(n\pi/k)x}{(n\pi/k)^{2}}\right)$$

$$v'_{3} = \left(\frac{\cos(n\pi/k)x}{(n\pi/k)^{3}}\right)$$

$$b_{n} = \frac{2}{k} \int (x l - x^{2}) \left(\frac{-\cos(n\pi/k)x}{(n\pi/k)^{2}} - (l - 2z) \left(\frac{-\sin(n\pi/k)x}{(n\pi/k)^{2}}\right)\right)$$

$$+ (-2) \left(\frac{\cos(n\pi/k)x}{(n\pi/k)^{3}}\right)$$

$$= \frac{2}{k} \int (0 + 0 - \frac{2k^{3}}{n^{3}\pi^{3}} \cos n\pi) - (0 + 0 - 2k^{3})$$

$$b_{n} = \frac{2}{k} \left[\left(0 + 0 - \frac{2k^{3}}{n^{3}\pi^{3}} \left(1 - (-1)^{n}\right)\right)\right]$$

$$= \frac{2}{k} \left(\frac{2k^{3}}{n^{3}\pi^{3}} \int \left[1 - (-1)^{n}\right]$$

$$b_{n} = \left\{\frac{2k^{2}}{n^{3}\pi^{3}} \left(1 - (-1)^{n}\right)\right\}$$

$$= \frac{2k^{2}}{n^{3}\pi^{3}} (n\pi/k) = uve_{n} b_{n} = \frac{4k^{2}}{n^{3}\pi^{3}} \left(1 - (-1)^{n}\right) = \frac{4k^{2}(-1)}{n^{3}\pi^{3}} = 0$$

we know that I be = (a. sin bott

The most generalised solution $u(x_1,y_2) = \sum_{n=1}^{\infty} (n \cdot \sin\left(\frac{n \cdot \pi}{\lambda}\right) x - \sin\left(\frac{n \cdot \pi}{\lambda}\right) y$

Sub
(n Value in the above equation.
=)
$$u(x_{1}y) = \frac{29}{5} = \frac{5n}{5in \ln \pi} \sin\left(\frac{n\pi}{2}\right)z + \sin\left(\frac{n\pi}{2}\right)y$$

 $n = od\delta = \frac{3hz}{5in \ln \pi} + \sin\left(\frac{n\pi}{2}\right)z + \sin\left(\frac{n\pi}{2}\right)y$
 $= \frac{29}{5} = \frac{3hz}{5in \ln \pi} + \sin\left(\frac{n\pi}{2}\right)z + \sin\left(\frac{n\pi}{2}\right)y$
 $= \frac{29}{n = od\delta} = \frac{8h^2}{n^3\pi^3} \left(\frac{1}{5in \ln \pi}\right) + \sin\left(\frac{n\pi}{2}\right)z + \sin\left(\frac{n\pi}{2}\right)y$
 $\lambda = 20$
=) $u(x_{1}y) = \frac{29}{5} = \frac{6(2n)^2}{n^3\pi^3} \left(\frac{1}{5in \ln \pi}\right) + \sin\left(\frac{n\pi}{2n}\right)x + \sin\left(\frac{n\pi}{2n}\right)y$

a
$$(n, y) = \frac{3}{2} + \frac{3200}{n^3 \pi^3} \left(\frac{1}{\sinh \pi} \right) \cdot \sin \left(\frac{n\pi}{20} \right) x - \sin \left(\frac{n\pi}{20} \right) y$$

5/ay Derive Khange of scale property and modulation theorem of

Solution :a, scale property Statement: if F[f(x)] = F(s), then $F(f(x)) = \frac{1}{|a|} F(s|a)$, where a \$0 Proof: we know that $F[F(x)] = F(s) = \frac{1}{2\pi} \int F(x) \cdot e^{iSx} \cdot dx$ Now, $F[f(x)] = \frac{1}{2\pi} \int f(x) dx$ case ci) Ef a >0 let are = t =) x=t/a =) add = df =) dx = dt/a where) = 00 =) E = ax = 00 Now $F[f(ax)] = \sqrt{2\pi} \int f(t) \cdot e^{is(t/a)} dt a$ = $\frac{1}{\sqrt{2\pi}}\int f(t) \cdot e^{i(x/a)t} dt$ = 1/a F(Sla) = F[f(ax)] = /a F(S/a) when a so

Cose (ii) If
$$a < 0$$
,
let $ax=t = 3$ $x = t/a$
 $= 3$ $adx = dt$
 $dx = dt/a$
Let when $x = -\infty = 3t = ax = -\infty$
Now $F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{\pi}^{\infty} f(t) \cdot e^{iS(t/a)} dt/a$
 $= \frac{1}{\alpha} \left[\frac{1}{\sqrt{2\pi}} \int_{\pi}^{\pi} f(t) \cdot e^{i(S/a)t} dt \right]$
 $= -\frac{1}{\alpha} [f(x)] = \frac{1}{\sqrt{2\pi}} \int_{\pi}^{\pi} f(t) \cdot e^{i(S/a)t} dt$
 $= -\frac{1}{\alpha} [f(x)] = \frac{1}{\sqrt{2\pi}} \int_{\pi}^{\pi} f(t) \cdot e^{i(S/a)t} dt$
 $= -\frac{1}{\alpha} [f(x)] = \frac{1}{\sqrt{2\pi}} \int_{\pi}^{\pi} f(t) \cdot e^{i(S/a)t} dt$
 $= -\frac{1}{\alpha} [f(x)] = \frac{1}{\alpha} f(t) \cdot e^{i(S/a)t} dt$
 $= -\frac{1}{\alpha} [f(x)] = \frac{1}{\alpha} f(t) \cdot e^{i(S/a)t} dt$
 $= -\frac{1}{\alpha} [f(x)] = \frac{1}{\alpha} f(t) \cdot e^{i(S/a)t} dt$
 $= \frac{1}{\alpha} [f(x)] = \frac{1}{\alpha} f(t) \cdot e^{i(S/a)t} dt$
 $= \frac{1}{\alpha} [f(x) - e^{i(St)} dt]$
 $= \frac{1}{\alpha} [f(x) - e^{i(St)} dt]$
 $= \frac{1}{\alpha} [f(x) - e^{i(St)} dt]$
 $pxoof := we know that f(t) = \frac{1}{\sqrt{2\pi}} \int_{\pi}^{\infty} f(t) - e^{i(St)} dt$
 $= \frac{1}{\alpha} [f(x) - e^{i(St)} dt]$

Since
$$cosx = \frac{e^{ix} + e^{-ix}}{2}$$

 $= \sum F\left[f(x) + cosxx\right] = \frac{1}{2\pi\pi} \int_{\pi}^{\pi} f(x) \cdot \left(\frac{e^{ixx} + e^{ixx}}{2}\right) e^{ixx} + \frac{1}{2\pi\pi} \int_{\pi}^{\pi} f(x) \cdot e^$

by Inversion Formula:

$$f(x_{1}) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} F(s_{1}) \cdot e^{-isx} \cdot ds$$

$$f(x_{2}) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} F(s_{2}) \cdot e^{-isx} \cdot ds$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} \cdot \frac{5inss}{s} \cdot e^{isx} - ds$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} \cdot \frac{5inss}{s} \cdot e^{isx} - ds$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{sinss}{s} (cssx - isine sx_{1}) \cdot dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{sinss}{s} (csx_{1}) ds \cdot i \int_{0}^{\infty} (\frac{sinss}{s} \cdot sx_{2}) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{sinss}{s} (csx_{2}) ds \cdot i \int_{0}^{\infty} (\frac{sinss}{s} \cdot sx_{2}) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{sinss}{s} (csx_{2}) ds \cdot i \int_{0}^{\infty} (\frac{sinss}{s} \cdot sx_{2}) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{sinss}{s} (csx_{2}) ds \cdot i \int_{0}^{\infty} (\frac{sinss}{s} \cdot sx_{2}) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{sinss}{s} (csx_{2}) ds \cdot i \int_{0}^{\infty} (\frac{sinss}{s} \cdot sx_{2}) ds$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{sinss}{s} (csx_{2}) ds = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{sinss}{s} ds = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{sinss}{s} ds = 1$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{sinss}{s} ds = 1$$

put asit => s=t/a =) abs = dt/a

1-1 S=0=>f=as=0 0-6 5=00 => (= a s= 00

Now, 00 $\int \frac{\sin t}{(t/a)} \cdot \frac{dt}{a} = \frac{\pi}{2}$ $\int \frac{\sin t}{t} dt = \frac{\pi}{2}$

NAME: SATHEESH . S

REG No: ValASOAT.

SUBJECT : TRANSFORMS AND BOUNDARY VALUE. SUB CODE : Udomabto 3

DATE : 16/11/22.

 \bigcirc ASSIGNMENT-2 i) Wou'te the One dimensional wave Equation and curite all the possible solutions of wave Equation ONE DIMENSIONAL WAVE EQUATION: One dimensional Wave equation is, $= a^2 \frac{\partial^2 u}{\partial x^2}$ dere a² = I = Tension(T) mass (m) The various solution of One dimensional wave equation: i) $y(x_1t) = (c_1e^{px} + ce^{-px}) (c_3e^{\alpha pt} + c_4e^{-\alpha pt})$ 2.) Y (seit) = (C3 (ospor + C6 sinp oc) (C, losupt + C8 sin apt) 3.) $\gamma(s_1t) = (c_1s_1 + c_{1s})(c_1t_1 + c_{1s})$. Coveret solution of the One dimensional wave Equation out of all the possible solutions we can choose the correct solution as follows: Since we are dealing with problems on vibration of Sterings

The solution should be a periodic benetion. And the solution must involve Tougnometeric terms like Sines and Cosines. Therefore the Correct solution of the Wave Equation 15 $y(x_1t) = (c_1 \cos px + c_a \sin px)(c_3 \cos pt + c_4 \sin pt)$ 11) Fourier's law of Thermal Conduction (or) Conductinit The fouriers law of thermal Conduction states that the state of Heat Townsper through a material is proportional to the Negative gradient (-ve) in the temperature and the area of the Surface therough which the heart blownes. III) White the One - dimensional heart 6 low equation and weite all the possible solution of heart squartion. ONE - DIMENSIONAL HEAT EQUATION: The One-dimensional Heat Equation is given by $\frac{du}{dt} = c^2 \frac{d^2u}{dx^2}.$

where
$$c^{2} = \frac{R}{ec}$$

Here $K = Thermal Conductivity
 $C = Density$
 $C = Specific Heat Copacity.$
where $= c^{2} = \frac{K}{Cc}$
Here, $K = Thermal Conductivity$
 $C = Density$
 $C = Density$
 $C = Specific Heat$
 $In Steady ostate $\frac{\partial U}{\partial t} = 0$
 \therefore the two dimensional Heat Glow becons.
 $\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} y}{\partial y^{2}} = 0$
which is known as "Laplace Equation"
The Various possible Solutions of Laplace Equation
 $C Two dimensional Heat Glow Equation) are$
 $1) V(x, Y) = (Ae^{P^{2}} + Be^{-Px}) (Cospy + Dsinpy)$
 $2) u(x, Y) = (A cospx + Bsinps) (ce^{PY} + De^{-PY})$$$

3)
$$U(x_1 v) = (A x + B) (C_1 + D)$$

The Connect Solution of Laplace Equation.
The non - 2010 boundary Conditions are along
the x-aaris are a line parallel to x-aaris
ie), $U(x_1 o) = U(x_1 R) = b(x)$, then
The connect solution is
 $U(x_1 Y) = (A \cos px + B \sin px) \cdot (C e^{PY} + D e^{-PY})$
The Various (or) all possible solutions of one dimensional
Weat Equations are.
i) $U(x_1 t) = (A c^{Px} + B e^{-Px}) \cdot e^{\alpha pt}$
a) $u(y_1 t) = (A (c_{Px} + B e^{-Px}) \cdot e^{\alpha pt}$
a) $u(y_1 t) = (A (c_{Px} + B sin px) \cdot e^{-\alpha^2 p^2 t}$
The counct solutions of One dimensional Heat Equation
out of all the three possible solution cue have to
choose the solution which is consistent out to the
physical proture of the problem.
Since 'U' diverces os time 't 1 in cueses
The Only Sustable Solution of the Heat Equation
 $u(x_1 t) - (A cesp x + B sin px) e^{-\alpha^2 p^2 t}$.

(*)
(*) While the two-dimensional heat blow Equation
and while all possible solutions of two-dimensional
heat Equation.
Two DIMENSIONAL HEAT FLOW EQUATION:
The DIMENSIONAL HEAT FLOW EQUATION:
The the fun parature distribution at any paint is
inclupendent of the Z-lo ordinate them the heat flow
is culled two-dimensioned Heat flow.
ie) The equation of the two dimensional heat flow
is
$$\frac{\partial u}{\partial t} = C^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right).$$

V) While the fourier Transform pair (Eaurier
Townsform and Inversion of fourier Transform)
FORTER TRANSFORM:
Let for be defined in (-or, o) and place-
wise confinous and absolutey integrable in(-or, o)
them the fourier transform of four to defined as
 $F\left[box] = F(3) = \frac{1}{10\pi}\int_{-\infty}^{0} b(x) \cdot e^{ixx} dx.$

is denoted by F(6x) (or) F(S) 开 $ie) F(bx) = F(s) = \frac{1}{\sqrt{2\pi}} \int b(sc) \cdot e^{isx} dx$ \longrightarrow "speare (5) is the paremeter sometimes (p) (07) We are also used instead of s' INVERSION FORMOLD FOR FOURIER TRANSFORM: Inversion bormela bor fourier transform it the F (600), BOS), then the inverse forwir transform of F(S) is defined as Jan [F(S). - Eise dre, it is denoted by F - [FG)7 09 /(x) ie) boi = 1 [F(s) e-isx ds ____ Here the Equation (1) and a together one called as Fourier Toursfoorm Pairs!

2.) A storing in storeached and bastened to two points x=0 and x=1 motion is started by displacing the string into the board y = K (loc - oce) borom which it is ruleased and at time t=0. Find the displacement of any point on the storing at a distance of a from one end at time t The One dimensional wave equation is, $= \frac{\alpha^2 \partial^2 y}{\partial x^2}$ 945 The Correct Souttion of One dimensional Wave Equation is, $g(x,t) = (C, \log p > c + C_2 \sin p > c) (C_3 \log apt + C_4 \sin apt) = (C_1 \log p > c) (C_2 \log apt + C_4 \sin apt) = (C_1 \log apt$ The boundary Condition are, r) y(0, t) =0 t>0 2.) Y (1, t) = 0, t > 0 $3.) \frac{\partial}{\partial t} \gamma(x_0) = 0, \quad 0 \leq x \leq l.$ $A^{-}) y (x_{0}, 0) , \beta(x) = H(1 - x^{2}).$

9
Substituting
$$P = n\pi \frac{\pi}{\lambda}$$
 in equation (2) we, get,
 $Y(2_{1}t) = G \sin p \times (G \sin p + Cq \sin p t)$
 $= C_{2} \sin (n\pi) \times (G \cos (n\pi a) + Cq \sin (n\pi q) t) - G$
portially differential Equation (3) with suspect to on
both sides.
 $Y(2_{1}t) = G \sin (n\pi) \times (G \sin (n\pi a) t) + (C_{q}(\sin (n\pi a) t))$
 $\frac{\partial v}{\partial x}(2_{1}t) = G \sin (n\pi) \times (G \sin (n\pi a) t) + (C_{q}(\sin (n\pi a) t))$
 $\frac{\partial v}{\partial x}(2_{1}t) = G \sin (n\pi) \times (G \sin (n\pi a) t) + (C_{q}(\sin (n\pi a) t))$
 $\frac{\partial v}{\partial x}(2_{1}t) = G \sin (n\pi) \times (G \sin (n\pi a) t) + (C_{q}(\cos (n\pi a) t))$
 $\frac{\partial v}{\partial x}(2_{1}t) = G \sin (n\pi) \times (G \sin (n\pi a) t) + (C_{q}(\cos (n\pi a) t))$
 $\frac{\partial v}{\partial x}(2_{1}t) = G \sin (n\pi) \times (G - \sin (n\pi a) - \sin (n\pi a) t) + (C_{q}(\cos (n\pi a) - \cos (n\pi a)))$
 $\frac{\partial v}{\partial x}(2_{1}t) = G \sin (n\pi) \times (G - \sin (n\pi a) - (n\pi a) + C_{q}(\cos (n\pi a) - (n\pi a)))$
 $\frac{\partial v}{\partial x}(2_{1}t) = G \sin (n\pi) \times (G - \sin (n\pi a) - (n\pi a) + C_{q}(\cos (n\pi a) - (n\pi a)))$
 $C_{q} \sin (n\pi) \times (G - \sin (n\pi a) - (n\pi a) + C_{q}(1) (n\pi a) - (n\pi a))$
 $C_{q} \sin (n\pi) \times (G - \sin (n\pi a) + C_{q}(1) (n\pi a) - (n\pi a))$
 $C_{q} \sin (n\pi) \times (G + (q (n\pi a)) - (n\pi a) - (n\pi a)) = 0$
 $C_{q} \sin (n\pi) \times (-C_{q}(n\pi a) - (n\pi a) - (n\pi a)) = 0$
 $C_{q} \sin (n\pi) \times (-C_{q}(n\pi a) - (n\pi a)) = 0$.

(*) Sin
$$(2 \neq 0)$$
, then $(4 \xrightarrow{D\pi a}{l})$ must be 0)
 $(4 = 0 \xrightarrow{\left(\frac{D\pi a}{l}\right)}{l} \neq 0$
Substitude $(4 = 0)$ in equation (2).
 $y(x_{1}+) = C_{2} = (3 \sin\left(\frac{D\pi}{l}\right)x) \cdot (\cos\left(\frac{D\pi a}{l}\right) +)$
 $y(x_{1}+) = (n \sin\left(\frac{D\pi}{l}\right)x \cdot \cos\left(\frac{D\pi a}{l}\right) +$
The most general Solution of the given problem in
 $y(x_{1}+) = \frac{2}{2}$, $(n \sin\left(\frac{D\pi}{l}\right)x \cdot \cos\left(\frac{D\pi a}{l}\right) + \frac{2}{2}$.
Applying A^{th} boundors (southing in equation (4)
 $y(x_{1}-) = \frac{2}{2}$ $(n \sin\left(\frac{D\pi}{l}\right)x \cdot \cos\left(\frac{D\pi a}{l}\right) - \frac{2}{2}$.
Applying A^{th} boundors (southing in equation (4)
 $y(x_{1}-) = F(a)$
 $Y(x_{1}-) = \frac{2}{2}$ $(n \sin\left(\frac{D\pi}{l}\right)x \cdot \cos\left(\frac{D\pi a}{l}\right) - \frac{2}{2}$.
 $H(2x-x^{2}) = F(a)$
 $Y(x_{2}-x) = F(a)$
 $Y(x_{2}-x) = \frac{2}{2}$ $(n \sin\left(\frac{D\pi}{l}\right)x \cdot \cos\left(\frac{D\pi a}{l}\right) - \frac{2}{2}$.
 $H(2x-x^{2}) = \frac{2}{2}$ $(n \sin\left(\frac{D\pi}{l}\right)x \cdot \cos\left(\frac{D\pi a}{l}\right) - \frac{2}{2}$.
 $This is the form of half examp sine avoids is$
 $(n = \frac{1}{2}\int_{0}^{l} b(x) \sin\left(\frac{D\pi}{l}\right)x \cdot dx$.

 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2}{dt} \left(\frac{d^2}{dt} - \frac{d^2}{dt} \right) \frac{d^2}{dt} = \frac{d^2}{dt} \int_{-\infty}^{\infty} \frac{d^2}{dt} \frac{d^2}{dt} = \frac{d^2}{dt} \int_{-\infty}^{\infty} \frac{d^2}{dt} \frac{d^2}{dt} \frac{d^2}{dt} = \frac{d^2}{dt} \int_{-\infty}^{\infty} \frac{d^2}{dt} \frac{d^2}{dt} \frac{d^2}{dt} = \frac{d^2}{dt} \int_{-\infty}^{\infty} \frac{d^2}{dt} \frac{d^$ $C_{n} = \frac{dK}{R} \left(l_{x} - yc^{2} \right) \left(- \left(\cos \left(\frac{nT}{L} \right) x - \left(-\frac{\partial yc}{L} \right) - \frac{\sin \left(\frac{nT}{L} \right) x}{2} \right)$ + (0-2) $\left(\frac{\cos\left(\frac{h\pi}{4}\right)}{\left(\frac{n\pi}{4}\right)^3}\right)$ $\left[\frac{1}{0}\right]$ $\int_{n=\frac{\partial R}{J}} \left[\left(0 + 0 - \frac{\partial l^3}{n^3 \pi^3} \left(-i \right)^n \right) - \left(0 + 0 - \frac{\partial l^3}{n^3 \pi^3} \left(i \right) \right]$ $C_{n} = \frac{\partial R}{\partial R} \left[-\frac{\partial R^{3}(E_{1})^{n}}{n^{3}\pi^{3}} (E_{1})^{n} + \frac{\partial R^{3}}{n^{3}\pi^{3}} \right]$ $\binom{n=\alpha K}{\Re} \left[\frac{\partial \ell^{32}}{n^3 \pi^3} \left[-(\epsilon_1)^n + 1 \right] \right]$ $C_n = \frac{4K}{n3\pi^3} \left[1 - (-1)^n \right]$ $G_{n} = \int_{0}^{\infty} \frac{1}{n^{3}\pi^{3}} \int_{0}^{\infty} \frac{1}{n} \int_{0}^{\infty} \frac{1}{n^{3}\pi^{3}} \int_{0}^{\infty} \frac{1}{n} \int_{0}^{\infty} \frac{1}{n^{3}\pi^{3}} \int_{0}^{\infty} \frac{1}{n} \int_{0}^{\infty} \frac{1}{n^{3}\pi^{3}} \int_{0}^{\infty} \frac$ Substitute in value is Equetion (2) Your it = 5 h = odd 8K13 sin (nTT) 2 los (n Tra) t... Which is the required genue solution of the give problem,

3. A Tightly Streched string with fined and points x=0 and x=1 is imitially ina position given by y(240) = yo sin³(T) >c. F6 it is sulleased from oust from the position find the displacement of at any distance & from one end at any time t. The One dimensional wave equation is $\frac{\partial^2 y}{\partial t^2} = \alpha^2 \frac{\partial^2 y}{\partial t^2}$ The covert solution of One dimensional wave equation is Yait) = (CI Cosport G sin px) (3 Cosapt + Cq sin apt) The boundary Condition are. 1) Y(0,6) =0 t>0 λ^{\prime} $\gamma(l_{1}t) = 0, t \ge 0$ 3.) $\frac{d}{dt} Y(x, 0) = 0 | 0 \leq x \leq 2$. 4) $\gamma(x, 0) = 600 = K(t, x^2) = K(tx - x^2)$.

Substituting $P = \frac{n\pi}{l}$ in equation (2), we get $Y(x_1t) = C_a xinpx (C_3 (cos apt + C_4 xin apt))$ $= C_{3} \sin\left(\frac{n\pi}{4}\right) \times \left(C_{3} \cos\left(\frac{n\pi a}{4}\right) + \left(4 \sin\left(\frac{n\pi a}{4}\right) + \right) - 3$ partially differential equation 3 mith respect to t? on both sides $Y(x_1+) = G\left(x_1(n\pi)x\right)\left(G_3\cos(n\pi a) + + (4x_1(n\pi a) +)\right)$ $\frac{\partial y}{\partial t}(x_{l}t) = \Im \sin\left(\frac{ht}{k}\right) \times \left[c_{3}\sin\left(\frac{h_{1}}{k}\right) + \left(\frac{h_{1}}{k}\right) + \left(\frac{h_{1}}{k}\right)$ $\binom{h_{R}}{\chi}$. Applying 30rd Condition in above equation — (7). $\frac{\partial}{\partial L}(x,o) = 0$ $\operatorname{Ssin}\left(\frac{n\pi}{2}\right) \times \left(\operatorname{C}_{3}\operatorname{sin}\left(\frac{n\pi a}{l}\right) \circ \left(\frac{n\pi a}{l}\right)\right) + \left[\operatorname{C}_{4}\left(\operatorname{Cos}\left(\frac{n\pi a}{l}\right) \circ \left(\frac{n\pi a}{l}\right)\right)\right]$ $G sin har x \left[e_3(sin o) \left(\frac{nnq}{l} \right) + (q (cos(o) \left(\frac{nnq}{l} \right)) \right]$ $C_3 sin(\frac{n\pi}{2}) \propto \left[C_3(c)(\frac{n\pi a}{d}) + C_4(l)(\frac{n\pi a}{d}) \right]$ $\frac{1}{4} \left(\frac{n\pi}{4} \right) \times \left(\frac{n\pi q}{2} \right) = 0$

Sin (270 then (4 (174) must be 2010) $C_q = 6 \left(\frac{n\pi q}{l} \neq 0 \right)$ Substitute la =0 in equation 3 we get, $Y(sc_1t) = C_d \cdot C_3(sin(n\pi) \cdot (cos(\frac{n\pi q}{l})t))$ $Y(x_{t+1}) = (n \sin(n\pi) x \cdot (\cos(n\pi q)) t$ The most general solution of the given problem is $Y(c_1, b) = \sum_{n=1}^{\infty} (n \sin(n\pi) x \cdot (o_1 (n\pi a)) t -$ -3 Applying the 4th boundary condition in equ (5) $Y(c_{10}) = 6(c_{1}) = Y_{0} \sin (\frac{\pi}{4}) \times (\frac{\pi}{4}) \sin (\frac{\pi}{4}) \times (\frac{\pi}{4}) \sin (\frac{\pi}{4}) \times (\frac{\pi}{4}) \sin (\frac{\pi}{4}) \times (\frac{\pi}{4}) + \frac{\pi}{4} \sin (\frac{\pi}{4}) \times (\frac{\pi}{4}) + \frac{\pi}{4} \sin (\frac{\pi}{4}) \times (\frac{\pi}{4}) + \frac{\pi}{4} \sin (\frac{\pi}{4}) + \frac$ $\underbrace{\mathbb{F}}_{n=1}^{n} (n \sin \left(\frac{n\pi}{P} \right)) c = Y_0 \sin^3 \left(\frac{\pi}{P} \right)) c$ Her sc = (K) x $G sin(\frac{\pi}{e}) > L + G sin(\frac{\pi}{e}) > L + G sin(\frac{\pi}{e}) > L + G sin(\frac{\pi}{e}) > L + G$ = $\frac{1}{4} 3 \sin(\frac{\pi}{4}) \propto -\sin(\frac{\pi}{4}) \approx -\sin(\frac{\pi}{4}) \approx -\sin(\frac{\pi}{4}) \approx -\sin(\frac{\pi}{4}) \approx -\sin($ By Comparing Coursponding co-efficient of $Sin(\frac{\pi}{4})$ x . $sin(\frac{3\pi}{4})$ x con book side

 $G = \frac{3}{4} \frac{1}{6}, (g = 0, G) = -\frac{1}{6}, (f = 0, G) = 0$ Substitute in the most general equation (5) $Y(c_1 t) = \frac{2}{n_{-1}} (n \sin(n\pi) x \cdot \cos(n\pi a) t)$ = $G \sin\left(\frac{\pi}{4}\right) \times \left(\cos\left(\frac{\pi \alpha}{4}\right) + G \sin\left(\frac{3\pi}{4}\right) \times \left(\cos\left(\frac{3\pi \alpha}{4}\right) + G \sin\left(\frac{3\pi}{4}\right) + G \sin\left(\frac$ $Y(x_1+) = \frac{3Y_0}{4} \sin\left(\frac{\pi}{4}\right) \times \left(\cos\left(\frac{\pi}{4}\right) - \frac{Y_0}{4}\sin\left(\frac{3\pi}{4}\right) \times \left(\cos\left(\frac{3\pi}{4}\right) + \frac{1}{4}\right)\right)$ " Which is the required Solution of the given Problem. 4.) A Square plate is Bounded by the lines sc=0, Y=0 and x-y=do, its baces are insulated, the tempurature along apper houigonal line is given by u (x, do) = x (20-x) when o cxcdo white other there edges are kept at Zens O'c. Find Steady State Temperature in the plate

Let ((b(, y)) be the femperceture at any point x, y then, u(sr,y) satisfies the Laplace Equation. $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ The connect solution is. a (x,y) = (A Cospsc + B simps). (ce PY + De - PY)) Let u (x,do) = x (20-x) $\alpha(S(R)) = x(R-x)$ The boundary conditions are, 1) a(0,4)=0 10 Locch. u(l,y) =0, ocy Ll. 2.) U (24,0) =0, 02x21 3.) 4.) $\alpha(x, \ell) = \beta(x) = x(\ell - x).$ $u(x,y) = (A^{\dagger}(osp)x + B^{\dagger}Sinpx)((e^{Py} + De^{-Py})) \longrightarrow (D^{\dagger})$ Applying 1st boundary Condition in () U (0, y) = 0 -=) $(A (\cos(0) + B \sin(0))(e^{PY} + De^{-PY}) = 0.$

A (Cepy + De-PV) = 0 (Ib a - b = 0, then either (Cepy + Oe-Py to) A=0 Substitute A=0 in equation (). $V(x,y) = B sinpsc (Ce^{Py} + De^{Py}) \longrightarrow D$ Applying and boundary Condition in equation _ a (2, y) =0 B sinpl (celly + De-Py) =0 . . (B = 0 , 16 B = 0 , then me get trivial (zero) Sinp &= 0 Solution) Sinpl = sin nor Pl=nT P = nx Substitute $p = \frac{p\pi}{R}$ in equation —3 $u(x,y) = B \sin\left(\frac{\partial \pi}{\lambda}\right) \times \left(Ce\left(\frac{\pi}{\lambda}\right)y + De^{-\left(\frac{\partial \pi}{\lambda}\right)y}\right) = 3$ Applying 3rd boundary Condition in Equation -3 u (x,0) =0 Brin (m) >c (ce (m) + De-(m)) =0 $B \sin\left(\frac{n\pi}{8}\right) \times (C+D) = 0$ $C+D=0 \Rightarrow D=-C$

Substitute D = - (in equation ($u(x,v) = B \sin(\frac{n\pi}{4}) > c(ce(\frac{n\pi}{4})y - (e^{-\frac{n\pi}{4}})y)$ = • B sin $\left(\frac{n\pi}{4}\right) \propto \left[\left(e \left(\frac{n\pi}{4}\right) \right) - \left(e^{-\left(\frac{n\pi}{4}\right)} \right) \right]$ x by and = by z == $ABC \sin\left(\frac{DT}{R}\right) \propto \left[e\left(\frac{DT}{R}\right)Y - e^{-\left(\frac{DT}{R}\right)Y}\right]$ = a Bc sin (m) >c sin h (m) y $\alpha(s_{r,v}) = (n \sin(n\pi) x \sin(n\pi) y)$ The most generce / Equation is $u(x,y) = \sum_{n=1}^{\infty} (n \sin \left(\frac{b\pi}{8}\right) x \sin h \left(\frac{n\pi}{4}\right) y$ Applying 4th boundary Condition in equation (4) U(x,A) = b(x) = sc(A-sc). =) $\frac{1}{2}$ (n sin $\left(\frac{n\pi}{2}\right)x$ · sin $h\left(\frac{n\pi}{2}\right)g = x(1-x)$ =) $\sum_{n=1}^{\infty} (n \operatorname{Rin} \left(\frac{n\pi}{R} \right) \times \operatorname{Sin} h(n\pi) = \operatorname{Sc}(l-\infty)$ let (n sin hnt -bn $\Rightarrow x(x-x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{bx}{a}\right) x$

$$\frac{d\sigma}{dr} = \frac{d}{dr} \ln \sin \left(\frac{n\pi}{dr}\right) \propto \sin(\sigma A)$$
This is in the form of Hulb bronge sine series.
New,

$$\ln = \frac{a}{A} \int_{0}^{A} b(\sigma) \sin \left(\frac{n\pi}{dr}\right) x dx$$

$$= \frac{2}{A} \int_{0}^{A} x(A-\sigma) \sin \left(\frac{n\pi}{dr}\right) x dx$$

$$= \frac{2}{A} \int_{0}^{A} x(A-\sigma) \sin \left(\frac{n\pi}{dr}\right) x dx$$

$$= \frac{2}{A} \int_{0}^{A} x(A-\sigma) \sin \left(\frac{n\pi}{dr}\right) x dx$$

$$= \frac{2}{A} \int_{0}^{A} \frac{1}{2(A-\sigma)} \sin \left(\frac{n\pi}{dr}\right) x dx = \int_{0}^{A} \frac{1}{2\pi} \sin \left(\frac{n\pi}{dr}\right) x dx$$

$$= \frac{2}{A} \int_{0}^{A} \int_{0}^{A} x \sin \left(\frac{n\pi}{dr}\right) x dz = \int_{0}^{A} \frac{1}{2\pi} \int_{0}^{A} x \partial x \sin \left(\frac{n\pi}{dr}\right) x dx$$

$$= \frac{2}{A} \int_{0}^{A} \left(\frac{\cos(n\pi)}{2\pi}\right) - 1 - \frac{\sin(n\pi)}{2\pi} \int_{0}^{2\pi} \frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{\sin(n\pi)}{2\pi}\right) + \frac{2}{2\pi} \left(\frac{(n\pi)}{2\pi}\right) \int_{0}^{A} \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{2\pi} \int_{0}^{2\pi}$$

$$= -\frac{2l^{2}(-1)^{n}}{n\pi} - \frac{4}{\pi} \left[-\frac{1}{n\pi} - \frac{3}{n\pi} \left[-\frac{1}{n\pi} - \frac{3}{n\pi} \left[-\frac{1}{n\pi} - \frac{3}{n\pi} \right] \right]$$

$$= -\frac{2l^{2}(-1)^{n}}{n\pi} - \frac{2}{\pi} \left[-\frac{1}{n\pi} - \frac{3}{n\pi} \left[-1 \right]^{n} + \frac{3l^{3}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{3l^{3}}{n^{3}\pi^{3}} \right]$$

$$= -\frac{3l^{2}(-1)^{n}}{n\pi} - \frac{2}{\pi} \left[\frac{-1}{n\pi} - \frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} \right]$$

$$= -\frac{3l^{2}(-1)^{n}}{n\pi} + \frac{3l^{2}(-1)^{n}}{n\pi} - \frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} \right]$$

$$= -\frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} \right]$$

$$= -\frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} - \frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} \right]$$

$$= -\frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} - \frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} \right]$$

$$= -\frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} - \frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} \right]$$

$$= -\frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} - \frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} \right]$$

$$= -\frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} - \frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} \right]$$

$$= -\frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} - \frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} \right]$$

$$= -\frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} - \frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} \right]$$

$$= -\frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} - \frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} \right]$$

$$= -\frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} - \frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} \right]$$

$$= -\frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} - \frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} \right]$$

$$= -\frac{4l^{2}}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n\pi} - \frac{1}{n^{3}\pi^{3}} \left[-1 \right]^{n} - \frac{1}{n^{3}\pi$$

Substitute the Cn value. $u(x,y) = \frac{2}{h=odd} \frac{1}{\sinh h n \pi} \frac{8\lambda^2}{n^3\pi^3} \sin \left(\frac{n\pi}{\lambda}\right) x \sin \left(\frac{n\pi}{\lambda}\right) y$ l = do $u(x,y) = \sum_{n=odd}^{\infty} \frac{1}{\sinh n\pi} \frac{3doo}{n^3\pi^3} \frac{\sin(n\pi)}{0} x \sin(\frac{n\pi}{0}) y$. Required Solution. a) Devine change of Scale property and Modulation theorem of faurier Services STATE AND PROVE (HANGLE OF SCALE PROPERTY STATEMENT: $F_{6} = F(5), \text{ then } F\left[6(3c)\right] = \frac{1}{fa_{1}} F\left(\frac{s_{1}}{a_{1}}\right)$ where a to. PROOF We know their Fourier Transform $F(bo) = F(s) = \frac{1}{\sqrt{2\pi}} \int b(s) - e^{isx} dx$

Now
$$(x = 0x)$$

 $F = \begin{bmatrix} f(\alpha x) \end{bmatrix} = \frac{1}{\sqrt{2\pi}} = \int_{0}^{1} f(\alpha x) \cdot e^{i\delta x} dx$
 $(\delta x, i) \quad i\delta \quad a > 0$
By using Substitution Method.
Let $\alpha x = t \quad t/\alpha = x$
 $\alpha dx = dt \implies dx = dt/\alpha$
The limit
 $i)$ when $x = -\infty \implies t = \alpha x = -\infty$
 $ii)$ when $x = -\infty \implies t = \alpha x = -\infty$
 Now
 $F = \begin{bmatrix} f(\alpha x) \end{bmatrix} = \frac{1}{\sqrt{2\pi}} = \int_{0}^{1} f(b) \cdot e^{ix} \begin{pmatrix} b \\ a \end{pmatrix} dt_{\alpha}$
 $= \frac{1}{4} = \int_{0}^{1} \frac{1}{\sqrt{2\pi}} = \int_{0}^{1} f(t) \cdot e^{i(\beta)t} \cdot dt$
 $= \frac{1}{4} \cdot F \begin{bmatrix} 5 \\ a \end{bmatrix}$
 $\cdot \cdot F \begin{bmatrix} f(\alpha x) \end{bmatrix} = \sqrt{\alpha} F(5 / \alpha) \text{ when } \alpha > 0$.

Case ii) azo Now, $F = \left[b(\alpha x) \right] = \frac{1}{\sqrt{\alpha x}} \int b(t) \cdot e^{ix}(t/\alpha) \cdot dt/\alpha$. = 1 -1 [b(t) e i (s/a)t dt. $F[b(\alpha s \delta)] = -\frac{1}{\alpha} F(s|\alpha)$ when $\alpha c \delta$. From Case i) and Case ii) $F[b(ex)] = \frac{1}{|q|} F(s/a) \quad a \neq o .$ STATE AND PROVE MODULATION THEOREM : STATEMENT: $F_{b} = F(s)$, then F[6(x) (asax] = 1/2 [F(S+a) + F(S-a)] ROOF : we know theil Fourier Transform. $F[69] = F(s) = \frac{1}{\sqrt{2\pi}} \int b(s) - e^{isin} dsc$

x by Cosax $F\left[b(x)\left(\cos \alpha x\right) = \frac{1}{\sqrt{\partial \pi}}\right] f(x) \cdot \left(\cos \alpha x\right) \cdot e^{isx} dx$ $\frac{1}{2}\left(\frac{\partial s_{2}}{\partial t}\right) = e^{ix} + e^{ix}$ Using this Cesine and Exponential Relation. $F\left[ber\right]\left[\cos\alpha x\right] = \frac{1}{\sqrt{\partial x}}\int ber\left(\frac{e^{i\alpha x} + e^{i\alpha x}}{2}\right)e^{i\beta x} dx$ F[Bar Cosax] = 1 [] Bar - eisx eiax doc + Jar [Bas. einx e-iax dx] $= \frac{1}{2} \int \frac{1}{2\pi} \int \frac{1}{2\pi}$ 1 [bar - e ib-a) x dx $= \frac{1}{2} \int F(S+\alpha) + F(S-\alpha)$ $F[B(\alpha)](\alpha \beta \alpha \beta \alpha) = \frac{1}{2}[F(\beta + \alpha)] + [F(\beta - \alpha)]$

invusion Formula. By b(x) = I F(S) - Eisse ds. = 1 la sinas : e isx dou = 1 [sinas . e-isx The des = 1 Sinas [Cosse-isinsk]. ds = $\frac{1}{x} \int \frac{sinas}{s} \cos sx ds - i \int \frac{sinas}{s} \sin sx ds$ = 1 2 Sinas Cossocds = d Sinas Cossods $f(x) = \frac{\partial}{\partial x} \int \frac{\sin \alpha s}{s} \log s x dx$ $\frac{1}{\pi} \int \frac{\sin \alpha s}{s} \cos s \cdot ds = \begin{cases} 1, (2c/2\alpha) \\ 0, (2c/2\alpha) \end{cases}$ Put x=0 $\frac{\partial}{\Delta} \int \frac{\sin \alpha s}{s} ds = 1$

128 J sinas de = T/2. put (t = as) limit $\alpha S = L$. S = t/aU-L ads = dt = => + => a(~)= ~ SED ds = dt/a $= 5 + \alpha(0) = s$ \$ = 0 V = 0New Sinas de = T/2 $\int \frac{\sinh t}{(b/a)} dt / a = \pi/3.$ $\int \frac{s_{int}}{t} dt = \pi y.$

BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH B.TECH, II YEAR - 2022 - 2023 INTERNAL MARKS - CONSOLIDATED MARK STATEMENT SUBJECT NAME : TRANSFORMS AND BOUNDARY VALUE PROBLEMS SUBJECT CODE: U20MABT03

SL NO.	Reg No.	Marks (50)	Is Absent	Student Name
1	U21EC001	43	NO	ABBANNAGARI JAYACHANDRA
2	U21EC003	47	NO	ADDEPALLI AKHILESH
3	U21EC004	42	NO	AGASTINRAAJ A
4	U21EC005	40	NO	AILURI PRADEEP REDDY
5	U21EC006	41	NO	S AJITH KUMAR
6	U21EC007	42	NO	AKULA DILEEP KUMAR
7	U21EC008	38	NO	ALAVALA NAGI REDDY
8	U21EC009	44	NO	ALURI VENKATA GOPI
9	U21EC010	48	NO	A ESWARA NAGENDRA NATHA RAO
10	U21EC011	31	NO	ANCHULA RAVI TEJA
	U21EC012	43	NO	ANDE SRUTHI
11	U21EC012	41	NO	ANGATI VIJAYTEJA
12		38	NO	ANU R
13	U21EC014	36	NO	ARI VISHNU C
14	U21EC015	40	NO	ARUM NAVEEN
15	U21EC016		YES	ATMAKURI VAMSI KRISHNA
16	U21EC017	0	NO	AVVAGARI VENU
17	U21EC018	40		BADDAM VARSHITH REDDY
18	U21EC020	42	NO	BADDAM VARSHI'H REDD'I
19	U21EC021	47	NO	BANDARU MADHAVA RAO
20	U21EC022	42	NO	
21	U21EC023	40	NO	BANDARU VINEETH
22	U21EC024	41	NO	BATHULA DILEEP SIVA
23	U21EC025	43	NO	BATTARUSETTY SREE CHANDANA
24	U21EC026	34	NO	BELLAMKONDA NIKHIL
25	U21EC027	42	NO	BENDU RAJESH
26	U21EC028	37	NO	BHAVANAM SIVA REDDY
27	U21EC029	39	NO	BIMANABOINA SUKUMAR
28	U21EC030	37	NO	BODAGAM MAHESH
29	U21EC031	43	NO	BOGALA NIKESH REDDY
30	U21EC032	42	NO	BOINA SIDDARDHA
31	U2IEC033	39	NO	BOJJA VENKATA SIVANNARAYANA
32	U21EC034	38	NO	BOORA SIDDHARDHA
33	U21EC035	35	NO	BOREDDY RAJASIMHA REDDY
34	U21EC036	49	NO	BORRA NARENDRA
35	U21EC037	37	NO	BOYA KATLA HEMASANKAR
36	U21EC038	40	NO	BUJALA RAVI SANKAR REDDY
37	U21EC039	47	NO	BYRAPUNENI VENKATRAO
	U21EC040	38	NO	BYREDDY RAMA KRISHNA REDDY
38		38	NO	BYREDDY SOWMITH REDDY
39	U21EC041	41	NO	C. VENKATA SAI DURGA RAMA AJITH
40	U21EC042	41 40	NO	CHANDAN KUMAR MALLIK
41	U21EC044	39	NO	CHEREDDY SURENDRANATH REDDY
42	U21EC045	40	NO	CHERUKU KOTESHWAR
43	U21EC046	39	NO	C.NARASIMHA REDDY
44	U21EC047			CHINTHA PAVAN KUMAR REDDY
45	U21EC048	41	NO NO	CHIRUYOLU JASWANTH
46	U21EC049	37		CHIROVOLU JASWANIII CHIRACHEDU SATHEESH KUMAR
47	U21EC050	37	NO	CHITRACHEDU SATHEESH KUMAK
48	_U21EC051	32	NO	
49	U21EC052	33	NO	DASARI DILEEP KUMAR
50	U21EC053	38	NO	DASARI HAREESH
51	U21EC054	46	NO	DASARI MOHAN KUMAR
52	U21EC055	41	NO	DASARI PRUDVI SAI
53	U21EC056	37	NO	DHARAVATH RAKESH
54	U21EC057	40	NO	DIVYA K
55	U21EC058	38	NO	DODDA PRAVEEN
56	U21EC059	40	NO	DOMMETI DHARMA TEJA
57	U21EC060	37	NO	DOOLAM ROHITH GOUD

58 59 60			1 110	ISDIG & GUNAN GUNDAD COUD
	U21EC061	41	NO	EDIGA SHYAM SUNDAR GOUD
60	U21EC062	40	NO	EEDARA THIRAPATHI REDDY
	U21EC063	44	NO	EESAMBETI SIVA SAI
61	U21EC064	39	NO	ENUGU ARTHIK REDDY
62	U21EC065	46	NO	ERLA THIRUMALESH
63	U21EC066	39	NO	G.L. V.GIRISH CHANDRA
64	U21EC067	41	NO	G.VENKATA GIRISH CHANDRA
65	U21EC068	42	NO	GALAM GURU HEMANTH
66	U21EC069	42	NO	GALLANKI HEMANTH
67	U21EC070	39	NO	GANDRA GOPI
68	U21EC071	31	NO	GANDURI HANUMANTHA RAO
69	U21EC072	39	NO	G.OMPRADEEP REDDY
70	U21EC073	48	NO	GANNAVARAPU SRINIVASA RAO
71	U21EC074	47	NO	GARAPATI POOJITHA
72	U21EC075	40	NO	GEDELA VASU
72	U21EC076	0	YES	GINJUPALLI VISHNU CHARAN
		40	NO	GOBBILLA BALAJI
74	U21EC077	40	NO	GOBBILLA VAMSI
75	U21EC078	41	NO	GODUGU YELISHA
76	U21EC079			GOLLA AJAY
77	U21EC080	39	NO	
78	U21EC081	42	NO	GORRE GNANA DEEPIKA
79	U21EC082	39	NO	GOSU VAMSI SAI
80	U21EC083	39	NO	GUJJULA BHARATH KUMAR
81	U21EC084	49	NO	GUMMA GURU PRASANNA
82	U21EC085	41	NO	GUNASREE V
83	U21EC086	36	NO	GUNDA BHARATH KUMAR
84	U21EC087	49	NO	GUNDLA UDAY KRISHNA
85	U21EC088	42	NO	G.SRI DURGA VENKATESWARA RAO
86	U21EC089	39	NO	IDAVALAPATI VIJAY KUMAR
87	U21EC090	39	NO	IJJAGIRI VENKATESHWARLU
88	U21EC091	40	NO	ILASAGARAPU YASWANTH
89	U21EC092	39	NO	JAKKU SRUTHI REDDY
90	U21EC093	42	NO	JALADANKI BHAGAVAN
90	U21EC095	46	NO	JEEVAROSHAN BARNS R
91	U21EC094	36	NO	JOTHIHARIPRASAD P
		36	NO	JUTURU RAMESH BABU
93	U21EC096	39	NO	KAKARAPALLI SURYA SIVA KUMAR
94	U21EC097			KALLEPALLI SHIVA SAI
95	U21EC098	40	NO	
96	U21EC099	42	NO	KALVA BHANUPRASAD
97	U21EC100	41	NO	KALVACHARLA ABHILASH
98	U21EC101	36	NO	KAMANI GOPI
99	U21EC102	35	NO	KAMANI VENKATA MANIKANTA
100	U21EC103	42	NO	KAMBHAMPATI SAMBASIVARAO
101	U21EC104	41	NO	K.SAKETH REDDY
102	U21EC105	40	NO	KANALA DEEKSHITH REDDY
103	U21EC106	42	NO	KANAPARTHI ABHINAY
104	U21EC107	40	NO	KANAPARTHI SIVANANDA REDDY
105	U21EC108	44	NO	KANCHARLAPALLI PRAKASH RAJ
105	U21EC109	40	NO	KANCHERLA VENKATESWARLU
107	U21EC110	36	NO	KANDALA SURENDRA
107	U21EC110	36	NO	KANDULA DIVYA
	U21EC112	45	NO	KANDULA KIRAN KUMAR
109		43	NO	KANHAIYA KUMAR
110	U21EC113	35	NO	KANKANALA MANIVISHNU
111	U21EC114			KARIKI BHARATH KUMAR
112	U21EC115	41	NO	KATRAPALLI BRAHMA GANESH
113	U21EC116	40	NO	
114	U21EC117	41	NO	KATTA GOWTHAM REDDY
114	U21EC118	42	NO	KATURI VEERENDRA GOPI
115	U21EC119	36	NO	KAVERIPAKAM VINOD KUMAR
		43	NO	R KEERTHI REDDY
115	U21EC120	10		TYPE TOTAL OF A CALCULATION OF TAXA
115 116	U21EC120 U21EC121	41	NO	KINTHADA SAI SAMBHAV
115 116 117			NO NO	KINTHADA SATSAMBHAV KIRSAKAR ROHITH
115 116 117 118 119	U21EC121 U21EC122	41		
115 116 117 118 119 120	U21EC121 U21EC122 U21EC123	41 39	NO	KIRSAKAR ROHITH KIRUBA E KISHTIPATI KARTHIK
115 116 117 118 119	U21EC121 U21EC122	41 39 40	NO NO	KIRSAKAR ROHITH KIRUBA E

	1		1	
124	U21EC127	41	NO	KODURU BALAKRISHNA
125	U21EC128	40	NO	KOKKERA GOPI
126	U21EC129	40	NO	KOLASANAKOTA VINOSH BABU
127	U21EC130	40	NO	KOLLA ASRITH CHOWDARY
128	U21EC131	38	NO	KOLLI DASTHA GIRI SAI
129	U21EC133	38	NO	K.VISHNU VARDHAN REDDY
130	U21EC134	35	NO	KOPPULA SHARATH
131	U21EC135	41	NO	KOSURI E K N V S LAKSHMI SATISH
132	U21EC136	40	NO	KOTHA HARSHAVARDHAN PATEL
133	U21EC137	40	NO	KOTHAPALLI HEMANTH
134	U21EC138	40	NO	K.NAGA SAI PRAKASH REDDY
135	U21EC139	44	NO	KUKATLA VISHNU VARDHAN
136	U21EC140	41	NO	KURUVA KUMARA SWAMY
137	U21EC141	40	NO	KURUVA MANOHAR
138	U21EC142	39	NO	LAKSHMIPATHI BALAJI M
139	U21EC143	37	NO	L.SIVA SAI MANI CHAKRAM
140	U21EC144	45	NO	LOCHARLA BHAVYA SRI
141	U21EC145	39	NO	LOKA SHASHANK
142	U21EC146	40	NO	MADDALA KRISHNA KOUSHIK
143	U21EC147	41	NO	MADDINA JAGADEESH KUMAR
144	U21EC148	42	NO	MADDULURI SIVA TEJA
145	U21EC149	38	NO	MADDUR VINAYAKA
146	U21EC150	47	NO	MADDURI DEDEEPYA
147	U21EC152	38	NO	MALEWAR DEVENDER RAVI
148	U21EC153	40	NO	MALLAMPATI SAI RAM
149	U21EC154	37	NO	MALLELA AMAR VENKATA SIDHU
150	U21EC155	40	NO	MALLEMPATI SRIRAM
151	U21EC156	43	NO	MAMIDISETTI HARI KIRAN
152	U21EC157	42	NO	MANAMASI CHENCHUBALU
153	U21EC158	35	NO	MANCHALA SAI SRIKAR
154	U21EC159	41	NO	MANDAVA CHARAN
155	U21EC160	40	NO	M.SURYA HARINADH YESWANTH
156	U21EC161	41	NO	MANGALA RAKSHITHA
157	U21EC163	45	NO	M.SATYA SURYA VARA PRASAD
158	U21EC164	44	NO	MARISETTI SRI SAI KIRAN GOUD
159	U21EC165	41	NO	MARRAPU DINESH
160	U21EC166	39	NO	M.SIVA SATHISH KUMAR SWAMY
161	U21EC167	40	NO	MARUTHI NAVEEN
162	U21EC168	39	NO	MATTA SAKETH
163	U21EC169	34	NO	MOORABOYANA POTHURAJU
164	U21EC170	41	NO	MOPIDEVI KRISHNA MOHAN
165	U21EC171	40	NO	MORRABOINA PEDDA RAJU
166	U21EC172	45	NO	MUDDADA AMMANNAIDU
167	U21EC173	40	NO	MUDDINENI SAI KIRAN
168	U21EC174	39	NO	M.VENKATA TEJESWARA REDDY
169	U21EC175	40	NO	MULAKKAYALA VIJAY SIMHA REDDY
170	U21EC176	40	NO	MUNUBARTHI JITHENDRA
171	U21EC177	32	NO	M. REDDY ASRITH REDDY
172	U21EC178	40	NO	MUTHYALA MANOJ
173	U21EC179	41	NO	MUTTHINENI SAI TEJA
174	U21EC180	38	NO	MUVVA AASRITHA
175	U21EC181	39	NO	NADIKOTA RAJ KUMAR
176	U21EC182	48	NO	NAGANAMONI DEEPTHI CHAITHANYA
177	U21EC183	40	NO	NAGELLI MANIDEEP
178	U21EC184	41	NO	NALAGESIGARI UDAY KIRAN REDDY
179	U21EC185	42	NO	NALAPAREDDY GARI SATHVIKA
180	U21EC186	40	NO	NALLALA LAKSHMI MOKSHITH
181	U21EC187	44	NO	N.SAI HARSHAVARDHAN KUMAR
182	U21EC188	41	NO	NANCHARLA VIKRAMA CHARY
183	U21EC189	40	NO	NASANA RAVINAGA MANIKANTA
184	U21EC190	41	NO	NEMALIDINNE VENKATA RAMANA
185	U21EC192	40	NO	NITHISH KUMAR V
186	U21EC193	40	NO	NULI VENKATA PRASAD
187	U21EC194	0	YES	NUTHALAPATI DEEPAK
188	U21EC195	40	NO	NUTHALAPATI LALITHA SRAVANTH
189	U21EC196	47	NO	OLLEM ANITHA

190	U21EC197	47	NO	PADAMATA NAGA VENKATA SAI
190	U21EC198	45	NO	PAGADALA MANI DEEPAK
192	U21EC199	47	NO	PAINNI SAI RAMA KRISHNA
193	U21EC200	48	NO	P.NAGA VENKATA SAI KUMAR
194	U21EC201	44	NO	PALAM MANIKANTA
195	U21EC202	45	NO	PALANKI UDAYA PHANI
196	U21EC203	47	NO	P BHARATH KUMAR REDDY
197	U21EC204	44	NO	PALLA VENKATA SHIVA
198	U21EC205	45	NO	PALLAPOTHULA KONDA REDDY
199	U21EC206	48	NO	PALURU POOJITHA
200	U21EC207	47	NO	PAMARTHI NESWANTH GOUD
201	U21EC208	45	NO	PANDITA SURYA
202	U21EC209	46	NO	P.VENKATA KRISHNA REDDY
203	U21EC210	45	NO	PARIMI NAVEEN
204	U21EC211	44	NO	PASUPULETI RAKESH
205	U21EC212	48	NO	PATAN ASLAM KHAN
206	U21EC213	36	NO	PATAN MASTAN VALI
207	U21EC214	44	NO	PATHURI SAI NIKETH
208	U21EC215	43	NO	P.SRI SATYA KUMAR PAVAN MOHAN
209	U21EC216	45	NO	P.NAGASIVA HEMANTHKUMAR
210	U21EC217	34	NO	PERABOINA JASWANTH
211	U21EC218	49	NO	PERLA VENKATA SRI NIKHILA
212	U21EC219	45	NO	PIKKILI VISHNU VARDHAN
213	U21EC220	33	NO NO	PINNINTI SRI KIREETI
214	U21EC221	45	NO	POCHAMPALLY SWAPNA
215	U21EC222 U21EC223	46	NO	PODAPATI PREM CHAND POLEMREDDY BHASKAR REDDY
216	U21EC223 U21EC224	40	NO	POLEMREDD I BHASKAK REDD I PONNAMANDA MOUNIKA
217	U21EC224	49	NO	PONNAMANDA MOUNIKA PONNAPUDI RAVI KUMAR
218	U21EC223	48	NO	POOJA R J
219	U21EC220	40	NO	POTHULA RAGHAVENDRA REDDY
220	U21EC228	49	NO	PRADEEP NAMOJU
222	U21EC229	44	NO	P.VISHNUCHAITHANYA
223	U21EC230	31	NO	PUNYALA VAMSI KRISHNA REDDY
224	U21EC231	46	NO	PUTHUMBAKA PRANAY TEJA
225	U21EC232	49	NO	RACHARLA VINEETH
226	U21EC233	46	NO	RAMUNI KRISHNA REDDY
227	U21EC234	48	NO	RANJITH KUMAR S
228	U21EC235	49	NO	RAUSHAN KUMAR SAHNI
229	U21EC236	47	NO	RAVOORI UDAY KIRAN
230	U21EC237	39	NO	ROHIT KUMAR
231	U21EC238	47	NO	SAGINALA VENKATESWARA RAO
232	U21EC239	48	NO	SANDURI ASHOK KUMAR
233	U21EC240	48	NO	SANGA AKSHAY
234	U21EC241	48	NO	SAPPA BHANU TEJA
235	U21EC242	46	NO	SARIBALA SANDEEP KUMAR REDDY
236	U21EC243	47	NO	SARIDE YESU DEEPAK
237	U21EC244	47	NO	SARUPURU LOKESH
238	U21EC245	47	NO	SATHISH S
239	U21EC246	49	NO	SHAIK KHASIM SHAREEF
240	U21EC247	47	NO	SHAIK MUJAHID PARVEZ
241	U21EC248	49	NO	SHAIK MUNVAR KHAJAVALI
242	U21EC249	32	NO	SHAIK NAFISHA
243	U21EC250	46	NO	SHAIK NAGUR SHARIF
244	U21EC251	49	NO	SHAIK RIZWAN BASHA
245	U21EC252	47	NO	SIDDA SATYA SAI VENKATA TEJA
246	U21EC253	49	NO	SIDDHARAPU PRAVEEN
247	U21EC254	47	NO	SINDHIYA S
248	U21EC255	49	NO	SINGAM GANGA VASUNDHAR REDDY
249	U21EC256	47	NO	SINGAMSETTI LAKSHMI PRANITHA
250	U21EC257	46	NO	SK ASIF
251	U21EC258	46	NO	SODISETTI SIVA CHAITANYA
252	U21EC259	44	NO	SUNKE ADITHYA NETHA
253	U21EC260	48	NO	SUNNAMPALLI KEERTHI REDDY
254 255	U2IEC261	49	NO	SURAM YESHWANTH REDDY
	U21EC262	46	NO	SUWALA SUNAND KUMAR

U

			r	
256	U21EC263	48	NO	SWARNA SHASHANK
257	U21EC264	48	NO	SWARNA SRUTHIKA
258	U21EC265	46	NO	TAMMANA LAKSHMI GANAPATHI
259	U21EC266	49	NO	TANNERU SURYA
260	U21EC267	47	NO	TATI KARTHIK
261	U21EC268	49	NO	TEKULAPALLY ANIL
262	U21EC269	45	NO	THOTA AJAY
263	U21EC270	49	NO	THOTA REDDAIAH
264	U21EC271	48	NO	THOTLI USHA
265	U21EC272	49	NO	UPPALA ANIL
266	U21EC273	49	NO	UPPALAPATI SATISH
267	U21EC274	44	NO	URUTURU HARSHAVARDHAN
268	U21EC275	47	NO	VADAPALLI PHANINDRA KUMAR
269		47	NO	VAIKANTI VENKATA RAMANA
	U21EC276			
270	U21EC277	46	NO	VALLAMKONDA SURESH
271	U21EC278	45	NO	VALLAPUDASU VINAY KUMAR
272	U21EC279	46	NO	VALLEPU ARAVIND
273	U21EC280	47	NO	VANGALA SULOCHANA
274	U21EC281	45	NO	VANNAM BHANU PRAKASH
275	U21EC282	45	NO	VATTAM GANESH KUMAR REDDY
276	U21EC283	46	NO	VATTIKONDA CHANDU
277	U21EC284	45	NO	VAVILALA BADRINADH SAI
278	U21EC285	46	NO	VEERAMALLA VAMSI
279	U21EC286	49	NO	VEERAMREDDY SRIDHAR REDDY
280	U21EC280	45	NO	VEERANKI SWARUP KUMAR
281	U21EC288	48	NO	VEMULA NAVEEN
281	U21EC288	40	NO	VENDRA DHINESH
		50		
283	U21EC290		NO	VENGALANENI RAVINDRA
284	U21EC291	48	NO	V.UMA MAHESWAR REDDY
285	U21EC292	45	NO	VIGNESH K
286	U21EC293	45	NO	VIMAL SURYA S
287	U21EC294	45	NO	Y,HEMANTH KUMAR REDDY
288	U21EC296	46	NO	YARASANI VENKATA REDDY
289	U21EC297	49	NO	YASWANTH R
290	U21EC299	48	NO	YERRAGUNTA ANITHA
291	U21EC300	45	NO	YERVA VENKATA RAMI REDDY
292	U21EC301	46	NO	KEJAL RAI
293	U21EC302	49	NO	ARVAPALLY ARAVIND
294	U21EC303	49	NO	AGATHAMUDI MANIRATNAM
295	U21EC304	49	NO	AMIT KUMAR
295	U21EC304	46	NO	ANKALA NAGARAJU
297	U21EC306	47	NO	ANDAMANI BHOOMIKA
298	U21EC307	46	NO	ANNAPUREDDY NARENDRA REDDY
299	U21EC308	49	NO	ANNEM LIKHITHA
300	U21EC309	46	NO	ARAVA MOHITH KUMAR REDDY
301	U21EC310	45	NO	ARUMALLA HEMANTH REDDY
302	U21EC311	49	NO	ASUNDI MADHURI
303	U21EC312	47	NO	AYILURI SIRISHA
304	U21EC313	45	NO	AZMEERU JASWANTH
305	U2IEC314	47	NO	BADURU CHAITANYA
306	U21EC315	47	NO	BANDIREVU NAGESH KUMAR REDDY
307	U21EC316	47	NO	BANGARI KRISHNAPRASAD
308	U21EC317	47	NO	BATHALA DINESH
308		47	NO	BINIDI LALITHA
	U21EC318			
310	U21EC319	47	NO	BODIPUDI NITHIN CHOWDARY
311	U21EC320	45	NO	BOODU RAM TEJA
312	U21EC321	45	NO	BUDAMGUNTLA MAHESH BABU
313	U21EC322	47	NO	BUDAMGUNTLA SANDEEP
314	U21EC323	47	NO	BUKKARAJU PRIYANKA
315	U21EC324	46	NO	BURRA SREENIVASULU
316	U21EC325	45	NO	CHARALA SRI DATTU
317	U21EC326	46	NO	CHETTI CHARAN TEJA
318	U21EC327	46	NO	CHIEFH CHARGAN LEAR
319	U21EC328	46	NO	DANDU GANESH
			UVI	
	[[216(220)	15	NIO	D CUENNIAVESAVA DEDDV
320 321	U21EC329 U21EC330	45 48	NO	D. CHENNAKESAVA REDDY GAMPA JAGADEESH KUMAR

 \bigcap

322	U21EC331	47	NO	G. RAMA GOVINDA ROHITH
323	U21EC332	46	NO	GAYAM HANUMA REDDY
324	U21EC333	45	NO	G. MAHESWARA 17HISHEK
325	U21EC334	46	NO	GOSU SIVA KARTHIK
326	U21EC335	47	NO	GOTTIMUKKULA KEERTHANA
327	U21EC337	43	NO	JAMPALA KOTESWARA RAO
328	U21EC338	45	NO	JHADE SAI JAYANTH KUMAR
	U21EC340	45	NO	KAMATHAM KARTHIK
329		47	NO	KAPU ANILKUMAR REDDY
330	U21EC341			
331	U21EC342	41	NO	KARAN KUMAR
332	U21EC344	46	NO	KEVIN D
333	U21EC345	45	NO	KILLANA NARESH
334	U21EC346	46	NO	KIRUBA SHANGARI
335	U21EC347	47	NO	KOLA KALPANA
336	U21EC348	46	NO	KOLLA CHANDRASEKHAR REDDY
337	U21EC349	46	NO	KOPPULA JOEL SURESH NEEL
338	U21EC350	45	NO	KOTHAPALLI SRINIVAS CHOWDARY
	U21EC350	46	NO	KUNSOTH CHANDULAL
339		40	NO	KUNUTHURU DEVENDAR REDDY
340	U21EC352			
341	U21EC353	46	NO	KURRAPOTHULA KARTHIK
342	U21EC354	46	NO	LAVANYA S
343	U21EC355	45	NO	LODANGI NAVEEN
344	U21EC356	47	NO	L.SATYA BHARGAV REDDY
345	U21EC357	45	NO	M.MALLIKARJUNA NAIDU
346	U21EC358	31	NO	M.JAGAN MOHAN KRISHNA
340	U21EC358	47	NO	MANGISHETTI DINESH KUMAR
	U21EC360	39	NO	MANUSHET H DINESH KUMAR MANISH KUMAR YADAV
348				
349	U21EC361	48	NO	MARISE VEERA DURGA
350	U21EC362	47	NO	MULLAH THI7EESH AHAMMAD
351	U21EC363	45	NO	MUNDLAPATI SATWIK
352	U21EC364	46	NO	MUTHUKUMAR L
353	U21EC365	47	NO	NADELLA GOWTHAM
354	U21EC366	48	NO	NAGANDLA NAVYA
355	U21EC367	45	NO	N.VENKATA KESAVA REDDY
356	U21EC368	46	NO	NALLAMALA VENKATA AMULYA
		40	NO	NALLAMALA VENKATA AMOLITA NALLI MAHENDRA
357	U21EC369			
358	U21EC370	47	NO	NARAYANASETTI PRABASH
359	U21EC371	46	NO	NESHANTH M
360	U21EC372	46	NO	NIDADAVOLU MANIKANTA
361	U21EC373	0	YES	NIKKI KUMAR
362	U21EC374	47	NO	NUSUM ARAVIND REDDY
363	U21EC375	47	NO	PAGADALA MAHENDRA DHONI
364	U21EC376	46	NO	PAGILLA JEEVAN KUMAR
				PAPAIAHGARI NAVEEN
365	U21EC377	46	NO	
366	U21EC378	48	NO	PASALA SAI SUDHEER
367	U21EC379	46	NO	PENDURTHI HASWANTH
368	U21EC380	46	NO	POLAKAL SOMASEKHAR REDDY
369	U21EC381	49	NO	RAJOLI VENKATA RAMANA
370	U21EC382	47	NO	RAJUPALLI REDDY JYOTHI REDDY
371	U21EC383	45	NO	RAMADUGU DILEEP CHARI
372	U21EC384	45	NO	RAVICHANDRANS
372	U21EC384	49	NO	RAVILAANAND
374	U21EC386	46	NO	A ROHITH KUMAR
375	U21EC387	48	NO	SALUPALA MADHAN
376	U21EC388	45	NO	SANAPALA GEETANAND
377	U21EC389	46	NO	SANTHA YASWANTH
378	U21EC390	48	NO	SANTHOSH S
379	U21EC391	46	NO	SARIHADDU SIVA KUMAR
380	U21EC392	46	NO	SARLANA VINOD KUMAR
381	U21EC392	46	NO	SHAIK ANWAR BASHA
			NO	SHAIK HABEEBULLA
382	U21EC395	44		
383	U21EC396	45	NO	SHAIK HALEEM
	U21EC397	46	NO	SHYAMALA MAHENDAR REDDY
384			1	
384 385	U21EC398	32	NO	SOHRAB ALI
	U21EC398 U21EC399	32 47	NO	SOHRAB ALI SONTAM RAMESH REDDY

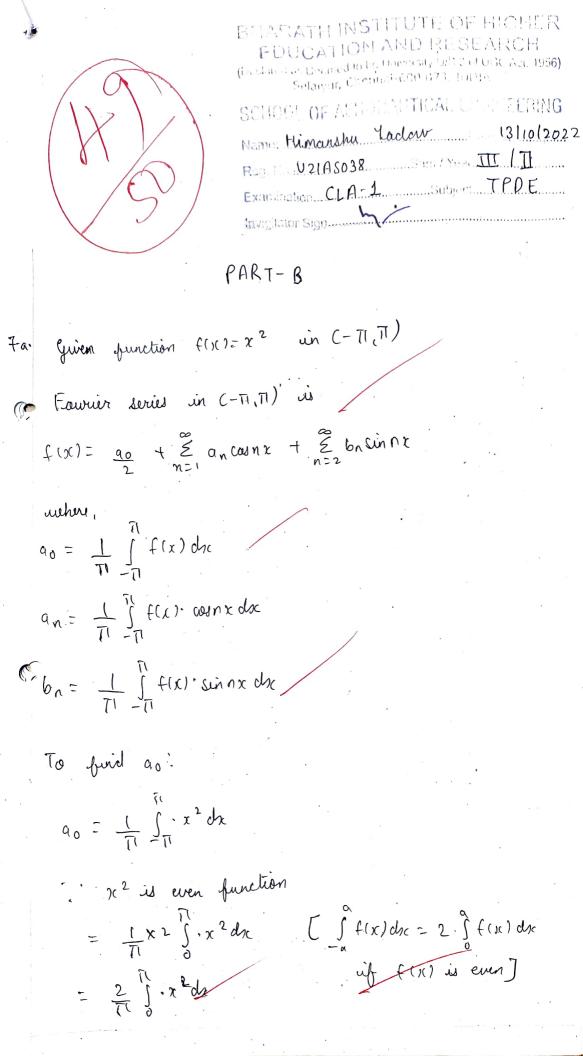
 \cap

1	388	U21EC401	47	NO	
1	389	U21EC401	47	NO	SURYAPRAKASH K
1	390	U21EC402	43	NO	SYED MOHAMMED MUJEEB
1	391	U21EC403	44		TADIBOYINA KRANTHI SANDEEP
	392	U21EC404	44	NO NO	TAMIZHARASAN R
	393	U21EC405	42	NO	TANALA GOWRI PAVAN THOTA REVANTH
	394	U21EC400	47	NO	VANGALA NARASIMHA REDDY
	395	U21EC407	43	NO	VANGALA NAKASIMHA KEDDY VANTAKULA M S D S PAVAN KUMAR
	396	U21EC408	48	NO	VEERAMACHU SAI KRISHNA
	397	U21EC410	49	NO	V.VEERA DHANA NAGARJUNA
	398	U21EC411	48	NO	YALAMA REDDY GARI MOUNIKA
1	399	U21EC412	45	NO	YUVABALAJI S
1	400	U21EC413	47	NO	ABDUL AHAD
ł	401	U21EC415	33	NO	BANDHARAPU VIKRANTH GOUD
i i	402	U21EC416	47	NO	ABBURI SHANMUKA SRINIVAS
ľ	403	U21EC417	33	NO	ARASTU RAJ
t	404	U21EC418	46	NO	BAINA JAGADEESH
t	405	U21EC419	49	NO	BATTULA YEDUKONDALU
t	406	U21EC420	46	NO	BIRUDUKOTA DHAMARESWARA SAI
ľ	407	U21EC421	45	NO	B.VEERA VENKATA VAMSI
f	408	U21EC422	47	NO	BOLLU JAGADEESH
F	409	U21EC423	48	NO	BRINDHA K
	410	U21EC424	47	NO	BUSI LAKSHMAN
	411	U21EC425	49	NO	CHALLA KRISHNA SAMPATH
\bigcirc	412	U21EC426	48	NO	CHINTALA PARASURAM
1	413	U21EC427	48	NO	DASARI RAJESH
	414	U21EC428	48	NO	GANGAVARAPU JASWANTH
	415	U21EC429	45	NO	GORAVA MALLIKARJUNA
	416	U21EC430	48	NO	JAKKAM MOHAN KRISHNA REDDY
	417	U21EC431	47	NO	KAILA SIVA RAMA KRISHNA
	418	U21EC432	46	NO	KAMBALA JAGADEESH KUMAR
	419	U21EC433	47	NO	KODIMOJU RANJITH KUMAR
	420	U21EC434	48	NO	KOLLEBOYINA SRINU
	421	U21EC435	46	NO	KUNA VENKATESH
	422	U21EC436	45	NO	MANJULA PAVAN KUMAR
	423	U21EC437	45	NO	MEDA MODITH REDDY
_	424	U21EC438	47	NO	MEKALA MANI
	425	U21EC439	46	NO	MUNNANGI RAJASEKHAR REDDY
	426	U21EC440	45	NO	NULU VENKAT RAO
	427	U21EC441	0	YES	PARITALA SEETHARAMAIAH
-	428	U21EC442	47	NO	PITTA LAXMAN
-	429	U21EC443	48	NO	PODILA AKHIL
_	430	U21EC444	45	NO	POLISETTY PRASANTH
-	431	U21EC445	45	NO	POTHA RENUKA SAI
F	432	U21EC446	49	NO	PRAVEEN NAIK V
0.0	433	U21EC447	33	NO	PRIYANSHU KUMAR GIRI
1 N-	434	U21EC448	44	NO	PRIYANSHU RAJ
~	435	U21EC449	47	NO	RAMESH KUMAR KOTHWAL
-	436	U21EC450	46	NO	RUPIREDDY JOY SAM REDDY
-	437	U21EC451	45	NO	SAMA ARUN
-	438	U21EC452	49	NO	SAMIREDDY SASIDHAR REDDY
-	439	U21EC453	33	NO	SHUBHAM KUMAR SINGH
	440	U21EC454	48	NO	DINESH REDDY V
	441	U21EC455	46	NO	VALLAPUNENI VAMSI KRISHNA
	442	U21EC456 U21EC457	35	NO	VALLEPU THIRUMALESH
-	443		38	NO	VANGALA SAI CHANDU
-	444	U21EC458 U21EC459	38	NO	VAVITIKALVA VIJAYA KUMAR
-	445		39	NO	VIJAY KUMAR RAM
-	440	U21EC461	36	NO	DATTIOMKAR
-		U21EC462	37	NO	T. RAVI KUMAR REDDY
F	448	U21EC463	38	NO	T.SUDARSHAN REDDY
-	449	U21EC464	43	NO	DURGAM RAKESH KUMAR REDDY
	450	U21EC465 U21EC466	39	NO	KANKARA MANI KESHAVA REDDY
		UZ1EU400	0	YES	KARPURAPU VISHNU
F			A 1		
F	451 452 453	U21EC467 U21EC468	41	NO NO	KORADA ESWAR RAO MANCHALA SAI CHARAN REDDY

454	U21EC469	43	NO	MANGAMURI LAKSHMI PRASANNA
455	U21EC470	39	NO	NADUPURI SAI
456	U21EC471	46	NO	NARAKATLA REDDEMMA
457	U21EC472	39	NO	NIKHIL GOUD V
458	U21EC473	40	NO	PUTCHAKAYALA SOBHAN REDDY
459	U21EC475	42	NO	REDDYMALLI KAVYA
460	U21EC476	41	NO	SAYYAD JANI
461	U21EC477	37	NO	SIVANGULA CHARAN SAI
462	U21EC479	41	NO	VISHAL KUMAR
463	U21EC480	39	NO	KATIKE SAI KUMAR
464	U21EC481	39	NO	P.CHANDRA RAM MOHAN REDDY
465	U21EC482	36	NO	JADA SIVA KUMAR REDDY
466	U21EC483	40	NO	VELPULA RAGHU VAMSHI
467	U21EC484	39	NO	VIKRAM SENA B
468	U21EC485	38	NO	BOYA BHASKAR NAYUDU
469	U21EC487	37	NO	MAHESHUNI SHESHU
470	U21EC701	39	NO	A.SRICHACAN
471	U21EC702	39	NO	ABDUL RIYAZ S
472	U21EC703	37	NO	BAIRI ARUNKUMAR
473	U21EC704	39	NO	N BHARATH KUMAR REDDY
474	U21EC705	37	NO	BOKKA JAYA SAI
475	U21EC706	43	NO	BOMMANI BHARATH
476	U21EC707	38	NO	DINESHKUMAR, S
477	U21EC708	41	NO	ENJETI KARTHEEK
478	U21EC709	40	NO	N. JAGADEESWAR REDDY
479	U21EC710	33	NO	JEFRIN SHENO R
480	U21EC711	37	NO	K.VENKATA MURLAI KRISHNA
481	U21EC712	43	NO	KALANGI PAVAN KUMAR
482	U21EC713	41	NO	K.PRANAY KUMAR
483	U21EC714	40	NO	KSHATRI HARI RAM SINGH
484	U21EC715	36	NO	S.LOKESH
485	U2IEC716	39	NO	M.PHANEENDRA MANI KUMAR
486	U21EC717	37	NO	MALLAH SAGAR KUMAR
487	U21EC718	36	NO	PAKALAPATI JOSHI
488	U21EC719	38	NO	PURUSHOTHAMAN A K
489	U21EC720	36	NO	RISHI KARTHIKEYAN N
490	U21EC721	37	NO	S.SANTHOSH
491	U21EC722	48	NO	SAREDDY KIRAN KUMAR REDDY
492	U21EC723	38	NO	SONTI SAIKUMAR
493	U21EC724	40	NO	SURISETTY SIVA SAI KUMAR
494	U21EC725	40	NO	V.VINOTHKUMAR
495	U21EC726	44	NO	YATHAM AKHILA
496	U21EC729	40	NO	VAMSI
497	U21EC727	39	NO	G. SWAMI
498	U21EC728	38	NO	T. SAIPRAKASH REDDY
499	U21EC730	37	NO	VINUTH BHARATH
500	U21EC731	38	NO	ANUMULA MANOJ KUMAR

Aerospace A-1 Anguser lay 1) Bernouli's tormula. $\int UV dx = UV_1 - UV_2 + U'' V_3 - U'' V q + -$ 2) Euler's constants of a fourier series Ph(0,2) × - (26). (1 a = 1 founda ans i af tre) cos proj monstal 3) fr) = 20 + 2 aneosnal + us busine - No. 4) bn=0 5) - Haff-range cosine iersel ey and busing 7)2, 6) parkends solution is I (fa) dn- 2502 $T(a) \quad f(t) = n^2 \left(-T(t) \right)$ 20 E 2112 an = fre(J? m=0 $b_{M} \equiv \frac{2}{\pi T} \int_{\Lambda} \chi_{sh} s_{h} m \alpha dm = -2 EU^{0}$ $f_{(0)} = \lambda \quad \text{bu} = \frac{2}{7} \int n_{(0)} n_{(0)} d_{(0)} d_{(0)}$ 9) $b_{n} = -2(4)^{n}$

10 g - for) = 2100821 ao = I franda = D $a_{M} = \int_{T} \int_{T} \frac{1}{x} \cos i x \cos x dx = \frac{1}{2\pi} \left[\frac{1}{(n-1)^{2}} + \frac{1}{(n-1)^{2}} \right]$ for for there and ·· · · · q') = f(x) = xao = 2 l'true - cosmilanda = l' an = 2. $\frac{1}{2}$ st cospig) nd n = 21 ((-1) -1) $\frac{1}{2}$. $\frac{1}{12} + \frac{1}{31} + \frac{1}{61} = \frac{1}{61} + \frac{1}{61} = \frac{1}{61} + \frac{1}{61}$ No lotte (in the article of the second stands and the $\left(\begin{array}{c} c & r \end{array} \right) = \left(\begin{array}{c} c & c \end{array} \right) = \left(\begin{array}{c}$ Maria Mari



$$\begin{aligned} q_{0} &= \frac{2}{\Pi} \times \left(\frac{\pi}{3}\right)_{0}^{\Pi} \\ q_{0} &= \frac{2}{\Pi} \times \frac{\Pi^{3}}{3} = \frac{2\Pi^{2}}{3} \end{aligned}$$

$$\begin{aligned} q_{0} &= \frac{2}{\Pi} \times \frac{\Pi^{3}}{3} = \frac{2\Pi^{2}}{3} \end{aligned}$$

$$\begin{aligned} T_{0} &= \frac{1}{\Pi} \int_{\Pi}^{\Pi} \chi^{2} \cdot \cosh \pi \chi \, d\pi \\ q_{n} &= \frac{1}{\Pi} \int_{\Pi}^{\Pi} \chi^{2} \cdot \cosh \pi \chi \, d\pi \\ \chi^{2} &= even, \quad \cosh \pi \chi = even \\ \text{Even function } \chi \, \text{Even function} = even function \\ \therefore q_{0} \int_{\Pi}^{\Pi} \frac{1}{\chi^{2}} \int_{0}^{\Pi} 2^{2} \cdot \cosh \pi \, d\pi \\ &= \frac{2}{\Pi} \int_{\Pi}^{\Pi} \sqrt{1 + 2^{2} \cdot \cosh \pi} \, d\pi \\ &= \frac{2}{\Pi} \left[\chi^{2} \cdot \frac{\sin \pi \chi}{\pi} + 2\chi \left(-\frac{\cosh \pi \chi}{\pi^{2}}\right) + 2 \cdot \left(-\frac{\sin \pi \chi}{\pi^{3}}\right) \right]_{0}^{\Pi} \\ &= \frac{2}{\Pi} \left[\chi^{2} \cdot \frac{\sin \pi \chi}{\pi^{2}} + 2\chi \left(-\frac{\cosh \pi \chi}{\pi^{2}}\right) + 2 \cdot \left(-\frac{\sin \pi \chi}{\pi^{3}}\right) \right]_{0}^{\Pi} \\ &= \frac{2}{\Pi} \left[\chi^{2} \cdot \frac{\sin \pi \chi}{\pi^{2}} + 2\chi \left(-\frac{\cos \pi \chi}{\pi^{2}}\right) + 2 \cdot \left(-\frac{\sin \pi \chi}{\pi^{3}}\right) \right]_{0}^{\Pi} \\ &= \frac{2}{\Pi} \left[\chi^{2} \cdot \frac{2\pi}{\pi^{2}} \left[\cos \pi \Pi - 2\chi (0) - \left(0 - 0 + 0\right) \right] \right] \\ &= \frac{4}{\Pi} \left[C - 1 \right]^{\pi} \\ &= \frac{4}{\pi^{2}} \left[C - 1 \right]^{\pi} \\ &= \frac{4}{\pi^{2}} \left[C - 1 \right]^{\pi} \\ &= \frac{4}{\pi^{2}} \left[-1 \right]^{\pi} \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right] \\ &= \frac{1}{\pi^{2}} \left[\int_{0}^{1} - \chi^{2} \cdot \sin \pi \chi \, d\pi \right]$$

8.0 Given
$$f(x) = x$$

Half range size socies in $(0, \overline{1}) = \frac{1}{2} \sum_{n=1}^{\infty} b_n^{\infty} \cdot \frac{\sin nx}{\cos nx}$
where $b_n = \frac{1}{71} \int_{0}^{\overline{1}} f(x) \cdot \sin nx \, dx$
 $b_n = \frac{2}{71} \int_{0}^{\overline{1}} \cdot x \cdot \sin nx \, dx$
Bernsulli's $= \frac{2}{71} \int_{0}^{\overline{1}} (x \cdot (-\frac{\cos nx}{n}) - \frac{1}{(-\frac{\sin nx}{n^2})}]_{0}^{\overline{1}}$
 $b_n = \frac{2}{71} \left[x \cdot (-\frac{\cos nx}{n}) - \frac{1}{(-\frac{\sin nx}{n^2})} \right]_{0}^{\overline{1}}$
 $b_n = \frac{2}{71} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} \right]$
 $b_n = -2 \sum_{n=1}^{\infty} (-\frac{1}{n} \sum_{n=1}^{\infty} \frac{\sin x}{n} \cdot \frac{\sin x}{n^2}$
 $c_n = \frac{2}{71} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$
 $b_n = \frac{2}{11} \left[-\frac{71(-1)^n}{n} + 0 - (0-0) \right]$

 $\frac{-2}{2} \frac{\alpha}{n = 1} \frac{(-1)^n}{n} = \frac{-2}{n = 1} \frac{(-1)^n}{n = 1} = \frac{-2}{n = 1} \frac{\alpha}{n = 1} \frac{1}{n^2}$

. . .

$$= \frac{1}{\Pi} \left[\begin{array}{c} x & \lim_{n \to \infty} n \\ n \\ \end{array} \right] \left[\begin{array}{c} 0 \\ + \\ \end{array} \right] \left[\begin{array}{c} 0 \\ + \\ \end{array} \right] \left[\begin{array}{c} 1 \\ \end{array} \right] \left[\begin{array}{c} 0 \\ + \\ \end{array} \right] \left[\begin{array}{c} 1 \\ \end{array} \bigg] \left[\begin{array}{c} 1 \end{array} \bigg] \left[\begin{array}{c}$$

 $= \underbrace{1}_{2\pi} \int \left[\int (x \cdot \cos(nx - x)) dx + x \cos(nx + x) \right] dx$ $= \frac{1}{2\pi} \int \int \frac{2\pi}{3} x \cdot us(nx-x) dx + \int x \cdot us(nx+x) dx$ $= \frac{1}{2\pi} \left[\int_{1}^{2\pi} x \cdot \cos(n-1)x \, dx + \int_{1}^{2\pi} x \cdot \cos(n+1)x \, dx \right]$ juvanc= uv, euv, tu'vz $= \frac{1}{271} \left[\left(2x \cdot \frac{\sin(n-1)x}{n-1} - 1 \left(-\frac{\cos(n-1)x}{(n-1)^2} \right)^2 \right] \right]$ C $-\left(\chi \cdot \frac{\sin(ntl)_{\kappa}}{ntl} - 1\left(\frac{-\omega s(ntl)_{\kappa}}{(ntl)_{\kappa}}\right)\right)$ $= \frac{1}{2\pi l} \left[\left(\frac{1}{(n+l)^2} - \left(\frac{1}{(n+l)^2} \right) \right) - \left(\frac{0}{(n+l)^2} - \left(\frac{1}{(n+l)^2} \right) \right) \right]$ $= \frac{1}{2\pi} \left[\frac{1}{(n-1)^2} - \frac{1}{(n-1)^2} - \frac{1}{(n+1)^2} + \frac{1}{(n+1)^2} \right]$ $(a_n = \frac{1}{2\pi i} \left[\frac{1}{(n-1)^2} - \frac{1}{(n-1)^2} \right]$ if n # 1 & n>1 i. J an = 0 2. otherwerse an= 1 forn=1 2.11 & a1 ? $q_{n} = \frac{1}{2\pi} \left[\frac{1}{(n+1)^{2}} - \frac{1}{(n-1)^{2}} \right]$ ast

Given function
$$f(x) = \chi$$

Half nange course derive = $\frac{\pi_0^2}{4} + \frac{1}{2} \leq \log n^2$
 $a_0 = \frac{2}{\pi_1} \int_0^{\pi_1} f(x) dx$
 $a_n = \frac{2}{\pi_1} \int_0^{\pi_1} f(x) dx$
 $a_n = \frac{2}{\pi_1} \int_0^{\pi_1} f(x) dx$
 $a_0 = \frac{2}{\pi_1} \int_0^{\pi_2} f(x) \frac{\pi_1}{4} \int_0^{\pi_2}$
 $a_0 = \frac{2}{\pi_1} \chi \left(\frac{\pi^2}{2}\right) \int_0^{\pi_1}$
 $a_0 = \frac{2}{\pi_1} \chi \left(\frac{\pi^2}{2}\right) \int_0^{\pi_2}$
 $a_0 = \frac{2}{\pi_1} \chi \left(\frac{\pi^2}{2}\right) \int_0^{\pi_2}$
 $a_0 = \frac{2}{\pi_1} \frac{\pi_1^2}{2} = \pi^2$
 $a_1 = \frac{2}{\pi_1} \int_0^{\pi_1} \pi \cdot \cos nx dx$
 $= \frac{2}{\pi_1} \int_0^{\pi_1} \pi \cdot \cos nx dx$
 $= \frac{2}{\pi_1} \int_0^{\pi_1} (1 - \frac{1}{\pi_1} - \frac{1}{\pi_1} - \frac{1}{\pi_1} + \frac{1}{\pi_1} \chi)$
 $= \frac{2}{\pi_1} \int_0^{\pi_1} (1 - \frac{1}{\pi_1} - \frac{1}{\pi_1} + \frac{1}{\pi_1} + \frac{1}{\pi_1} \chi)$

-1

$$\begin{aligned} q_{n} &= \frac{2}{4} \int_{0}^{1} x \cdot \cos\left(\frac{\pi \pi}{2}\right) x \, dx \\ \alpha_{n} &= \frac{2}{4} \left[x \cdot \sin\left(\frac{\pi \pi}{2}\right) x - 1 \left(-\cos\left(\frac{\pi \pi}{2}\right) x\right) \right]_{0}^{\frac{1}{2}} 1 \\ \frac{(\pi \pi)}{(\pi \pi)} \left(\frac{\pi \pi}{2}\right) x - 1 \left(-\cos\left(\frac{\pi \pi}{2}\right) x\right) \\ q_{n} &= \frac{2}{4} \left[0 + \frac{1}{4} \frac{\pi}{2} \left(-1\right)^{n} - \left(0 + \frac{2}{4} \frac{2}{2}\right) \right] \\ q_{n} &= \frac{2}{4} \left[\frac{1}{4} \frac{2}{\pi^{2}} \left(-1\right)^{n} - \frac{1}{4} \frac{2}{\pi^{2}} \frac{1}{\pi^{2}} \right] \\ q_{n} &= \frac{2}{4} \left[\frac{1}{4} \frac{2}{\pi^{2}} \left(-1\right)^{n} - \frac{1}{4} \frac{2}{\pi^{2}} \frac{1}{\pi^{2}} \right] \\ q_{n} &= \frac{2}{4} \left[\frac{1}{4} \frac{2}{\pi^{2}} \left(-1\right)^{n} - \frac{1}{\pi^{2}} \right] \\ q_{n} &= \frac{2}{\pi^{2}} \frac{1}{\pi^{2}} \left[\left(-1\right)^{n} - 1 \right] \\ q_{n} &= \frac{2}{\pi^{2}} \frac{1}{\pi^{2}} \left[\left(-1\right)^{n} - 1 \right] \\ q_{n} &= \frac{2}{\pi^{2}} \frac{1}{\pi^{2}} \left[\left(-1\right)^{n} - 1 \right] \\ q_{n} &= \frac{2}{\pi^{2}} \frac{1}{\pi^{2}} \left[\left(-1\right)^{n} - 1 \right] \\ q_{n} &= \frac{2}{\pi^{2}} \frac{1}{\pi^{2}} \left[\left(-1\right)^{n} - 1 \right] \\ q_{n} &= \frac{2}{\pi^{2}} \frac{1}{\pi^{2}} \left[\left(-1\right)^{n} - 1 \right] \\ q_{n} &= \frac{2}{\pi^{2}} \frac{1}{\pi^{2}} \left[\left(-1\right)^{n} - 1 \right] \\ q_{n} &= \frac{2}{\pi^{2}} \frac{1}{\pi^{2}} \left[\left(-1\right)^{n} - 1 \right] \\ q_{n} &= \frac{2}{\pi^{2}} \frac{1}{\pi^{2}} \left[\left(-1\right)^{n} + 1 \right] \\ q_{n} &= \frac{1}{\pi^{2}} \frac{1}{\pi^{2}} \frac{1}{\pi^{2}} \frac{1}{\pi^{2}} \frac{1}{\pi^{2}} \frac{1}{\pi^{2}} \frac{1}{\pi^{2}} \left[\frac{2}{\pi^{2}} \frac{1}{\pi^{2}} \left(-1\right)^{n} + 1 - 2\left(-1\right)^{n} \right] \\ q_{n} &= \frac{1}{\pi^{2}} \frac{1}{\pi^{2}}$$

$$\frac{1}{3}^{2} - \frac{1}{4}^{2} = \frac{4}{11}^{2} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n^{4}}$$

$$\frac{1}{12} = \frac{4}{11}^{2} \left[\frac{1-(-1)}{14} + \frac{1-1}{24} + \frac{1-(-1)}{34} + \frac{1-1}{34} + \frac{1-1}{44} + \frac{1}{44} + \frac{1}{4$$

$$\frac{1}{48} = \frac{1}{14} - \frac{1}{34} + \frac{1}{54} + \dots$$

PART-A

1. Sundre - un - u''n2 + u''n3 - u''n4

u = idifferenteriable function, N = integrable function $<math>u_1 = \int u \, dx = \int u_1 \, dx = \frac{1}{\sqrt{2}} = \int u_1 \, dx = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt$

$$v_1 = Svdx_1, v_2 = Sv_1dx_1, v_3 = Sv_2dx_1 = ...$$

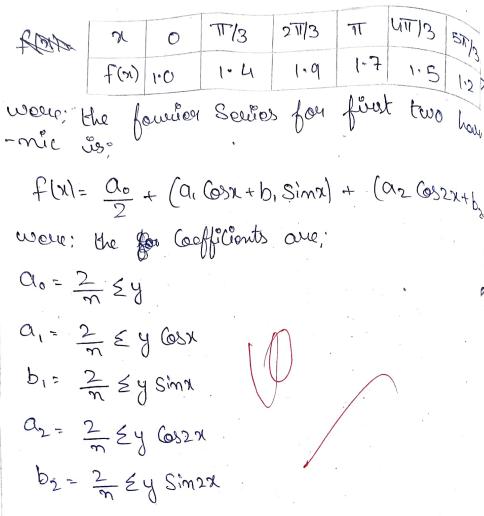
Euler's constants of a fourier series in (0,21) $90 = \frac{1}{1} \int_{0}^{21} f(x) dx$ $q_n = \frac{1}{1} \int_{1}^{2} f(x) \cdot u_{n}(n) du$ $b_n = \frac{1}{2} \int_{0}^{2} f(x) \cdot \sin(n\pi) dx$ 3. If f(s1) is a periodic function and satisfies Dirichlet's conditions then it can be represented in the form of an infinite series called Fourier series: $f(x) = \frac{\alpha_0}{2} + \frac{\varepsilon}{2} a_n \omega_n x + \frac{\varepsilon}{2} b_n \varepsilon_n x$ The above eqn is trigonometric form of Fourier series. $(a_0 a_0 in(-\overline{n}, \overline{n}) = 1 \int_{-\overline{n}}^{\overline{n}} f(n) dn($ $kram in (-\pi,\pi) = \prod_{n=1}^{n} f(x) \cdot cosnic dx$ $b_{1} \text{ in } (-\pi,\pi) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \sin n \operatorname{scd}_{3} dx$

4.
$$f(x) = x^{2}$$
 in $(-\pi, \pi)$
 $b_{n} = \frac{1}{\pi} \int_{1}^{\pi} x^{2} dx$. $\sin nx dn$
 $\int_{1}^{\pi} - even \int_{1}^{\pi} \sin nx - odd$
 $\frac{1}{2\pi} \int_{1}^{\pi} \frac{1}{x^{2}} dx - \sin nx dn$
 $even \chi add = add$
 $\therefore \int_{1}^{\pi} f(x) dx = 0$ if $f(x)$ is add
 $\therefore b_{n} = 0$
5. Ho (atime series $in(0, 1) = \frac{a_{0}}{2} + \frac{1}{2} \leq a_{n}^{2}$
 $\int_{1}^{\pi} \int_{1}^{\pi} (a_{1} - a_{1}) x = \frac{a_{0}}{2} + \frac{2}{\pi} (a_{1} - a_{1}) x$
Sine series $in(0, 1) = \frac{2}{2} b_{1} \cdot Sin((\frac{n\pi}{2}))x$
 $n = 1$
6. Conseucl's identity for half range size series $i(0, n)$
 $\frac{1}{\pi} \int_{1}^{\pi} (f(x))^{2} dx = 4n \frac{1}{2} \sum b_{1}^{2}$

BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH (Declared as Decined to be the meater dis 3 of (100 Act, 1986) Belowur, Cherm. Headin 973, 17651A SCHOPE OF ADVICTOR THOAL BUSIES BERING Name P.V. Guer datta 13/10/22 Reg No. U2IASOB2 Services 3rd/2nd you Examination. CLA-1 Subject TBVP (U20:MABTO3) Section - C:ruven: F(x)= x (277-x) un (0,277) fourier Services for function in The (0,277) w. flat - 2 + 5 an lorna + 5 bn Simma. were the fourier Coefficients one as I f (a) da. $a_m = \frac{1}{\pi} \int_{-\pi}^{2\pi} f(x) \cos(x) dx$ (bm = f(m) Simapedre. TO find and $a_{o} = \int f(n) dn$ = 1 (211-2) dx - 1 ft2tr- 2)dr. $=\frac{1}{2}\left[\frac{\chi^2}{2}-\frac{\chi^2}{3}\right]^{2\pi}$

AT &

Cuiven :-



)(

	X	y	(OSX	Simu	68	Sim .22	COSX		4 63271	Simon
	0	.1	1	0	Y	0		0	I.	0
6 1 .	<u>11</u> =60	104	0. 5	0.866	-0.5	0.866	0.7	1·21 24	-0.7	1.21
	211 0	1.9	- 0.5	0.866	-0.5	-0°866	-0. 95	1064 54	-0.95	-1.64 54
1		1.7	1			0			107	
A PROVINCE OF THE AVERAGE AND AND AND ADDRESS AND ADDRESS ADDRES	411-240	1.5	-0.5	-0° 866	-0.5	0-866	-O•75	-1.299	- 0.75	1.299
	57- 300		0.5	-0° 866	-0.5				-0.6	
		27= 8.7							= -0°3	

$$TO - find Coefficients:
Co = 2
Go = 2.9
$$C_{0} = \frac{2}{6} \leq y (\omega)x$$

$$= \frac{2}{6} (-1.1)$$

$$C_{1} = -0.366$$

$$= C_{1} = 2 \leq y (\omega)2x$$

$$= \frac{2}{6} (-0.3)$$

$$C_{2} = -0.1$$

$$\Rightarrow b_{1} = \frac{2}{6} \leq y (\omega)2x$$

$$b_{1} = \frac{2}{6} \leq y (\omega)2x$$

$$b_{1} = \frac{2}{6} \leq y (\omega)2x$$

$$= \frac{2}{6} (-0.5)C66$$

$$D_{1} = \frac{2}{6} \leq y (\omega)2x$$

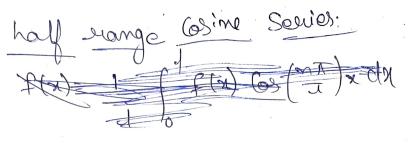
$$= \frac{2}{6} (-0.1732)$$

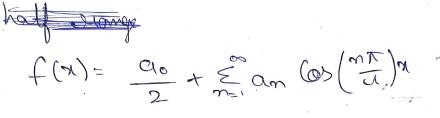
$$D_{2} = \frac{2}{6} \leq y (\omega)2x$$$$

Section-A:-

Ġ

6





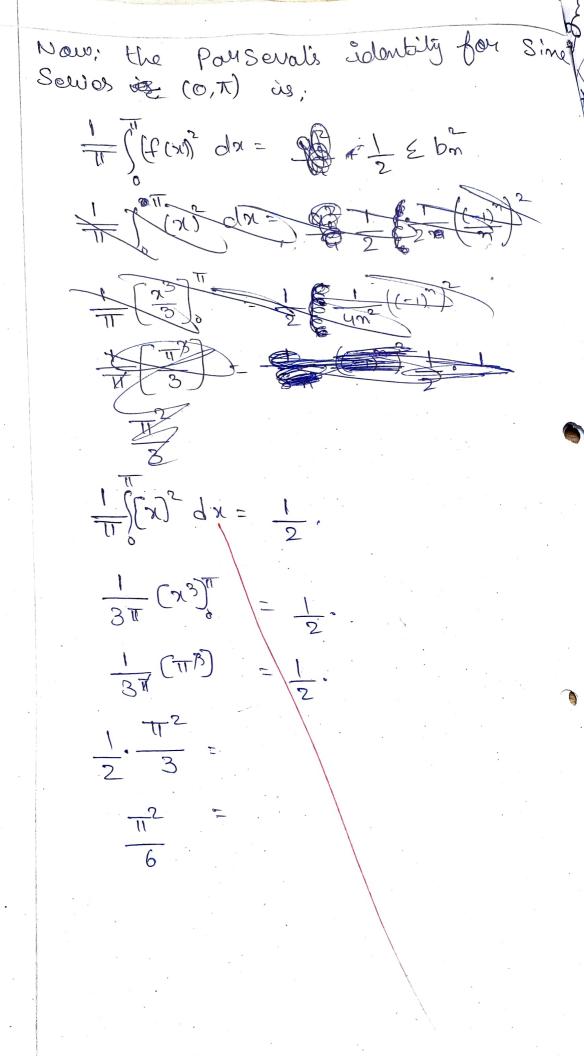
half songe Sine services in (0, 1) is, $f(x) = \sum_{m=1}^{\infty} p_m Sim(\frac{\pi}{n})x$

 $\frac{1}{\sqrt{2\pi}} \int_{0}^{\pi} (f(x))^{2} dx = \frac{q_{0}^{2}}{\sqrt{2\pi}} + \frac{1}{2} \sum_{n=1}^{\infty} b_{n}^{2}$

Section - B:-Greven :f (x) = x in (-1, 1) The formier Series is, $f(x) = \frac{\alpha_0}{2} + \frac{\beta_0}{\gamma_0} \alpha_n \left(\cos\left(\frac{m\pi}{d}\right) x + \frac{\beta_0}{\gamma_0} \sin\left(\frac{m\pi}{d}\right) x \right)$ Since, the f(x)=x, were: f(-x) = -x = -f(x) is an odd function. the fourier coefficients are; $\int a_0 = \frac{1}{2} \int f(x) dx$ =0 [: f(x) is an odd]. an - t f'f(x) Comx dx f = 0 [: f(x) is an odd g (as mx is an even, e = 0]. $C_{bm} = \frac{1}{d} \int_{x}^{d} f(x) Simmadx$ = 2 f(x) Simmxdx [: f(x) is odd & simmx is odd; 0.0=e]. -) To find bm : $b_n = \frac{2}{d} \int x \cdot Sin nx dx$ $=\frac{2}{4}\left[\chi\left(-\frac{\cos mn}{m}\right)-(1)\left(-\frac{\sin mn}{m^2}\right)\right]^{\frac{1}{2}}$

. 87 $= \frac{2}{4} \left[\frac{2}{m} \cdot (-i) + 0 \right] - \left(\frac{2}{m} \cdot (-i) \right].$ $= \frac{2}{m} \left[\frac{-1}{m} \left(-1 \right)^{m} * \frac{1}{m} \right]$ $= -\frac{2}{2} \left[\left(\epsilon \right)^{m} \right]$. The required formier Services is $f(n) = -2 \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ (8) Ceuven:. $f(x) = x \quad in (0, \pi)$ the happy mange Sime Services in (0, T). f(x)= so by Simma were. fourier Officients are; bm = 12 (# f(x) Simmer dx = 1 for Simma $= \frac{1}{2\pi} \left(3 \cdot \left(-\frac{05\pi n}{2} \right) - (1) \left(-\frac{5imma}{2} \right) \right)^{t}$ $= \frac{2!}{2\pi} \left(\left(\pi \cdot (-i) + 0 \right) - (0 + 0) \right)$ - 1 (to (-1)) $b_m = \underbrace{-1}_{2m} \underbrace{-1}_{2m}$ The required half range sine series $f'(x) = \sum_{n=1}^{\infty} \frac{1}{2n}$

welle; $f(n) = \frac{1}{2} \frac{1}{$ Curven:-9 f(n) = x in (σ, π) Were: the Sime Servis in (O,T) is. f(x) = zoo bon Simma dx. E: the fourier Coefficients are; $\mathcal{P}_{n} = \frac{D}{2\pi} \left(f(x) \right) \operatorname{Sim} \operatorname{mx} dx.$ The Car Simma $= \frac{1}{DT} \left[\pi \cdot \left(-\frac{\cos m \pi}{m} \right) - (1) \left(-\frac{\sin m \pi}{m^2} \right)^T \right]$ $-\frac{1}{2\pi}\left[\left(\overline{\pi}\cdot\left(\underline{c}\cdot\underline{n}\right)+0\right)-\left(0+0\right)\right]$ Ć $= \frac{21}{2\pi} \frac{1}{2\pi} (-1)^{2}$ $b_m = \frac{1}{2m} (-1)^m$ The sequenced Sime services is. $f(x) = \frac{2}{2} \frac{1}{2} (-1)^{n}$ $= \frac{1}{2} \frac{2^{2}}{m^{-1}} \frac{(-1)}{m}$



* Section - A:-D Bernoullis formulao: $\int u v dx = u v_1 - u' v_2 + u'' v_3 + u'' v_4 +$ were: u, u', u''. au differentiation of functiof the functions @ Eulais Constants in function (0,21) ale, $a^{\circ} = \frac{1}{1} \int_{-1}^{1} f(x) dx$ $a_{n} = \frac{1}{\sqrt{1-1}} \int_{-1}^{2\sqrt{1-1}} f(x) \left(\frac{m\pi}{\sqrt{1-1}} \right) x \, dx$ $b_m = \frac{1}{T} \int f(x) \operatorname{Sim}(\frac{m\pi}{T}) x \, dx.$ () The fourier Services i'm (-π, π) is. $f(x) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \alpha_n \operatorname{Genn} + \sum_{n=1}^{\infty} \operatorname{bn} \operatorname{Simn} x$ wone; fourion Coefficients are: $a_0 = \frac{1}{x_1} \int_{-\pi}^{\pi} f(x) dx$ $a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) = \frac{a_m}{2} \int_{-\pi}^{\pi} f(x) dx$

 $bn = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \operatorname{Sim} n x \, dx$ $c_{T} b_{m} = \frac{1}{T} \int_{T}^{T} f(x) Sim x dx$ Sinc; f(x) = x2 $f(-x) = -x^2 = -f(x)$ is an even function and Simma is an add function. Even x odd = Odd. br = 2 for Simxdx. $= \frac{2}{\pi} \left[\chi^2 \left(-\frac{\omega_{mm}}{m} \right) - 2\chi \left(-\frac{SimM}{m^2} \right) + 2 \left(-\frac{\omega_{mm}}{m^3} \right) \right]$ $= \frac{2}{\pi} \left[\left(\pi^{2}, \frac{(-1)^{n}}{n} + 0 + \frac{2}{n^{3}} (-1)^{n} \right) - \left(0 + 0 + \frac{2}{n^{3}} \right) \right]$ $=\frac{2}{R}\left(\frac{\pi^{2}}{2}+\frac{2}{2}\left((-1)^{2}-1\right)\right)$ $= \frac{4\pi}{3} [E_1]^{-1} \cdot \int h = 0$ (5) half

$$\begin{aligned} y(x,t) &= (c_1e^{p_1} + c_2e^{p_1}) (c_3e^{p_1} + c_4e^{p_4}) \\ y(x,t) &= (c_5 \cos p_4 + c_6 \sin p_3) (c_1 \cos q_1 + c_8 \sin q_5) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{12}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{12}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{12}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{12}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{12}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{12}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{12}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{12}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{10}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{10}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{10}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{10}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{10}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{10}) \\ y(x,t) &= (c_7 + c_{10}) (c_1 + c_{10}) \\ y(x,t) &= (c_7 + c_{10}) (c_{10}) (c_{10}) (c_{10}) (c_{10}) \\ y(x,t) &= (c_7 + c_{10}) (c_{10}) (c_{10}) (c_{10}) (c_{10}) (c_{10}) (c_{10}) (c_{10}) \\ y(x,t) &= (c_7 + c_{10}) (c_{10}) (c_$$

$$\begin{aligned} & \text{P(h)} f_{n}(to) = f_{n}(s) - \int_{to}^{to} \int_{to}^{to} e^{i\pi f_{n}} f_{n}(x) dx = \int_{to}^{to} \int_{to}^{to} e^{i\pi f_{n}} (x) dx - \lambda (x, x, y) \\ & \text{F(}_{n}(x)) = \int_{to}^{to} e^{i\pi f_{n}} e^{i\pi f_{n}} (x) e^{i\pi f_{n}} dx = \int_{to}^{to} \int_{to}^{to} e^{i\pi f_{n}} (x) e^{i\pi f_{n}} (x) e^{i\pi f_{n}} (x) e^{i\pi f_{n}} e^{$$

.

n '

Concentration and respective to the function of the section of the

Internal Assessment Test I, ODD semester 2022 U20MABT03/ Transforms and Boundary value problems Aeronautical/Aerospace

Yea	ear/Sem : II/ III Aeronautical/Aerospace Dat							
Dur	ation:1 ½ Hour	ax. Marks	: 50 BL					
	Part – A (6×2=12 Marks) Answer All Questions	CO 1	R					
1	Write down the Bernoulli's formula	CO 1	R					
2	Write the formulae for finding Euler's constants of a Fourier series in $(0,2l)$	CO 1	R					
3	Define Fourier series and Fourier coefficients in $(-\pi,\pi)$	CO 1	U					
4	Find the values of b_n , if f(x) = x^2 , in $-\pi < x < \pi$		R					
5	Write the half range cosine series and sine series formulae in $(0,l)$	CO 1						
6	State Parseval's identity for the half range sine series in $(0,\pi)$	CO 1	R					
	Part – B (3×6=18 Marks) Answer either (a) or (b)							
7a	Find the Fourier series for the function $f(x) = x^2$ in $-\pi < x < \pi$.	CO 1	U					
7b	Find the Fourier series for the function $f(x) = x$ in $(-l, l)$.	CO 1	U					
8a	Find the half range sine series for the function $f(x) = x$ in $(0, \pi)$.	CO 1 CO 1	U^ 					
-	Find the Fourier cosine series for the function $f(x) = x(l-x)$ in $(0, l)$							
	Find the sine series for $f(x) = x$ in $(0, \pi)$ and hence deduce that							
9a	$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ by using Parseval's identity.							
	$\sum_{n=1}^{\infty} n^2 = 6$							
	Find the half range sine series for the function $f(x) = a$ in $(0, l)$ and hence deduce that	CO 1	Α					
9b								
	$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2}$ by using Parseval's identity.							
	Part – C (2×10=20 Marks) Answer either (a) or (b)	CO 1	A					
	Find the Fourier series for the function $f(x) = x(2\pi - x)$ in $(0, 2\pi)$ and hence deduce the sum of the series $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$							
10a								
		CO1	_					
10b	Find the Fourier constants a_0 and a_n for the function $f(x) = x \cos x$ in $(0, 2\pi)$		A					
6								
	Find the half range cosine series for the function $f(x) = x$ in $(0, l)$ and hence deduce that	CO1	A					
11a	$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots = \frac{\pi^4}{96}$, by using Parseval's identity.							
	Find the first two harmonic of the Fourier series of $f(x)$ given by the following table	CO1	A					
	$\begin{vmatrix} x & 0 \\ \frac{\pi}{3} & \frac{2\pi}{3} \end{vmatrix} \stackrel{\pi}{=} \begin{vmatrix} \frac{4\pi}{3} \\ \frac{5\pi}{3} \end{vmatrix} \stackrel{2\pi}{=} \begin{vmatrix} 2\pi \\ 2\pi \end{vmatrix}$							
11b								
	$ \begin{vmatrix} f(x) & 1.0 & 1.4 & 1.9 & 1.7 & 1.5 & 1.2 & 1 \\ \hline f(x) & f(x)$							

BHARATH INSTITUTE OF HIGHER EDUCATION AF ? RESEARCH 1.4. Act. 1055) (Declared to Degree to be of the eren sun nome Ekkel (f. f. PING SCHOOL OF A Name: P. Tha thorad Dan 12 Examination...... Invigitator Sign. PART-A Resnoulli's foomula 0 Jurda= uv, + u'uz - u"" + u"" vu-350 tousics Services $f(x) = a_0 + \mathcal{E} \cos an \cos nx + \mathcal{E} br Gin nx$ n=1? coefficient (-11, 11) $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$ $den = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) encosnzdz$ $bn = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nz dz$

7a <u>Sol</u> PART-B

given far = x2 in -it < x<n fourier Genics $f(x) = \frac{\alpha_0}{2} + \frac{\alpha_1}{2} an \cos n_2 + \frac{\alpha_2}{2} bn \sin n_2$ find ao ao = in fit fai da $= \prod_{n=1}^{l} \int_{1}^{l} \chi^{2} d\chi$ $= \frac{1}{n} \left(\frac{23}{2} \right)_{-\pi}^{n}$ $=\frac{1}{\pi}\left(\frac{\pi}{3}\right) - \frac{1}{\pi}\left(\frac{-\pi}{3}\right)$ = 4 114 3 + 174 - 0 118 1 find bean and $= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{x^{2} \cos nx \, dx}{v}$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{x^{2} \cos nx \, dx}{v}$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{x^{2} \cos nx \, dx}{y}$$

$$\int uv = uv_{1} - uv_{2} + u^{2}v_{3} - u^{2}v_{4} + \cdots$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \left[\frac{x^{2} \cos nx}{nq} - \frac{2x}{v} \left(\frac{-\sin n\pi}{(n\pi)^{2}} \right) + 2 \left(\frac{-\cos \sin n\pi}{(n\pi)^{2}} \right) \right]$$

$$= \frac{1}{\pi} \cdot \left[\frac{\pi^{2} \cos \sin \pi}{n\pi} - \frac{2\pi}{v} \cdot \left(\frac{-\cos \sin \pi}{(n\pi)^{2}} \right) + 2 \left(\frac{-\cos \sin \pi}{n\pi^{3}} \right) \right]$$

$$= \frac{1}{\pi} \cdot \left[\frac{\pi^{2} \cos \sin \pi}{n\pi} - \frac{2\pi}{n\pi} \cdot \left(\frac{-\sin \pi}{(n\pi)^{2}} \right) + 2 \left(\frac{-\cos \sin \pi}{n\pi^{3}} \right) \right]$$

$$= \frac{1}{\pi} \cdot \left[\frac{\pi^{2} \cos \sin \pi}{n\pi^{2}} - \frac{2\pi}{n\pi^{2}} + 2\pi \left(\frac{-\cos \pi}{(n\pi)^{2}} \right) + 2 \left(\frac{-\cos \sin \pi}{n\pi^{3}} \right) \right]$$

$$= \frac{1}{\pi} \cdot \left[\frac{\pi^{2} \cos \sin \pi}{n\pi^{2}} - \frac{2\pi}{n\pi^{2}} + 2\pi \left(\frac{-\cos \pi}{(n\pi)^{2}} \right) + 2 \left(\frac{-\cos \pi}{(n\pi)^{2}} \right) \right]$$

$$= \frac{1}{\pi} \cdot \left[\frac{\pi^{2} \cos \pi}{n\pi^{2}} - \frac{\pi}{n\pi^{2}} + 2\pi \left(\frac{-\cos \pi}{(n\pi)^{2}} \right) + 2\pi \left(\frac{-\cos \pi}{(n\pi)^{2}} \right) \right]$$

$$= \frac{1}{\pi} \cdot \left[\frac{\pi^{2} \cos \pi}{(n\pi)^{2}} + 2\pi \left(\frac{-\cos \pi}{(n\pi)^{2}} \right) + 2\pi \left(\frac{-\cos \pi}{(n\pi)^{2}} \right) \right]$$

$$= \frac{1}{\pi} \cdot \left[\frac{\pi^{2} \cos \pi}{(n\pi)^{2}} + 2\pi \left(\frac{-\cos \pi}{(n\pi)^{2}} \right) + 2\pi \left(\frac{-\cos \pi}{(n\pi)^{2}} \right) \right]$$

$$= \frac{1}{\pi} \cdot \left[\frac{\pi^{2} \cos \pi}{(n\pi)^{2}} + 2\pi \left(\frac{-\cos \pi}{(n\pi)^{2}} \right) + 2\pi \left(\frac{-\cos \pi}{(n\pi)^{2}} \right) \right]$$

(

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{2\pi}{2r} \frac{\sin n\pi}{4} dx$$

$$\int uv = uv + u^{1}v_{2} - u^{11}v_{3} + u^{11}v_{4} - \frac{1}{\pi}$$

$$= \frac{\pi^{2}}{n\pi} \frac{\cos n\pi}{n\pi} + \frac{2\pi}{2\pi} \frac{-\sin n\pi}{(n\pi)^{2}} - \frac{\pi}{(n\pi)^{2}} \frac{-\cos n\pi}{(n\pi)^{2}}$$

$$= \frac{\pi^{2}}{(\frac{\cos n\pi}{n\pi})^{2}} + \frac{2\pi}{(\frac{\sin n\pi}{(n\pi)^{2}})^{2}} \frac{\pi}{(\frac{\cos n\pi}{(n\pi)^{2}})^{2}} \frac{\pi}{(\frac{\cos n\pi}{(n\pi)^{2}})^{2}}$$

$$= \frac{n\pi}{3} \frac{(1)}{(1)} + \frac{2\pi\pi^{2}}{(1)} \frac{(1)}{(1)} - \frac{n\pi^{4}}{(1)}$$

$$= \frac{n\pi}{3} - \frac{n\pi^{4}}{(1)}$$

$$= \frac{n\pi^{3}}{(1)} + \frac{2\pi\pi^{2}}{(1)} \frac{(1)}{(1)} - \frac{n\pi^{4}}{(1)}$$

$$= \frac{n\pi^{3}}{(1)} + \frac{2\pi\pi^{4}}{(1)} \frac{(1)}{(1)} - \frac{n\pi^{4}}{(1)}$$

$$= \frac{n\pi^{3}}{(1)} - \frac{n\pi^{4}}{(1)}$$

$$= \frac{n\pi^{3}}{(1)} + \frac{2\pi\pi^{4}}{(1)} \frac{(1)}{(1)} - \frac{n\pi^{4}}{(1)}$$

$$= \frac{n\pi^{3}}{(1)} - \frac{n\pi^{4}}{(1)}$$

$$= \frac{n\pi^{3}}{(1)} + \frac{2\pi\pi^{4}}{(1)} \frac{(1)}{(1)} - \frac{n\pi^{4}}{(1)}$$

$$= \frac{n\pi^{3}}{(1)} - \frac{n\pi^{4}}{(1)} + \frac{2\pi\pi^{4}}{(1)} \frac{(1)}{(1)} - \frac{n\pi^{4}}{(1)}$$

$$= \frac{n\pi^{3}}{(1)} - \frac{n\pi^{4}}{(1)} + \frac{2\pi\pi^{4}}{(1)} - \frac{n\pi^{4}}{(1)} + \frac{2\pi\pi^{4}}{(1)} + \frac{2\pi\pi^{4}}{(1)} - \frac{n\pi^{4}}{(1)} + \frac{2\pi\pi^{4}}{(1)} + \frac{2\pi\pi^{4}}{(1)} - \frac{\pi\pi^{4}}{(1)} + \frac{2\pi\pi^{4}}{(1)} + \frac{$$

Prot-c
given fonction

$$f(x) = \chi(2\pi - \chi)$$

fouries Series
 $f(x) = \frac{\alpha_0}{\chi} + \sum_{n=1}^{\infty} \alpha_n \cos n\chi + \sum_{n=1}^{\infty} bn \sin n\chi$
Find α_0
 $\alpha_0 = \frac{1}{\pi} \int_{-\pi}^{2\pi} f(x) d\chi$
 $= \frac{1}{\pi} \int_{0}^{2\pi} f(x) d\chi$
 $= \frac{1}{\pi} \int_{0}^{2\pi} \alpha(2\pi - \chi) d\chi$
 $= \frac{1}{\pi} \int_{0}^{2\pi} (2\pi - \chi) d\chi$
 $= \frac{1}{\pi} (2\pi \chi^2 - \chi^2) d\chi$
 $= \frac{1}{\pi} [2\pi (2\pi \chi) - (2\pi \chi)^2] - 0$
 $= \frac{1}{\pi} [2\pi (2\pi \chi) - (2\pi \chi)^2] - 0$
 $= \frac{1}{\pi} [2\pi (2\pi \chi) - (2\pi \chi)^2] - 0$
 $= \frac{1}{\pi} [2\pi (2\pi \chi) - (2\pi \chi)^2] - 0$
 $= \frac{1}{\pi} [2\pi (2\pi \chi) - (2\pi \chi)^2] - 0$
 $= \frac{1}{\pi} [2\pi (2\pi \chi) - (2\pi \chi)^2] - 0$

$$\frac{\operatorname{find} \alpha_{0}}{\operatorname{n} = \frac{1}{\pi} \int_{0}^{2\pi} \frac{1}{\operatorname{f(x)} \alpha_{0} \operatorname{gnx} dx}$$

$$a_{n} = \frac{1}{\pi} \int_{0}^{2\pi} \frac{1}{2\pi} \operatorname{cosx} \operatorname{cosnx} dx$$

$$a_{n} = \frac{1}{\pi} \int_{0}^{2\pi} \frac{1}{2\pi} \operatorname{cosx} \operatorname{cosnx} dx$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} \frac{\cos x}{2 \operatorname{sinx}} + \left(\frac{\sin n\pi x}{(n\pi)} \right) + \left(-\sin x \right) \left(-\frac{\cos \pi n\pi \pi}{(n\pi)^{2}} \right)$$

$$= \frac{1}{\pi} \frac{2\pi}{2\pi} \cos 2\pi \left(\frac{\sin n\pi x}{(n\pi)^{2}} \right) + \left(-\sin x \right) \left(-\frac{\cos n\pi \pi}{(n\pi)^{2}} \right)$$

$$= \frac{1}{\pi} \frac{2\pi}{2\pi} \cos 2\pi \left(\frac{\sin n\pi x}{(n\pi)^{2}} \right) + \left(-\sin x \right) \left(-\frac{\cos n\pi \pi}{(n\pi)^{2}} \right)$$

$$= \frac{1}{\pi} \frac{1}{2\pi} \cos 2\pi \left(\frac{\sin n\pi x}{(n\pi)^{2}} \right) + \left(-\sin \pi \pi \right) \left(-\frac{\cos n\pi \pi}{(n\pi)^{2}} \right)$$

$$= \frac{1}{\pi} \operatorname{un} \cos \left(\frac{\sin n\pi x}{2\pi\pi} \right) + \frac{1}{5} \operatorname{un} \left(\frac{\cos n\pi \pi}{2\pi\pi} \right)$$

$$= \operatorname{un} \left(\frac{(\sin n\pi)}{(2\pi)^{2}} \right)$$

$$= \operatorname{un} \left(\frac{(\sin n\pi)}{(2\pi)^{2}} \right)$$

10a) given function fix)=x(211-x) fartier Series fan: aut Edn cosna + E bn Sinna to find aq $ao = \frac{1}{\pi} \int f(x) dx$ ao-1 1217 1 x (217-x)dx $=\frac{1}{\pi}\int_{0}^{2\pi} 2\pi x - x^{2} dx$ $= \frac{1}{4} \left(\frac{5}{5} - \frac{5}{3} \right)_{5} u$ 0 $=\frac{1}{\pi}\left[2\pi\frac{2\pi^{2}}{2}-\frac{2\pi^{3}}{3}-0\right]$ Ç $=\frac{1}{\pi}\left[\frac{u\pi^{2}}{2}-\frac{2\pi^{3}}{2}\right]$ - 1 [29] 242

$$an = \frac{1}{\pi} \int_{0}^{2\pi} \frac{f(x) \cos nx d_{3t}}{f(x) \cos nx d_{3t}}$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} 2\pi x \cdot x^{n} \cos nx d_{3t}$$

$$Juv dx = uv_{1} + u'v_{2} - u'v_{3} + u''v_{0} - \cdots$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} \frac{1}{x \cdot x^{n}} \frac{$$

10)

C

BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH (Declared as Deemed to be University U/S 3 of UGC Act. 1956) Setaiyur, Chomar-600 07, L. FIDIA SCHOOL OF AERONAD FIDIAL EL DINEERING Name: GIO (KU) Kog S Name: Di Martin Reg. No. U21(ASOI) Sam / Year. D. T Examination. CLA - 2 Subject Komform (Jourde Invigilator Sign. 251

Sol Jzy Jt c = f/in. Giver y (2,0) = yo sind (772) x = 0 & x = l. the boundary conditions are y(o,t) = 0

y (x,o) = yosin3 (Try).

y (the) = 0

dy (til) = 0

Part-C.

the one -dimensional equation of wave. u (x,y) = (C, COSPX in (2 sin px) (C3 Eosapt + CHSIN apt) -> RO apply 1st boundary condition y (o,t) = (C, Cog(o) + (2 Sinp(o)) (3 coasapt + (Lisinapt) C. C. C. C. C. Cosopi + C. sinopt) 1-50, CI= Q -> B ATTY cours in Drogot unitarias) = -Cz sin u (x,y) = c_simpx (c_cosapil+C_u sinorap) y Chief = C2 Simple CC2 Cosapt + Crisinapt) Simple = Sino (FF) C_2 Simple = 0 C. - Simmit=0 Stappe = Sinhi $T = n\pi$ x = 0

USCXID = Ezsin sub can @ in @ we get C2 Sin MILE CC3COSONT + FGSING yfouriy= $C_2 \neq 0$ $\frac{\partial \mathcal{L}(\mathbf{x}_{i})}{\partial t} = \mathcal{L}_{2} \sin \frac{n\pi}{2} \times \left[\mathcal{L}_{3} \cos \frac{n\pi}{2} \times \left(\frac{n\pi}{2}\right) + \right]$ Ca Sima(nīt) (nīt) -Cz sin Mil x (Cz MI) CH= O. weget u (x,y) = C2 Sin MT x [C3 (osamt f] C2 C3 Sinnit x Cosan TI f = bu sin "Exclosurii f = En Sinh Jos rosmin -> B boundary Condition weget Apply the E fixi = yo sin³ (hi) $y_{sin^3} = y_{off} \left(3 \sin x - \sin 3x\right)$

= BSM [MJ] - SIN 3 [MJ]

Hen

SET the -

 $y \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{1}{2$ (33n7) ICH HATT T. $C_1 = \frac{34}{4} \quad q \quad C_2 = \frac{40}{1}$ Apply the above C value in ear(6) weget = GAZ CASINATIX COSATIE The most general earrest = CISHAY SIN BUTT COS BORT + CZ GOSINNIT) Cosh II f Crestory 3 y sin Tex cos all f A y (x.o)

(3 Jo Sin Thy Cos an for

P.S.Ml (ebg) Given food = 1-50, [71] [1 0, 60, 1 To show a fine - Scossfde = The $\int_{-\infty}^{\infty} \frac{\sin^2 t}{t^2} at$ Sol. $= \int_{2\pi}^{1} \int_{1}^{2\pi} (1-x^2) e^{iSx} dx$ = line (1-zi) (acos - bosze) die =2/ JETT J (1-20) Goigins-Bross)dr - Jan J (1-x) (cosex - i sinsx)dr $= 2 \times \frac{1}{\sqrt{2\pi}} \int (1 - x^{2}) (\cos s x) = (1 - x^{2}) i s \ln x d$

=2-1 27-27 • • =2~1 Jose [[-2x] Sinsx] S]0. f(s)=2x 1 [1- coss] parvel's John Hofy f(x) = f(x) = f(x) f(x)= [1-xz]2 = 18 ' Investor $E'(f(s)) = f(s) = \int_{\overline{zt}} \int_{\overline{zt}} F(s) e^{iS_{z}} ds$ $f(z_{2}) = \int_{\overline{z_{T}}} \int_{-A} \int_{\overline{z_{T}}} \int_{-A} \int_{\overline{z_{T}}} \int_{-A} \int_{\overline{z_{T}}} \int_{-S^{2}} \int_{e}^{-1S_{2}} de$ $f(x) = \int \int \frac{1}{\sqrt{2}} \int \frac{1}{$

500-51-8, 12/2/2/ = 1 5 [2sin2s/2]-isr ds $-\frac{1}{\pi}\int \frac{2!\,sin^2S/2}{s^2}\pi\,ds$ - <u>f</u> 2 sin² s/2 - <u>5</u> z sin² s/2 - <u>5</u> z ds (put t = 5/2 dt = ds/2. $= \int_{0}^{\infty} \frac{25\ln^2 t}{t^2} dt$

P.S.M

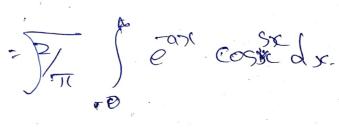
(b) Gaven = -Gaven > a

 $f(s) = \int_{\pi}^{2} \sqrt{\pi} \int_{\pi}^{0} f(x) \sin x \, dx$ $= \int \overline{z}/\pi \int \overline{z} = \frac{1}{\sqrt{2}} \int \overline{z}/\pi \int \overline{z}/\pi \int \overline{z} = \frac{1}{\sqrt{2}} \int \overline{z}/\pi \int \overline{$

= 2/1). 200/11 fersinz]da

= 2x JAn Jean-cosalder. - 28x JZ/TT E 27

the Cosine form



= JZ/II [eax-sins] dec

= J2/11 [a²]

Paml \mathcal{O} 1-Dwave Equation. fouring law of heat conduction; 2) In the fourier law of had conduction the heat will flow through the material at any area of surface in a negrative gradiant Convolution theorem S 1 * 9 = 0. parseval's identify. If ISING FIFTON ſ 1-D wave quation D 224 2224 232 - 224 u(x,y) = GLOS (CLAPX + C2PX + Cgapt+ (a apt) u(x,y) (Geospe Cascospe + Casimpa) ((7 cospapt + (8 coscinapl.

(174) JC+> Cosy dx a) the Griven $f(x) = e^{-\alpha x}$, $\alpha > 0$. SOL = ff JZ f f Go. sing dr. = J7/7 J fear sinada. = 2 J2/77 Jear sinada. $=2-\frac{1}{2}\sqrt{\pi}\int_{\pi}^{\pi}\int_{\pi}^{\pi}\frac{1}{2}\int_{\pi}$ 70) Steady state condition of I- coordinate. In the fourier transform the heat will bos doesn't change at any point by time and it is knowing as steady State Condition

 $u(x,y) = (C_{q}^{2} + C_{10})(C_{11} + C_{12})$

p. s.pl

-- D heat flow equation S 824 - 2824 + 824 744 8t - 282 + 842 84 c = K/Ps be Pel (Gupset (2Pr) C (3e - + Cu) CL(x,y)

 $f = \int f x \cdot \cos \alpha x = \frac{1}{3\pi} \int f (x) e^{i x} dx$ $(os_{\chi} = e^{i \pi s}e^{-i s} \int e^{i s \pi} e^{i a \chi}$

=) <u>+ { { { { { { { { { { { { { { { { } } } } } } } } } } } } </u>

= 1 (Cérax téliax) ést dr = 1 fill 1 100, est 1 art 1 fra

 $= \frac{1}{2} \left[\frac{1}{2\pi} \int_{x}^{x} \left(\frac{i(c_{s}+\alpha)x}{e^{i(c_{s}+\alpha)x}} - \frac{i(c_{s}-\alpha)x}{e^{i(c_{s}-\alpha)x}} \right) dx \right]$ = $\frac{1}{2} \left[F(c_{s}+\alpha) - F(c_{s}-\alpha) \right]$

	ELEVISIA FLON AND RESEARCH ELEVISIA FLON AND RESEARCH (Declare 2.3. Lorented to be Univer as this 2 of USC Act. 1956) (Declare 3.3. Lorented to be Univer as this 2 of USC Act. 1956) SCHOP OF AEDUTE AND ELEVE TRING SCHOP OF AEDUTE AS A ELEVE TRING Name: SENTHIL NATHAN AGS
	Part-A
1.	ALL POSSIBLE SOLUTIONS OF ONE DIMENSIONAL
	WAVE EQUATION:
	The one diministral wave equation,
, V	$\frac{\partial^2 u}{\partial b^2} = \alpha^2 \frac{\partial^2 u}{\partial \alpha^2}$
	Here $a = \frac{\text{Tension}}{\text{mars}} \frac{(T)}{(m)}$
	The all poerible solutions of Dre Dimensional
	wave equations are,

 $y(x,t) = (c_1 e^{px} + c_2 e^{-px}) (c_3 e^{apt} + c_4 e^{-apt})$ $y(x,t) = (c_5 \cos px + c_6 \sin px) (c_1 \cos apt + c_8 \sin apt)$ $g(x,t) = (c_9 x + c_{10}) (c_{11}t + c_{12})$ $(t_{10} x + t_{10}) (c_{11}t + c_{12})$ $(t_{10} x + t_{10}) (c_{11}t + c_{12})$ $(t_{10} x + t_{10}) (t_{11}t + c_{12})$ $(t_{10} x + t_{10}) (t_{10} t + c_{12})$ $(t_{10} t + c_{12}) (t_{10} t + c_{12}) (t_{10} t + c_{12})$ $(t_{10} t + c_{12}) (t_{10} t + c_{12}) (t_{10} t + c_{12})$ $(t_{10} t + c_{12}) (t_{10} t + c_{12}) (t_{10} t + c_{12}) (t_{10} t + c_{12}) (t_{1$

y(x,t) = ((, caspx + c2 sinpx) (c3 casapt + c4 sinapt)

2. Fourier laws of Heat conduction con thermal Conductivity:

* The fourier law of thermal conduction states that the rate of change of Heat transfer through a material is phoportional to the Negative (-ve) gradient in the temperature, and the area surface through which the Heat How.

* This is known as Fourier law of Heat

3. Two DIMENSIONAL HEAT FLOW EQUATION: The two dimensional Heat Flow Equation is $\frac{\partial U}{\partial t} = C^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^4 u}{\partial y^2} \right)$ Here $C = \frac{k}{PC}$ where $k \rightarrow$ Thermal conductivity $P \rightarrow Density$ $C \rightarrow Specific$ Heat capacity.

The Condition at which the Temperature doesn't changes with the Time is known as steady state condition.

Then, the 200 Heat thow equation will be

$$\frac{\partial^{2} u}{\partial 2} + \frac{\partial^{2} u}{\partial 3} = 0.$$
This is also known as toplace Equation.
Various possible solutions of toplace Equation
are
 $u(x,y) = (Ae^{Px} + Be^{-Px})(ccospy + DSinpy)$
 $u(x,y) = (Acospx + BSinpx)(ce^{Py} + De^{-Py})$
 $u(x,y) = (Ax + B)(cg + D).$
Then the connect Solution is
along x direction (ine parallel con blon
zero boundary (ordition.
 $u(x, 0) = u(x, 1) - b(x).$
 $u(x, 0) = u(x, 1) - b(x).$
 $u(x, y) = (Acospx + Bsinpx)(ce^{Py} + De^{-Py})$
along the y direction (the line parallel con
Non zero boundary (ordition.
 $u(x, y) = (Ae^{Px} + Be^{-Px})(ccospy + Dsinpy).$
 $V(x, y) = (Ae^{Px} + Be^{-Px})(ccospy + Dsinpy).$
Formies transform points:
The function that is clutimed in (-0, 0),
and Continuously condition and absolutily
integrable in (-x, or). Then the forwater Transform
is
 $F(f(x)) = F(s) = \frac{1}{\sqrt{2\pi}} \int d(x) \cdot e^{isx} d\alpha \rightarrow 0$

()

4.

The involution of the fourier Series Can
be written as
$$F^{-1}[F(s)]$$
 or $f(x)$.
 $f(x) = F^{-1}[F(s)] = \int_{2\pi}^{-1} \int_{2\pi}^{-1} F(s) \cdot e^{-sx} ds \rightarrow 0$.
The equation D and Q are together are
known as Fourier Transform pairs.
(Fourier Transform and Inverse downics
Transform).

5. CONVOLUTION THEOREM :

The convolution theorem of two functions $d(\alpha)$ and $g(\alpha)$ are defined as $d \star g = \frac{1}{\sqrt{\alpha}\pi} \int d(t) g(\alpha-t) dt$

Fourier convolution theorem.

the fourier convolution theorem of two sunction tree and gear is product of the townien transform of each tunction.

 $f(\alpha) * g(\alpha) = F(c) \cdot G(c)$

Parsenal's Identify for towner Transform.
The parsenal's Identify for towners
Transform is defined as

$$\int |f(x)|^2 doc = \int |F(s)|^2 ds$$

which is the parsenal's Identify for towning

Transform.

Pant-B.

1 D. Partial differential Equations.
1) Given

$$y^{\mu} Uxx + x^{\mu} Uyy = 0 = -0$$

the curveal expression for the positial
differential capation is
 $A(x,y) \frac{\partial^{2}u}{\partial x^{2}} + B(x,y) \frac{\partial^{4}u}{\partial x^{2}} + c(x,y) \frac{\partial^{2}u}{\partial y^{2}} + \frac{1}{2} (x,y,u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}) = 0.$
Composing the Given equation 0 with the
quereral capation. We get,
 $A = y^{2}$, $B = 0$, $C = x^{2}$
Substitute in =>
 $B^{2} - HAC = (0)^{2} - H(y^{2})(x^{2}) = 0$
 $-Hy^{2}x < 0$ $B^{2} - HAC = 20$
Therefore the given equation is d the
elliptic type

ii) Griven equation,

$$4U_{22} + 4U_{24} + U_{34} + U_{34} + 2U_{2} - V_{4} = 0.$$

$$4 \frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + 2 \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 0$$

the oreneral Equation / solution for

Partial differential equation is

$$A(\alpha_1 y) \frac{\partial^2 u}{\partial x^2} + B(\alpha_1 y) \frac{\partial^2 u}{\partial x \partial y} + C(\alpha_1 y) \frac{\partial^2 u}{\partial y^2} + f(\alpha_1 y, u, \frac{\partial u}{\partial x \partial y})$$

=0.

0=0

Comparing the given equation with the Orenard Solution, we get.

$$A = 4$$
, $B = 4$, $C = 1$

Substitute in B2-HAC =0.

$$B^{2} - HDC = 3 (H)^{2} - H(H)(1) = 0$$

 $B^2-HAC=0$.

. The given equation is of the parique lie type.

8

, STATEMENT : of F(dix)) is equal to F(s) thun the $F[f(x) \cos ax]$ is equal to $\frac{1}{2}[F(s+a) + F(s-a)]$ Modulation theorem: $F[dix) \cos ax] = \frac{1}{2} [F(sta) + F(s-a)]$ PROOF ! we know that, The towner Transform of the function fix) is, $F[f(x)] = F(s) = \frac{1}{\sqrt{2\pi}} \int dx e^{isx} dx$ x by cosax in both the sides, $\mathcal{F}\left[\frac{1}{\sqrt{2\pi}}\right] = \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{1}$ Cosax = etax + e lax $F[d(n)(osan)] = \frac{1}{\sqrt{2\pi}} \int \frac{dv}{dv} \frac{e^{iax}}{e^{iax}} \frac{e^{iax}}{e^{isx}} dv$ $F\left[f(x)\left(o^{j}ax\right) = \frac{1}{2} \left[\frac{1}{\sqrt{2\pi}} \int f(x)\left(e^{iax} + e^{-iax}\right) \cdot e^{isx} dx\right]$ $= \frac{1}{2} \int \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} e^{i\alpha \gamma} e^{i\beta \chi} d\alpha + \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} e^{i\alpha \gamma} e^{i\beta \chi} d\alpha + \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} e^{i\beta \chi} d\alpha + \frac{1}{\sqrt{2\pi}} \int$

$$= \int_{-2}^{-1} \left(\int_{12\pi}^{-1} \int_{0}^{1} f(x) e^{i\alpha x + isz} d\alpha + \int_{12\pi}^{-1} \int_{0}^{1} f(x) e^{-i\alpha x + isz} d\alpha \right)^{-1} e^{-i\alpha x + isz} d\alpha = \int_{-1}^{-1} \left(\int_{12\pi}^{1} \int_{0}^{1} f(x) e^{i(x+\alpha)x} e^{-i\alpha x + isx} d\alpha \right)^{-1} e^{i(x-\alpha)x} d\alpha = \int_{0}^{1} \left(\int_{12\pi}^{1} \int_{0}^{1} f(x) e^{i(x-\alpha)x} d\alpha + \int_{12\pi}^{1} \int_{0}^{1} f(x) e^{i(x-\alpha)x} d\alpha \right)$$

(which is of the form of bounder Franchorm
is $F[f(x)] = \int_{0}^{1} \left[F(x+\alpha) + F(x-\alpha) \right]$
where the Modulation theorem is pressed. A
Hence the Modulation theorem is pressed. A
 $f(x) = e^{-\alpha x}$
 $f(x) = e^{-\alpha x}$
 $F_{s}[f(x)] = \int_{-\pi}^{2} \int_{0}^{1} f(x) \sin x d\alpha$
 $F_{s}[f(x)] = \sqrt{\frac{2}{\pi}} \int_{0}^{1} f(x) \sin x d\alpha$
Here $f(x) = e^{-\alpha x}$
 $F_{s}[f(x)] = \sqrt{\frac{2}{\pi}} \int_{0}^{1} f(x) \sin x d\alpha$
Here $f(x) = e^{-\alpha x}$
 $F_{s}[e^{-\alpha x}] = \sqrt{\frac{2}{\pi}} \int_{0}^{2} e^{-\alpha x} \sin x d\alpha$.
We know that,
 $\int_{0}^{1} e^{\alpha x} \sin x d\alpha = \frac{e^{\alpha x}}{a^{2}+b^{2}} (\alpha \sin bx - b \cos bx) (b\alpha x - a, b = S]$

 $F_{S}\left[e^{-\alpha x}\right] = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-\alpha x}}{\alpha^{2} + (s)^{2}} \left(-\alpha \sin s x - 3\cos s x\right)\right]^{\infty}$

$$= \sqrt{\frac{2}{\Pi}} \left[\left(0 - \frac{1}{\alpha^2 + S^2} \right) \right]$$

$$= \sqrt{\frac{2}{\pi}} \left[\frac{g}{a^{2}+s^{2}} \right].$$

, aso \$ \$ 0

 $F_{S}\left[e^{-\alpha x}\right] = \sqrt{\frac{2}{\pi}} \frac{S}{\sigma^{2}+\sigma^{2}}$

which is the required Fourier Sine Transfor fui) = eraz of the given function

we know that,

0

2

The fourier cosine Transform of the durction text is given by

$$F_c[f(x)] = F_c(s) = \sqrt{\frac{2}{\pi}} \int \frac{1}{\sqrt{\pi}} dx dx$$

Here function fox = e^-ax

$$F_{e}\left[e^{-\alpha x}\right] = \sqrt{\frac{2}{\Pi}} \int_{0}^{\infty} e^{-\alpha x} \cos x \, dx$$

we know that,

$$\int_{0}^{0} e^{ax} \cos bx \, doc = \frac{e^{ax}}{a^{2} + b^{2}} \left(a \cos bx + b \sin bx \right)$$

How a = -a and b = s.

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-\alpha z}}{(\alpha^{s} + (s))} \left(-\alpha \cos s z + s \sin s z \right) \right]_{T}^{\infty} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[0 - \left(\frac{1}{\alpha^{s} + s^{s}} \left(-\alpha + 0 \right) \right) \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{s} + s^{s}} \right]$$

$$F_{c} \left[e^{-\alpha z} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[e^{-\alpha z} \right]$$

$$F_{c} \left[e^{-\alpha z} \right]$$

$$F_{c} \left[e^{-\alpha z} \right]$$

$$F_{c} \left[e^{-\alpha z} \right] = \sqrt{\frac{2}{\pi}} \left[e^{-\alpha z} \right]$$

$$F_{c} \left[e^{-\alpha z} \right]$$

$$\frac{\partial^2 y}{\partial t^2} = \alpha^2 \left(\frac{\partial^2 y}{\partial x^2} \right)$$

The corvict solution of One dimensional wane equation is

Y(x,t) = (A Cosp2 + BSinp2) (C Cosapt + D Sinapt) -> (D

Worke

equation

The boundary conditions are,
A
$$y(o,t) = 0$$
, $t \ge 0$
i) $y(1,t) = 0$, $t\ge 0$
i) $y(1,t) = 0$, $t\ge 0$
i) $y(1,t) = 0$, $t\ge 0$
i) $y(1,t) = 0$, $0 < x < 1$
Applying boundary condition (i) in equation
 $D = 3$
 $y(1,t) = (Acospx + B sinpx) (c cosapt + D sinapt)$
 $y(0,t) \Rightarrow (A cos co) + B sin (o)) ((los apt + D sinapt)) = 0$
 $y(0,t) \Rightarrow (A + 0) ((cosapt + D sinapt)) = 0$
 $y(0,t) \Rightarrow A ((cosapt + D sinapt)) = 0$
 $y(0,t) \Rightarrow A ((cosapt + D sinapt)) = 0$
Here $A = 0$, $(c cosapt + D sinapt) = 0$
 $y(1,t) = 0 + B sinpx ((c cosapt + D sinapt)) = 0$
 $y(1,t) = B sinpx ((c cosapt + D sinapt))$
 $y(1,t) = B sinpx ((c cosapt + D sinapt)) = 0$
Applying Second boundary condition $2n = 0$,
 $y(1,t) = B sinpx ((c cosapt + D sinapt)) = 0$,

$$(C \ cosapt + D \ singet) \neq 0$$
B $\ sinpl = 0$
B $\ sinpl = Sin n \pi$
P $= \left(\frac{n \pi}{4}\right)$
Substitute $P = \left(\frac{n \pi}{4}\right) \ in \otimes$ we get.
B $\ sin(\frac{n \pi}{4})x \left(C \ cos(\frac{n \pi a}{4})t + D \ sin(\frac{n \pi a}{4})t\right)$
G $\ (x_1t) = B \ sin(\frac{n \pi}{4})x \left(C \ cos(\frac{n \pi a}{4})t + D \ sin(\frac{n \pi a}{4})t\right)$
P $\ sin(\frac{n \pi}{4})x \left(C \ cos(\frac{n \pi a}{4})t + D \ sin(\frac{n \pi a}{4})t\right)$
P $\ sin(\frac{n \pi}{4})x \left(C \ cos(\frac{n \pi a}{4})t + D \ sin(\frac{n \pi a}{4})t\right)$
P $\ sin(\frac{n \pi}{4})x \left(C \ cos(\frac{n \pi a}{4})t + D \ sin(\frac{n \pi a}{4})t\right)$
P $\ sin(\frac{n \pi}{4})x \left(C \ cos(\frac{n \pi a}{4})t + D \ sin(\frac{n \pi a}{4})t\right)$
P $\ sin(\frac{n \pi a}{4})x \left(C \ cos(\frac{n \pi a}{4})t + D \ sin(\frac{n \pi a}{4})t\right)$
P $\ sin(\frac{n \pi a}{4})x \left(C \ cos(\frac{n \pi a}{4})t + D \ sin(\frac{n \pi a}{4})t\right)$
P $\ sin(\frac{n \pi a}{4})x \left(C \ (-sin(\frac{n \pi a}{4})co)(\frac{m \pi a}{4})\right)$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4})co)(\frac{n \pi a}{4})\right]$
P $\ sin(\frac{n \pi a}{4})x \left[C \ (-sin(\frac{n \pi a}{4}$

$$d(x_{1}) = y(x_{1}, 0) = y_{0} \sin^{2}\left(\frac{\pi x}{4}\right).$$

$$\sum_{n=1}^{\infty} C_{n} \sin\left(\frac{n\pi}{4}\right)x = y_{0} \sin^{2}\left(\frac{\pi x}{4}\right)$$

$$\sin^{3}x = \frac{1}{4}\left(\frac{32\pi x - 5\pi 3x}{4}\right)$$

$$C_{1} \sin\left(\frac{\pi}{4}\right)x + C_{2} \sin\left(\frac{\pi\pi}{4}\right)x + C_{3} \sin\left(\frac{3\pi}{4}\right)x - \cdots$$

$$= y_{0}\left[\frac{1}{4}\left(\frac{4\pi}{3}\sin\left(\frac{\pi}{4}\right)x - \sin\left(\frac{3\pi}{4}\right)x\right]\right]$$

$$C_{0} = y_{0}\left[\frac{1}{4}\left(\frac{4\pi}{3}\sin\left(\frac{\pi}{4}\right)x - \sin\left(\frac{3\pi}{4}\right)x\right]\right]$$

$$C_{0} = y_{0}\left[\frac{1}{4}\left(\frac{4\pi}{3}\sin\left(\frac{\pi}{4}\right)x - \sin\left(\frac{3\pi}{4}\right)x\right]\right]$$

$$C_{0} = y_{0}\left[\frac{1}{4}\left(\frac{\pi}{4}\right)x\right]$$

$$C_{1} = \frac{3y_{0}}{44}, \quad C_{2} = 0, \quad C_{3} = -\frac{y_{0}}{4}, \quad C_{4} = 0 - \cdots$$

$$T$$

$$C_{1} = \frac{3y_{0}}{44}, \quad C_{2} = 0, \quad C_{3} = -\frac{y_{0}}{4}, \quad C_{4} = 0 - \cdots$$

$$T$$

$$S_{n} \quad Most \quad genus d \quad Equation,$$

$$y(\alpha_{1}b) = \sum_{n=1}^{\infty} C_{n} \quad Sin\left(\frac{\pi\pi}{4}\right)x \quad Cos\left(\frac{\pi\alpha}{4}\right)b + C_{2}$$

$$Sin\left(\frac{\pi\pi}{4}\right)x \quad cos\left(\frac{\pi\alpha}{4}\right)b + C_{2}$$

$$Sin\left(\frac{\pi\pi}{4}\right)x \quad cos\left(\frac{\pi\alpha}{4}\right)b + C_{3} - \frac{y_{0}}{4}, \quad Sin\left(\frac{3\pi}{4}\right)z$$

$$Cos\left(\frac{3\pi\alpha}{4}\right)b + \frac{3y_{0}}{4}, \quad Sin\left(\frac{\pi\alpha}{4}\right) \quad Cos\left(\frac{\pi\alpha}{4}\right)b + \frac{3y_{0}}{4}, \quad Sin\left(\frac{\pi\alpha}{4}\right)c + \frac{y_{0}}{4}, \quad Sin\left(\frac{3\pi}{4}\right)z$$

$$Cos\left(\frac{3\pi\alpha}{4}\right)b + \frac{3y_{0}}{4}, \quad Sin\left(\frac{\pi\alpha}{4}\right), \quad Cos\left(\frac{\pi\alpha}{4}\right)b + \frac{y_{0}}{4}, \quad Sin\left(\frac{3\pi}{4}\right)z$$

$$Cos\left(\frac{3\pi\alpha}{4}\right)b + \frac{3y_{0}}{4}, \quad Sin\left(\frac{\pi\alpha}{4}\right), \quad Cos\left(\frac{\pi\alpha}{4}\right)b + \frac{y_{0}}{4}, \quad Sin\left(\frac{3\pi}{4}\right)z$$

$$Cos\left(\frac{3\pi\alpha}{4}\right)b + \frac{y_{0}}{4}, \quad Sin\left(\frac{3\pi}{4}\right)z$$

$$Cos\left(\frac{3\pi\alpha}{4}\right)c$$

$$Cos\left(\frac{3\pi\alpha}{4}\right)c$$

$$Cos\left(\frac{3\pi\alpha}{4}\right)c$$

$$Cos\left(\frac{3\pi\alpha}{4}\right)c$$

$$Cos\left(\frac{3\pi\alpha}{4}\right)c$$

$$Cos\left(\frac{3\pi\alpha}{4}\right)c$$

$$Cos\left(\frac{3\pi\alpha}{4}\right)c$$

$$Cos\left(\frac{3\pi\alpha}{4}\right)c$$

$$Cos\left$$

•

p3.nl 11. 9 Oriven that, dix) > { 1-1x1 . 1x1<1 We know that, of the function fexis The towner Transform $F[t(x)] = F(s) = \frac{1}{\sqrt{2\pi}} \int dw e^{isx} dw$) 1-1x1-ten F[f-(x)] = 1] 1-1x1 eisz da e st cossx Lisinsoc $= \frac{1}{\sqrt{2\pi}} \int ((-1x1)) (\cos x + i\sin x) dn$ $= \frac{1}{\sqrt{2}\pi} \int (1+x) \cos x \, dx + \frac{1}{\sqrt{2}\pi} \int (1-1x) \sin x \, dx$ $\sqrt{2}\pi \int \frac{1}{\sqrt{2}\pi} \int \frac{1}{\sqrt{2}\pi}$ 8 $= \frac{1}{6\pi} = 2 \int (1 - 1x1) \cos 3x \, dx$ $=\frac{1}{\sqrt{2}}\left(1-12\right)\frac{\sqrt{2}}{5}\left(1-12\right)\left(-\frac{\sqrt{2}}{5}\right)\left(-\frac{\sqrt{2}}{5}\right)$ $=\frac{1}{\sqrt{2}} \cdot 2 \left[\left(0 - \frac{2 \cos 2}{3^2} \right) - \left(1 \left(0 \right) - \frac{1}{S^2} \right) \right]$ $F[dex] = \sqrt{\frac{2}{T}} \left(\frac{1-\cos S}{82} \right)$

Fish =
$$\sqrt{\frac{2}{17}} \left(\frac{1-\cos 5}{5^{2}}\right)$$

which is prearised therein Forenettorn is
By Applying Inversion for downed
Transform, we get
 $d \cos 1 = F^{-1}\left[F(s)\right] = \frac{1}{12\pi}\int_{-\infty}^{\infty} f(s) e^{-isx} ds$
 $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\frac{2}{\pi}\left(1-\cos 5\right) e^{-isx} ds$
 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\pi} \left(\frac{1-\cos 5}{5^{2}}\right) (\cos 5x - i\sin 5x) dg$
 $= \frac{1}{\pi} \int_{-\infty}^{\infty} \left(\frac{1-\cos 5}{5^{2}}\right) \cos 5x dx = 1 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{5^{2}} \int_{-\infty}^{\infty} \frac{1$

Parl (1) de put 1- coss = 2 Sin (3,2) Substitution method 8=24. O put S/2 = b L.L = 0 ds = 2dtU.L = 00 U.L = = = = Jelsint 2dt = 72 $L \cdot L = S_{2} = 0$ $\int_{0}^{\infty} \frac{\sin t}{t^{2}} dt - \frac{\pi}{2}.$ $\therefore \int \frac{Sint}{t^2} dt = \frac{\pi}{2}$

6) Fourier Ocine Transform poins FOUND to sime than form Fc(dix) = FcdSI= VE J Fix) Colserda Inversion, $F'[F_{c}(S)] = f(x) = \sqrt{\frac{2}{\pi}} \int F_{c}(S) \cos x dx$ 3(2) are ond @ Foundar Transform pairies

CLA-3 Aerospace Answerkey リ フェッチャノーチョ(4) 8) $z_{2}fw_{3}^{2} = z_{0}^{2}fw_{2}^{2} = z_{0}^{2}fw_{2}^{2} = z_{0}^{2}fw_{2}^{2} = z_{0}^{2}fw_{1}^{2} =$ (c) grivebus & z-transform $z_{2} f_{1} = f_{2} f_{1} z_{2} = f_{2} = f_{2} = f_{2} = f_{1} z_{1} = f_{1} z_{1}$ $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$ $() z(h) = (g(\frac{2-q}{2}))$ 7) (a-e)+(x-1)2+(1-y)p20 \$ (22+y2+22, n+y+2) 20 8) (mz-ny) p-t(un-12) g = ly-m. $u = x + fy^2 + z^2$ -9) (NA) (APL) = fa) 2 (ht) (n+2) = 2 (n2 + 3 n- f2) $\mathbb{Z} = \mathbb{Q}\left(\frac{2}{2d}\right)^2$ (o) est = f(y-x) + x f(y-x) $P.I = \frac{1}{p(p,p')} \quad free = \frac{y_n y_n}{12} - \frac{n}{30}.$

(1) 2-4832° 182-106 } AFI IB TICEI $2 + \sum_{n=1}^{\infty} \frac{1}{(n+1)} \frac{1}{(n+1)}$ " is a supply a supply of the start of the start the second s

BHARATH INSTITUTE OF HICHER EDUCATION AND RESEATCH (Declared as Deemicd is the University Lysis and Shaw Act. 1956) SCHOOL OF AERONAUTICAL NAMES TERING Name: SUJIRTHA P 23/11/22 Reg. No. V21.A.S.O. 30 Sam / Your D Examination CLA-D TBVP PART-A:-(D). 1D Wave Equation (Possible Solutions). $y(x_{1}t) = (c_{1}e^{px} + c_{2}e^{-px})(c_{3}e^{apt} + c_{4}e^{-apt})$ $y(x,t) = (C_5 Sinpx + C_6 C_{03} px)(C_4 Sinapt + C_8 C_{03} apt)$ $y(x_1,t) = (Cq^{2x} + C_{10}) (C_{11} + C_{12}t)$ @6:-Fourier Cosine Transform Pair]: - $F(x) = F(s) = \int_{\pi}^{2} \int_{\pi}^{\infty} f(x) \, \ell \cos sx \, dx.$ Invensige of losine : Per:- $F(x) = \sqrt{\frac{2}{11}} \int F(s)(\log sx) ds$ (5) Convolution Theorem States that if the Product of F(x) * g(x) is of (it). g(t-x) dt Pauseval's Identity :- $\left(\left| F(x) \right|^2 dx = \int \left| F(s) \right|^2 ds$

= for for ise to :-(4) Foucier Transform Paro: Equation $F(f(x)) = F(s) + \frac{1}{\sqrt{2\pi}} \int f(x) e^{iSx} dx$ -> () Louvier Inverse Transform Équation $F(s) = F(x) = \frac{1}{\sqrt{2\pi}} \int F(s) e^{-isx} dx = \frac{1}{\sqrt{2}}$ The Combination of Equation () 2 (2) is Called Fourier Transform Pair. 3 2D-heat flow Equation :- $\frac{\partial \dot{u}}{\partial t^2} = \left(C^2\right) \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$ Where C² is Where Kis p is density C is Specific heat

(2) Part A) Fourier law of heat Conduction $\frac{\partial u}{\partial t} = C\left(\frac{\partial^2 u}{\partial x^2}\right).$ $e = \frac{k}{k}$ PC. ED & PART - B: -Steady State Condition - $\frac{\partial U}{\partial t} = 0$. → (Ì) 7(a) One dimensional Wave Equation $\frac{\partial U}{\partial t} = \left(\frac{\partial^2 U}{\partial x^2}\right) c^2$. 43 1D Wave Equation at Since we need A Steady state Condition, avhere temperature idont charge et with time) Equating (D x 2) we get euspect to $\frac{\partial^2 u}{\partial t^2} = C^2 \left(\frac{\partial^2 u}{\partial x^2} \right) = -$ 0 $C^2 \left(\frac{\partial^2 u}{\partial^2 u} \right)$ 0 = $\frac{O}{C^2} = \frac{\partial^2 u}{\partial 2^2}$ $0^{-} = \frac{\partial^2 u}{\partial x^2}$ 3

From Equation 3 we get ; ? Steady State Condition for one dimensional ? heat flow Equation :-

(76): - $A \left[B^2 - 4AC \right]$ (i) A = 41 B = 0 C = 10 - 4(1)(1), 4ary . = -4. -4 < 0 given equationis Elliptic Type.

(11) B² - 4 AC c = 1 $A = 4 \quad B = 4$ =) 32-4AC -0. =) $4^2 - 4(4)(!)$. = 16-16 = 9 guation is a Parabola. = 16-16

Modulation Theorem:- $F\left(\frac{1}{4}C\theta\right)\cos \alpha x = \frac{1}{2}\left(F\left(S+\alpha\right) + F\left(S-\alpha\right)\right)$ To Prove We know that $\cos \alpha x = \frac{e^{i\alpha x} + e^{-i\alpha x}}{2}$ $\int_{J}^{\infty} f(x) \cdot (\cos \alpha x) = \int_{V = T}^{0} \frac{1}{V = T} F(s) (e^{isx}) dx \left(\frac{e^{i\alpha x} - i\alpha x}{2}\right)$ $V = \frac{1}{2} \left[\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \right]$ $= \frac{1}{2} \left(F(s+a) + F(s-a) \right)$ Thus we showed, $F\left[f(x)(\cos ax)\right] = \frac{1}{2}\left[F(s+a) + F(s-a)\right]$

9(b). Fourier Sine Transform $F(Hg) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} f(x) C(\sin gx) (dx)$ F(f(x)) = $\sqrt{\frac{2}{11}} \int f(x) (\cos sx) dx$. e-ax lyiren $= \sqrt{\frac{2}{T}} \int (e^{-\alpha x}) (\sin \beta x) dx.$ Sine $= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{8i}{\pi} \cdot 28in \, ax - \cos ax$

 $\frac{p_{\text{ART-C}}}{g_{\text{iven}}} = y_0 \frac{g_{\text{in}}}{z}$ $(10) (a) := y(x,0) = y_0 \frac{g_{\text{in}}}{z}$ (# (BSing . Singr) Joion One dimensional Wave Equation, the Correct Solution:- $Y(x,t) = (C_1 \cos px + C_2 \sin px) (C_3 \cos apt + C_4 \sin apt)$ From The boundary Conditions .y(x,0) = 0, tz0 $(y_1(x, 1) = 0)$, $t \ge 0$ $\frac{\partial q}{\partial (0,t)} = 0$, $0 \in x \in L$ $\partial \theta(o,t) = f(x) = g_0 Sin(\frac{\pi x}{p})$ Applying 1st boundary Condition in Eqn () $y(x,0) = (C_1 \operatorname{Cosp} + C_2 \operatorname{Sinp} x) (C_3 \operatorname{Cos} 0° + C_4 \operatorname{Sin} 0°)$ $= (c_1 \cos px + c_2 \sin px) (c_3)$ rohere, G = 0 + C, Cospr C2 Sinpx = 0 which gives trivial Solution. $Sub(c_2=0)$ in 1:-We get; $y(x,t) = (C_1 \operatorname{Cosp} x + G_2 \operatorname{Sinp} x) (C_4 \operatorname{Sin} apt) \rightarrow \Box$

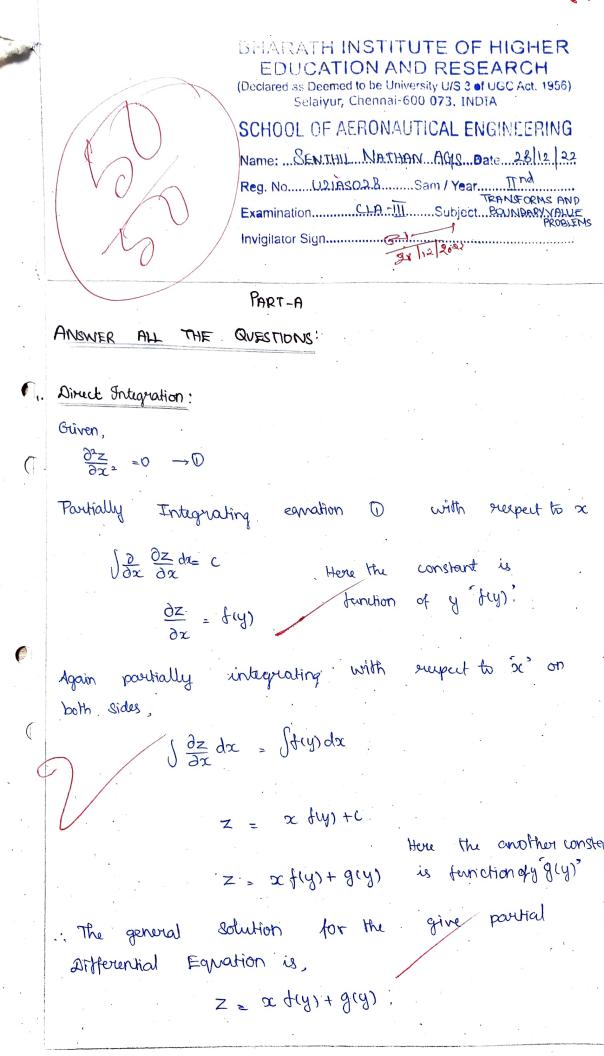
Applying 2nd boundary Condition in Eqn (2) $y(x,0) = (C_1 \cos p_1 + c_2 \sin p_1)(C_4 \sin apt)$ does not Hore Cy Sinapl = 0 which gives staintal Solution :yesso Cy Sinapl =0. Sin apl = 0 Sin apl = Sin nTT. P = alSubstituting Value of P in Egn @: $y(x,t) = (C_1 Cog(\frac{n\pi}{aL})x + C_2 Sin(\frac{n\pi}{aL})x)(C_4 Sin(\frac{n\pi}{aL}))$ Substituting 3rd Doundary Condition in Equation 3: $y(a) = C_1((-s)n \frac{n\pi}{al}(x)(n\pi)) + C_2 \otimes con \frac{n\pi}{al}(x) \frac{n\pi}{al})$ $(C_{4} (c_{4}) (t) (t_{4}) ($ $\frac{1}{2}\left(\begin{array}{c} 0 \\ 0 \end{array}\right) = C_2\left(\begin{array}{c} 1 \\ 1 \\ \end{array}\right)\left(\begin{array}{c} C_4 \\ 1 \\ \end{array}\right)\left(\begin{array}{c} C_4 \\ al \end{array}\right) = C_2\left(\begin{array}{c} 1 \\ al \end{array}\right)$

 C_{2} C_{4} C_{4} $C_{6} \left(\frac{n \pi}{a_{p}}\right)^{(t)} \left(\frac{n \pi}{a_{p}}\right)$ $y_{p} = \frac{1}{4} (3 \cos x - \sin 3x)$ $= C_{n} \left(\frac{1}{4} \left(3 \left(\frac{1}{3} \left(\frac{1}{3} \left(\frac{1}{3} \left(\frac{1}{3} \left(\frac{1}{3} \right) - \frac{1}{3} \right) \right) \right) \right) \right)$ $\frac{SW3\chi}{Gk} = \frac{1}{4} \left(3 Sin \chi - Sin 3\chi\right)$ G C dy (Bit) 611y. In Terms of Oline:- $= C_n \frac{1}{4} (33ins_2 - 3in32)$ Substitute in Egn 3. $C_1 = \frac{1}{a_1} + C_2 = \frac{1}{a_1} + C_3 = \frac{1}$ 1 a

(11) $(b) := \frac{1}{4}(x) = 1 - x^2$. F(f(x)) = $\frac{1}{V_{2TT}}\int f(x) e^{iSx} dx$ $= \frac{1}{\sqrt{2\pi}} \left((1 - x^2) \left(\frac{\cos x}{\cos x} + i \sin x \right) dx \right)$ $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (1-x^2) (\cos sx) dx + \int_{-\infty}^{\infty} (1-x^2) (i\sin sx) dx.$ $= \sqrt{2\pi} \int_{-\infty}^{-\infty} (1-x^2) (\cos sx) dx + 0$ $= \sqrt{2\pi} \int_{-\infty}^{\infty} (1-x^2) (\cos sx) dx + 0.$ $= \frac{1}{\sqrt{2\pi}} \left(\frac{2}{(1-x^2)} \left(\frac{8 \ln 3x}{5} \right) + \frac{2}{5} - \frac{(-2x)(\frac{-\cos 5x}{5^2})}{5} \right)$ $+ (-a)\left(-\frac{\sin sx}{s^3}\right)$ $= \frac{1}{\sqrt{2\pi}} \frac{8}{5} \left[-\frac{8}{5} \frac{\cos 5}{5^2} + \frac{\sin 5}{5^3} \right]$ $= \sqrt{\frac{92}{2112}} \left[\frac{8ins - 5\cos}{8^3} \right]_{ll}$ required Fourier Transform . -

pplying Inverse we get 4 Npplying Paouseval & Identity :-Npplying Paouseval & Identity :-NF (x)|² dx = JF (s)]² ds :-I per $F(s) = \begin{cases} 2 \\ \sqrt{2\pi} \end{cases} \begin{pmatrix} \frac{2}{\sin s} - \frac{2}{\sin s} \end{pmatrix}^2 = f(x) \\ \frac{2}{\sin s} \end{pmatrix} = f(x)$ $=\int (1-x^2) \frac{4}{2\pi} \left(2 \right) \int \frac{8 \sin s - 8 \cos s}{8^3} \int \frac{2}{8} = \int \frac{1}{8} + x \left(\frac{1}{8} - 2x \right) = 0$ $\frac{16}{11} \int \left(\frac{\text{gins} - \text{gCoss}}{\text{g}^3} \right)^2 = \int \left(\frac{1 + \frac{x^5}{3}}{\frac{3}{5}} - \frac{2(x^3)}{3} \right)$ $\frac{167}{11}\int_{0}^{\infty}\frac{1}{83}\left(\frac{1}{83}\right)^{2} = \frac{1}{15}$ $\int \left(\frac{8ins - 8(085)^2}{53}\right)^2 = \frac{\pi}{15}$ Honce Froved

.



2. Eliminating the Artitrary constants, Griven that,

$$Z = Qx + by + Q^2 + b^2 \rightarrow 0$$

with respect to equation (1) positially differentiate the a on both sides,

$$\frac{\partial z}{\partial x} = P = \mathcal{Q}(1) + 0 + 0 + 0$$

$$p = a$$

partially differentiate the equation (1) with respect to y on both sides.

$$\frac{\partial z}{\partial y} = q = 0 + b(1) + 0 + 0$$
$$q_{y} = b.$$

and q = b in \mathbb{O} , we get Substitute p=a

$$Z = px + qy + p^2 + q^2$$

which is the required PDE.

ONE SIDED Z - TRANSFORM : З.

* In the z-transform when t(n)=0, where (Gsubl Shillion). Transform Should be known nxo, the as one sided z-transform. The one sided z- Transform is given by, $\star z \left\{ f(n) \right\} = \left(\sum_{n=0}^{\infty} f(n) z^{-n} = F(z) \right)$ which is known as the one sided z-transform mostly used this z-transform.

- co (n) o]

dins=0.

5

INVERSE OF Z - TRANSFOM!

St the Z-Transform should be $z \int f(n) z = \sum_{n=0}^{\infty} f(n) z^{-n} = F(z)$. Then the Source given by, Z - Transform is $Z^{-1}\left[F(z)\right] = f(n)$ which is the inverte z-Trankform, 4. Z- TRANSFORMS OF 1 and (-1)". (Here, z-Transform of 1. $z fig = \frac{z}{7-1}$ $Z\left\{(-1)^n\right\} = \frac{Z}{Z+1}$ From the conditions ct. $z \int a^n f = \sum_{n=0}^{\infty} a^n z^n$ $n_{1} = \sum_{n=0}^{\infty} \left(\frac{\alpha}{z} \right)^{n}$ $= \frac{1}{1+\frac{q}{2}} + \left(\frac{q}{z}\right)^2 + \left(\frac{q}{z}\right)^2 + \cdots$ $(1-x)^{2} = 1+x^{2}+x^{3}+x^{4}+\cdots$ here x = 0/2WET $= \left[1 - \left(\frac{9}{2}\right)\right]^{-1}$ $z \int a^n y = \left[\frac{z - \alpha}{z} \right]^{-1}$

$$z \int a^{n} J = \frac{z}{z-a}$$
Hore the value of a in 1
 $a=1 = -j$ $d(n) = (1)^{n} = 1$.
 $z' \int J = \frac{z}{z-1}$
 $a = -1 = -j$ $d(n) = (-1)^{n} = (-1)^{n}$
 $z \int (-1)^{n} J = \frac{z}{z-(-1)} = \frac{z}{z+1}$.
5. State and Prome change of scale Property:
STRTEMENT:
St z $\int d(n)J = F(z) = \sum_{n=0}^{\infty} f(n) z^{-n}$ ushich in
the z transform, then, $z \int a^{n} f(n)J = F(Z_{a})$.
which is the change of scale property.
Proof:
We know that,
 $z = Transform s$.
 $z \int d(n)J = \sum_{n=0}^{\infty} d(n) z^{-n} = F(z)$.
Aby a^{n} usith the function. $f(n)^{2} = a^{n} f(n)$
 $z \int a^{n} f(n)J = \sum_{n=0}^{\infty} d(n) z^{-n} = F(z)$.

$$\therefore z \int a^{n} d(n) \int = F(\frac{\pi}{2}a)$$

$$\therefore Here Hu change d scale proporty is proved
$$b = 2 - \operatorname{Transform};$$

$$hus = a - 1$$

$$D = (b_{1}) = (b_{2}) \left(\frac{z - a}{z}\right)^{-1} + (b_{2}) \left(\frac{z}{z - a}\right) = (b_{3}) \left(\frac{z}{z - 1}\right)$$

$$i) = \left(\frac{1}{n_{1}}\right) = z \log\left(\frac{z - a}{z}\right)^{-1} = z \log\left(\frac{z}{z - a}\right) = z \log\left(\frac{z}{z - 1}\right)$$

$$i) = \left(\frac{1}{n_{1}}\right) = \frac{\pi}{n_{10}} \frac{1}{n_{1}} \frac{z^{-n}}{z^{-n}} = \frac{\pi}{n_{10}} \frac{1}{n_{1}} \left(\frac{1}{z}\right)^{n}$$

$$= 0 + i\left(\frac{1}{z}\right) + \frac{1}{2}\left(\frac{1}{z}\right)^{2} + \frac{1}{3}\left(\frac{1}{z}\right)^{3} + \cdots$$

$$hore \pi = \frac{1}{n_{2}}$$

$$i) = \left(\frac{1}{n_{1}}\right) = -\left[\frac{x}{1 + 2^{2} + \frac{x^{3}}{3} + \cdots}\right] = \log(1 - x)$$

$$hore \pi = \frac{1}{n_{2}}$$

$$i) = \log(x + 1) = -\log(x + 1) = -\log(1 - x),$$

$$z(\frac{1}{n}) = \log(x + 1)^{-1}$$

$$= \log\left(\frac{1 - x}{2}\right)^{-1}$$

$$i) = \left[z(\frac{1}{n_{1}}) - z \log\left(\frac{\pi}{2 - 1}\right)^{-1}\right]$$$$

T a) conven that, \$(u,v)=0 $\phi (x^2 + y^0 + z^2, x + y + z) = 0$ u = f(v). $x^2 + y^2 + z^2 = f(x + y + z) \rightarrow \mathbb{D}$ partially differentiate O with respect to 'x' on both sides $2x + 0 + 2\frac{\partial z}{\partial x} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} +$: dz =p $2\alpha + 2p = f'(\alpha + y + 2) (> 1+p) \rightarrow 0$ positially differentiate () with respect to 'y' on both sides $\frac{\partial t^2 y}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \left(2ty t^2 \right) \left(2ty t^2 \right$ $2y + 2q = d^{1}(x_{t}y_{t}z)(1+q), -3$ $\Rightarrow + by \otimes me get,$ 2x + rr $\frac{2\alpha + 2p}{2y + 2q} = \frac{d'(\alpha + y + z)(1+e)}{d'(\alpha + y + z)(1+q)}$) x +) & Q *) ^{2 n 3/} $\frac{2(x+p)}{2(y+q)} = \frac{(1+p)}{(1+q)}$ (x+p)(1+q) = (1+p)(y+q)x + xq + p + pq = y + q + py + pq(or) $(1-9)^{1}x - (1+p)^{1}y + p - 9$ x-y+xq-q+p-py+pq-pq=0 x - y + (x - 1)q + (1 - y)p = 0which is the reconvived Partial differential Eanation.

b)
Griven that,

$$(mz - ny)p + (mz - lz)q = ly - mz$$

This is in the borm of Uauraull's. (Pp+ Qq = R).
How,
 $p = mz - ny$, $Q = nz - lz$, $R = (y - mz)$
The Subsideary convation is
 $\frac{dx}{p} - \frac{dy}{Q} = \frac{dz}{R}$
 $\frac{dx}{p} - \frac{dy}{Q} = \frac{dz}{R}$
Taking, x, y, n as one set of Multipliere,
 $\frac{x dx + y dy + z dz}{x(mz - ny) + y(mz(z)) + z(ly - mz)} = \frac{x dox + y dy + z dz}{mz - nyz} + y(mz - kyz) + z(ly - mz)$
(r
 $\frac{x dx + y dy + z dz}{z} = 0$.
(r
 $\frac{x dx + y dy + z dz}{z} = 0$.
(r
 $\frac{x dx + y dy + z dz}{z} = 0$.
(r
 $\frac{x dx + y dy + z dz}{z} = 0$.
 $\frac{x dx + y dy + z dz}{z} = 0$.
 $\frac{x dx + y dy + z dz}{z} = 0$.
 $\frac{x dx + y dy + z dz}{z} = 0$.
 $\frac{x dx + y dy + z dz}{z} = 0$.
 $\frac{x dx + y dy + z dz}{z} = 0$.
 $\frac{x^2 + y^2 + z^2 - za}{z}$ how $za = b$.
 $\frac{x^2 + y^2 + z^2 = b}{z^2 + y^2 + z^2}$.

Taking l, m, n as another set of multipliers.
Ida + maly + ndz
Ida + maly + ndz = 0
Ida + maly + ndz = 0
Ida + maly + ndz = 0
Integrating the each Teams we get,
Jda + Jmaly + Jndz = Jo
I Jda + my + nz = C.
V = dz + my + nz = C.
V = dz + my + nz = C.
V = dz + my + nz = C.
V = dz + my + nz = C.
V = dz + my + nz = C.
V = dz + my + nz = C.
V = dz + my + nz = C.
Integravial solution ze of the form.

$$\phi(u,v) = 0$$
.
 $\therefore \phi(z^{2}ry^{2}+z^{2}), lx + my + nz) = 0$,
ustruk is the required solution.
9. 9) Given that,
i) (n+1)(n+2) = thn => z[din] = z [(n+1)(n+2)]
 $z [(n+1)(n+2)] = z [n^{2}+3n+2]$
 \therefore by the kinear proporty of the z-Transform,
 $z f adin) + bg(n)] = a z[f log] + b = [gim]$.

we know that,

©

0

$$z \{n^{2}\} = \frac{Z(2+1)}{(Z-1)^{3}}$$

$$z \{n\} = \frac{Z}{(Z-1)^{2}}$$

$$z \{n\} = \frac{Z}{(Z-1)^{2}}$$

$$z \{n^{2} + 3n + 2\} = \frac{Z(2+1)}{(Z-1)^{3}} + 3\left(\frac{Z}{(Z-1)^{2}}\right) + 2\left(\frac{Z}{(Z-1)}\right)$$

$$= \frac{Z(2+1) + 3Z_{n} + 3Z_{n}(Z-1)^{2}}{(Z-1)^{3}}$$

$$= \frac{Z(2+1) + 3Z_{n} + 3Z_{n}(Z-1)^{2}}{(Z-1)^{3}}$$

$$= \frac{Z^{2} + Z + 3Z^{2} - 3Z + 2Z(Z^{2} + 1 - 2Z)}{(Z-1)^{3}}$$

$$= \frac{Z^{2} + Z + 3Z^{2} - 3Z + 2Z + 2Z + 4Z^{2}}{(Z-1)^{3}}$$

$$= \frac{3Z^{2} + Z + 3Z^{2} - 3Z + 2Z^{3} + 2Z + 4Z^{2}}{(Z-1)^{3}}$$

$$= \frac{3Z^{2} + Z^{2} + 2Z^{3} - 3Z + 4Z^{2} + 2Z^{3} - 3Z + 4Z^{2} + 2Z^{3} - 3Z + 4Z^{2} + 2Z^{3} - 3Z^{2} + 2Z^{3} - 2Z$$

which is the reconvirued 2 transform. of function (n+1) (n+2)

ii) (n+1)2

$$\delta(n) = (n+1)^2 = n^2 + 2n+1$$
,

$$\therefore Z \{d(n)\} = Z \{(n+1)^2\} = Z \{n^2 + 2n+1\}$$

by tinuous property of the Z-Transform
$$Z \{n^2 + 2n+1\} = Z \{n^2\} + Z \{2n\} + Z \{1\}$$
$$= Z \{n^2\} + 2Z \{n\} + Z \{1\}$$

Altready we know that,

$$Z \{n\} = \frac{Z(Z+I)}{(Z-I)^3}$$

 $Z \{n\} = \frac{Z}{(Z-I)^2}$
 $Z \{i\} = \frac{Z}{Z-I}$

Sullifitule in the suitable z transform.

$$= \frac{7(2+1)}{(2-1)^3} + \frac{2}{(2-1)^2} + \frac{2}{2-1}$$
$$= \frac{2(2+1)}{(2-1)^2} + 2(2-1)^2$$
$$(2-1)^3$$

$$= z^{2} + z + 2z^{2} - 2z + z(z^{2} + 2z + 1)$$

$$= z^{2} + 2z^{2} - 2z^{2} + z - 2z + z + z^{2}$$

$$(z - 1)^{3}$$

$$z \int (n+1)^2 y = \frac{z^3 + z^2}{(z-1)^3} = \frac{z^2 (z+1)}{(z-1)^3}$$

$$i = 2 \int (m_{1})^{2} \int z \int n^{2} + 3n + i \int dx = \frac{2^{3} + 2^{3}}{(2 - i)^{3}}$$

$$= \frac{2^{3} + 2^{3}}{(2 - i)^{3}}$$

$$Z \int (m_{1})^{2} \int 2^{2} (2 + i) \frac{2^{2}}{(2 - i)^{3}}$$

$$Urhich is His required Z = Tronsform of the durition $(n_{1})^{2}$.
PART-C.

$$D^{2} + 300^{1} + 30^{12} = x^{2}y$$
The Arbitrosug equation is m^{2} + 2m + 1 = 0$$

$$m^{2} + 2m$$

Ć

$$= \frac{1}{(p+p)^{\lambda}} x^{a}y$$

$$= \frac{1}{D^{\lambda}} (1+\frac{p}{D})^{a} x^{2}y$$

$$= \frac{1}{D^{\lambda}} \left[(1+\frac{p}{D})^{-2} x^{a}y \right] \quad \text{Wet.}$$

$$= \frac{1}{D^{\lambda}} \left[1-2\left(\frac{p}{D}\right) + 3\left(\frac{p}{D}\right)^{\lambda} + \cdots \right] x^{a}y \quad \text{Wet.}$$

$$= \frac{1}{D^{\lambda}} \left[1-2\left(\frac{p}{D}\right) + 3\left(\frac{p}{D}\right)^{\lambda} + \cdots \right] x^{a}y \quad \text{O' ally with } x^{b}y \quad \text{Here.}$$

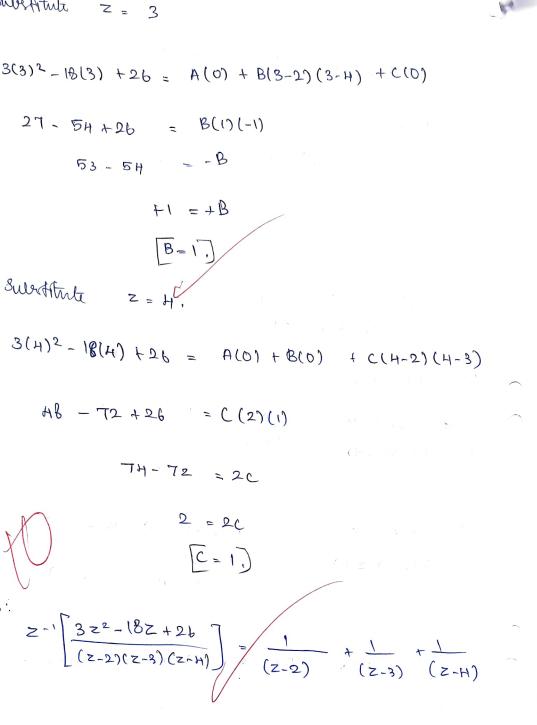
$$= \frac{1}{D^{\lambda}} \left[(1-2\left(\frac{p}{D}\right)\right) x^{a}y \quad O' ally with } x^{b}y \quad \text{O' ally } y^{b}y \quad \text{O'$$

$$\frac{1}{2} = \frac{1}{2} + \frac{1$$

(

(

. .



$$Z^{-1}\left[\frac{3Z^{2}-18Z+26}{(Z-2)(Z-3)(Z-H)}\right] = Z^{-1}\left[\frac{1}{(Z-4)}\right] + Z^{-1}\left[\frac{1}{Z-3}\right] + Z^{-1}\left[\frac{1}{Z-H}\right]$$

We know that $Z^{-1}\left[\frac{1}{Z-4}\right] = Q^{n-1}$.

$$\therefore z^{-1} \left[\frac{3z^{2} + 4b^{-8}z^{2}}{(z - 2x)(z - 3)(z - 4n)} \right] = 2^{n-1} + 3^{n-1} + 4^{n-1} \cdot 2^{n-1} + \frac{3^{n-1}}{(z - 2x)(z - 3)(z - 4n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3)(z - 4n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3)(z - 4n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3)(z - 4n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3)(z - 4n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3)(z - 4n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3)(z - 4n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3)(z - 4n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3)(z - 4n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3)(z - 4n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3)(z - 4n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3)(z - 4n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3)(z - 4n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 2x)(z - 3n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{4})4^{n} \cdot \frac{1}{(z - 3x)(z - 3n)} = (\frac{1}{2})2^{n} + (\frac{1}{3})3^{n} + (\frac{1}{3})3^{$$

BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH

(Declared as Decimient to be University U/S 3 of UGC Act. 1956) Selaiyur, Chennai-600 073, 1MD14

SCHOOL OF AERONAUTICAL ENGINEERING

Pant-C

Given 2^{-1} $\begin{cases} \frac{32^{2}-182+26}{(2-2)(2-3)(2-4)} \end{cases}$

Let

HQ)

ms

(

(

(

 $= \frac{A}{(2-2)} + \frac{B}{(2-3)} + \frac{C}{(2-4)}$ 322-182+26 (2-2)(2-3)(2-4)

P(2-3)(2-4) + B(2-2)(2-4) +

C. (2-2)(2-3)

(2-2) (2-3) (2-4)

in

ea?

(2-2)(2-3) ->(1)

1

Alere substitute

tute = 2

$$f_{02077} \bigcirc \\ 1 & g \\ 3 (1)^{2} - 10(2) + 26 = A(2-3)(2-4) + 0 + 0 \\ 3(4) - 36 + 26 = B(-1)(-2) \\ 12 - 36 + 26 = B(2) \\ 38 - 36 = B(2) \\ 2 = B(2) \\ \boxed{P = 1} \\ 5ubstitute = 2 = 3 in eaT} \bigcirc \\ 3(3)^{2} - 18(3) + 26 = B(0) + B(3-2)(3-4) + (c0) \\ \frac{16}{5^{3}} = 2^{2} - 54 + 26 = 0 + B(1)(-1) + 0 \\ 53 - 54 = -B \\ \boxed{B = 1} \\ \hline \\ 1 = -B \\ \hline \\ 1 =$$

$$\begin{aligned} \frac{2}{2} \frac{4}{4} - \frac{1}{2} \frac{1}{2} - (2) \\ \frac{1}{2} \frac{1}{2}$$

(

(

100/2

; (100) ; E : 100, 5 Pant-B 9(6) (i) that zig n.ang W.K. 7 $2 \int a^n f(x) \int z - 2 \frac{d}{dz} \left(z f(x) \right)$ $z \{a^n, n\} = -z \frac{d}{dz} \left(z \{n\} \right)$ = -2 d 24 - 1 d2 24 x-a $= -2 \left(\frac{l x-a}{l x-a} + -x \right)$ $= -\frac{2}{2} \left(\frac{x-a-2L}{(x-a)^{2}} \right).$ $-2\left(\begin{array}{c}-a\\(x-a)\end{array}\right)$ 2 fa?ng = az $(\chi - \alpha)^{\vee}$

1			
	٩(6) ز) zíng	
		ω·ϗ·Τ	
		$\frac{2}{2} \int f(x) \int = \sum_{n=0}^{\infty} f(x) \neq n$	
		$\frac{1}{2} \int n^2 g = \frac{\omega}{\epsilon} n \cdot 2^{-\eta}$	
($\frac{2}{n^2} \frac{n}{2^n}$	
($= \sum_{n=1}^{\infty} \frac{n}{z^n}$	
		$= \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \frac{4}{2^4} + \cdots + \frac{4}{2^4}$	
	Ċ	$w \cdot k \cdot \tau$ $(1-x)^{-2} = (1+2x^{2}+3x^{3}+4x^{4}+\cdots)$	
	0	Here $x = \frac{1}{z}$	
		$= \left(1-\frac{1}{2}\right)^{-2}$	
	1	$=\left(\frac{2}{2-1}\right)^{2}$	
		$= \frac{1}{\frac{(2-1)^2}{2^2}}$	
		$2\left\{n\right\}^{2} = \left(\frac{2}{2-1}\right)^{2}$	

1

 \bigcirc

Part-A 6) 20 17 } WIK, T $\frac{2}{n}$ $\frac{2}{r}$ $\frac{2}{r}$ $\frac{2}{r}$ $\frac{2}{r}$ $\frac{2}{r}$ $\frac{2}{r}$ $\frac{2}{r}$ 7 { 1 } = E 1 $z = \frac{\xi}{2} \left(\frac{1}{nz^{n}}\right)^{4}$ $= n = \frac{1}{n + 1}$ $\frac{1}{1-2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \frac{1}{4 \cdot 2^4}$ 5 log 1

EHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH (Declared a Decre dy 1, 5 2 of unit. Act. 1956) N-1-00 073. HN SCHOOL UP A. UTICAL EN ERING Name: ETLAM DHEERAT REDDYDan 28/12/2022 Reg. No. U2 IASO LO Som / Year III/ I Examination CLA-3 Conject U20MABT03 Invigitator Sign Transformsand Boundary value Problems, Part-C To Find the Z-transform of cosno Given, 11. (\mathbf{k}) and shcosno. For z Zcosnoz take, $z \xi a^n \xi = \frac{z}{z-a}$ ion Let $a = e^{i\theta}$ $a^n = e^{i\theta}$ $= \{e^{ion}\} = \frac{z}{z - e^{io}}$ $\begin{array}{c} \cdot \cdot e^{i\theta} = \cos \theta + i \sin \theta \\ \overline{e}^{i\theta} = \cos \theta - i \sin \theta \end{array} \end{array}$ C Z $= \frac{z}{(z-\cos\theta)-i\sin\theta} \times \frac{(z-\cos\theta)+i\sin\theta}{(z-\cos\theta)+i\sin\theta}$ = z- (cosotisino) $z (z - cos \theta) + i sin \theta$ $(z - cos \theta)^2 - (i)^3 sin^2 \theta$

 $= Z(z-\cos\theta) + iZ\sin\theta$ $z^2 - 2z \cos\theta t(\cos^2\theta + \sin^2\theta)$ (: $\cos^2\theta + \sin^2\theta$) $= \frac{2(z-\cos\theta)}{z^2-2z\cos\theta+1} + i \frac{z\sin\theta}{z^2-2z\cos\theta+1}$ $Z_{z}^{2} \cos n\theta_{z}^{2} + i Z_{z}^{2} \sin n\theta_{z}^{2} = \frac{z(z-\cos\theta)}{z^{2}-2z\cos\theta} + i Z_{z}^{2} \cos\theta_{z}^{2} + i Z_{z}^{2} \cos\theta_{z}^{2}$ by comparing both sides. $z_{2}^{2}\cos n\theta_{2}^{2} = \frac{z(z-\cos \theta)}{z^{2} - 2z\cos \theta + 1}$ $2.\frac{2}{5}\sin n\theta_{z}^{2} = \frac{2}{2}\frac{2}{2}22\cos \theta + 1$ NOW, To find ZZ x cosno 3 $z z z a^n f(n) z = F(\overline{a})$ z f(n) z F(z) $z \leq \pi (1) \leq \frac{1}{2} = \frac{z}{z^2} (z - (0 \leq 0))$ $F(z) = z \leq \cos(0) = \frac{z}{z^2} = 2z \cos(0)$ $F(\frac{Z}{\gamma}) = \frac{Z}{8}(\frac{Z}{8} - \cos\theta)$ $(\frac{Z}{8})^{2} - 2\frac{Z}{8}\cos\theta + 1$ $=\frac{2}{\gamma}\left(\frac{2-\gamma(050)}{\gamma}\right)$ $\frac{z^2}{z^2} - 2 \frac{z}{y} \cos\theta + \frac{1}{1}$

 $= \frac{2(Z-\chi(050))}{\chi^2}$ $= \frac{z(z-x\cos\theta)}{z^2-2zx\cos\theta+x^2}$ $: = \frac{2}{2} \frac{2}{3} \frac{2}{3}$ Part-A Given that, $Z = a \chi + b y + a^2 + b^2 - D$ 2. NOW, Partially Derivating equation () with respect (to x $\frac{\partial z}{\partial \chi} = a(1) = P \implies \overline{P} = a - 2$ Partially Desivoting equation (1) with respect ſ NOW7 to ly! $\frac{\partial z}{\partial y} = 2 = 0 + b(1) + 0 + 0$ » (9,=b)-+B substitute eq 2 and 3 in eq 0 we get, $z = px + 2y + p^2 + 2^2$

Z-transform; In one sided z-transform only one side 3. of the equation is solved, where $z \{f(n)\} = \underset{n=n}{\overset{\text{def}}{=}} f(n) z^n$ z = f(n) = F(z)One-sided inverse. z-transform", same as one sided z-transform only ora side is solved. where. inverse z - transform = -1z-transform Ex1- z 3z-a 3=z 2an 3 4. $Z Z Z Z = \sum_{n=0}^{\infty} (1) (Z)^n$ $(z^{2}z^{2}i^{2}) = z^{-1}$ zZ-1)¹ Z = 12-7+1 6. $z \frac{1}{2} \frac{1}{n} \frac{3}{2} = \prod_{n=0}^{\infty} \frac{1}{n} (\frac{1}{2})^n$ ⇒るをする=109元-1 $\frac{1}{2} \sum_{n=0}^{1} \frac{1}{n!} \sum_{n=0}^{2} \frac{1}{n!} \frac{1}{2} \sum_{n=0}^{1} \frac{1}{n!} \frac{1}{n!} \frac{1}{2} \sum_{n=0}^{1} \frac{1}{n!} \sum_{n=0}^{1} \frac{1}{n!} \sum_{n=0}^{1} \frac{1}{n!} \sum_{n=0}^{1} \frac{1}{n!} \sum_{n=0}^{1} \frac{1}{n!} \sum_{n=0}^{1} \frac{1}$ >Z Z nH3 =-Z log Z-1

121AS010 Part-B 9. To find 'z-transform of (b) We know that, $Z \{f(n)\}^2 = \prod_{n=0}^{\infty} f(n) z^n$ $i) \ge \{n\}$ $z \left\{ n \right\} = \sum_{n=n}^{\infty} n \left(\frac{1}{n} \right)^n$ $= 0 + (1)(\frac{1}{2}) + 2(\frac{1}{2})^{2} + 3(\frac{1}{2})^{3} +$ ⇒ It is in the form of here $x = (\frac{1}{z})$ $z z n z = (1 - \frac{1}{2})^{-1} = (\frac{z}{2})^{-1} = \frac{z}{z^{-1}}$ $= \frac{1}{2} \left[1 + 2 \left[\frac{1}{2} \right] + 3 \left(\frac{1}{2} \right)^{2} + 4 \left(\frac{1}{2} \right)^{3} + \cdots \right]$ 0 $= \#\left((1-x)^{-2}\right) = 1+2x+3x^{2}+4x^{3}+-$ 0 $z \sum_{n}^{n} = \begin{pmatrix} 1 - \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2}$ Z 2n3- Zh X $z z n z = (z-1)^2$ ii) z fnanz we know that $z \in f(n) \ge f(n) = f(n)$

 $z \left\{ n a^n \right\} = \sum_{n=0}^{\infty} n \frac{a^n}{z^n} = \sum_{n=0}^{\infty} n \left(\frac{a}{z} \right)^n$ $= \left(\frac{a}{z}\right)^{1} + 2\left(\frac{a}{z}\right)^{2} + 3\left(\frac{a}{z}\right)^{3} + 4\left(\frac{a}{z}\right)^{4} + - = \frac{\alpha}{Z} \left(1 + 2 \left(\frac{\alpha}{Z}\right) + 3 \left(\frac{\alpha}{Z}\right)^2 + 4 \left(\frac{\alpha}{Z}\right)^3 + - \right) z z z n_s^2 x z z a^n z^3$ $\frac{z}{(z-1)^2} \times \frac{z}{(z-a)}$ $(1-x)^{-2} = 1+2x+3x^{2}+4x^{3}+--)$ here x== $z^{2} = 12 \pm 1(2 - a)$ $= \frac{\alpha}{z} \left(1 - \frac{\alpha}{z}\right)^{-2} = \frac{\alpha}{z} \left(\frac{z - \alpha}{z}\right)^{-2}$ $= \frac{a}{z} \left(\frac{z}{z^{-a}}\right)^2 = \frac{a}{z} \left(\frac{z^2}{(z^{-a})^2}\right)^{\frac{z}{z} - z \frac{\partial}{\partial z} + b}$ $z \{na^n\} = \frac{az^2}{z(z-a)^2}$ $2 \frac{1}{2} \frac{h}{h} \frac{f(n)}{2} = -2 \frac{3}{52} \frac{f(n)}{2} = -2$ Pax-t -A 2 = 72 = 10 $\frac{\partial \mathcal{Z}}{\partial \mathcal{Z}} = f(\mathcal{Y})$ Now, f(y) be the constant again integrates $\partial_{y} x = f(y) dx$ $z \neq f(y) + g(y)$ the required general equation, This is

3 Part-C (b) (b) Given that, $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = x^2 y$ O, Ea) = Given that, Px + 2y = Z0 C

173, Agaram Main Rd., Selaiyur, Chennai, Tamil Nadu 600073

www.bharathuniv.ac.in